PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU"

Transkripsi

1 PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS 1. LATAR BELAKANG Tidak semua persamaan diferensial biasa dapat ditentukan penyelesaian eksaknya. Oleh karena itu, diperlukan suatu metode untuk menjelaskan penyelesaian tersebut. Salah satu metode tersebut adalah metode numerik. Metode numerik yang digunakan untuk memperoleh penyelesaian masalah nilai awal dapat berupa metode satu step maupun multistep. Dikatakan metode satu step jika penyelesaian di titik = n diperoleh berdasarkan penyelasaian di titik sebelumnya, = n 1. Jika dibutuhkan penyelesaian di beberapa titik sebelumnya, disebut metode multistep. Salah satu metode satu step adalah metode Runge-Kutta dam salah satu metode multistep adalah Adams-Bashforth. Karena penyelesaian yang diperoleh dengan metode numerik adalah penyelesaian pendekatan serta dalam proses mendapatkan penyelesaian pendekatan membutuhkan waktu, maka terdapat eror dan lama waktu proses. Oleh karena itu, perlu diteliti keakuratan dan efisiensi metode Runge-Kutta dan Adams-Bashforth, khususnya orde PERUMUSAN MASALAH Dari latar belakang dapat dirumuskan tiga masalah, yaitu (1) bagaimana menurunkan ulang algoritma Runge-Kutta orde empat dan Adams-Bashforth orde empat, (2) bagaimana menerapkan algoritma Runge-Kutta orde empat dan Adams-Bashforth orde empat pada suatu kasus, dan (3) bagaimana keakuratan dan efisiensi metode Runge-Kutta orde empat dan Adams-Bashforth orde empat.

2 3. TUJUAN Tujuan penulisan artikel ini adalah (1) dapat menurunkan ulang algoritma Runge-Kutta orde empat dan Adams-Bashforth orde empat, (2) dapat menerapkan algoritma Runge-Kutta orde empat dan Adams-Bashforth orde empat pada suatu kasus, dan (3) dapat mengetahui keakuratan dan efisiensi metode Runge-Kutta orde empat dan Adams- Bashforth orde empat. 4. PEMBAHASAN Dalam penulisan ini, penurunan algoritma Runge-Kutta orde empat mengacu pada Gear [3]. Sedangkan penurunan algoritma Adams-Bashforth orde empta mengacu pada Burden dan Faires [2] dan Gear [3] Metode Runge-Kutta Orde Empat. Bentuk umum metode Runge-Kutta orde empat adalah: y n+1 = y n + h(c 1 k 1 + c 2 k 2 + c 3 k 3 + c 4 k 4 ) for n =, 1, 2,... k 1 = f( n, y n ) k 2 = f n + µh, y n + hµk 1 k 3 = f( n + λh, y n + ρhk 2 + (λ ρ)hk 1 ) k 4 = f( n + νh, y n + σhk 3 + τhk 2 + (ν σ τ)hk 1 ). Terdapat sepuluh konstanta c 1, c 2, c 3, c 4, µ, λ, ρ, ν, σ dan τ yang harus ditentukan sehingga eror pemotongan lokalnya O(h 4 ) dan eror globalnya O(h 5 ). persamaan dengan sepuluh variabel: c 1 + c 2 + c 3 + c 4 = 1, µc 2 + λc 3 + νc 4 = 1 2, µ 2 c 2 + λ 2 c 3 + ν 2 c 4 = 1 3, µρc 3 + (λσ + µτ)c 4 = 1 6, µ 3 c 2 + λ 3 c 3 + ν 3 c 4 = 1 4, µ2 ρc 3 + (λ 2 σ + µ 2 τ)c 4 = 1 12, σµρc 4 = 1 24, µλρc 3 + (λσ + µτ)νc 4 = 1 8. Dalam kasus ini diperoleh delapan Karena ada delapan persamaan dan sepuluh variabel, maka terdapat banyak sekali penyelesaian. Jika setiap variabel dinyatakan dalam µ dan λ dan dipilih µ = λ = 1 2, maka diperoleh ρ = 1 6c 3, τ = 1 3c 3, ν = 1, c 1 = 1 6, c 2 = 2 3 c 3, c 4 = 1 6.

3 Jika nilai c 3 = 1 3, diperoleh metode Runge-Kutta orde empat: y n+1 = y n + h 6 (k 1 + 2k 2 + 2k 3 + k 4 ) for n =, 1, 2,... k 1 = f( n, y n ) k 2 = f( n + h 2, y n + h 2 k 1) k 3 = f( n + h 2, y n + h 2 k 2) k 4 = f( n + h, y n + hk 3 ) 4.2. Metode Adams-Bashforth Orde Empat. Metode Adams-Bashforth diturunkan dengan mengintegralkan persamaan diferensial biasa, pada interval [ n 1, n ], diperoleh y = f(, y) = f(, y()) y( n ) = y( n 1 ) + n n 1 f(, y())d. (4.1) Diperhatikan polinomial berderajat k 1, p (), yang menginterpolasi fungsi f(, y()) pada persamaan (4.1) melalui titik-titik n 1, n 2,..., dan n k. bentuk selisih mundur Newton diperoleh polinomial interpolasi p () = i= i f n 1 i!h i Dengan menggunakan i 1 ( n 1 j ). (4.2) Dari polinomial interpolasi (4.2), terdapat suatu bilangan ξ n 1 pada ( n k, n 1 ) dengan f(, y()) = p () + f (k) (ξ n 1, y(ξ n 1 )) k! ( n 1 j ). (4.3) Dimisalkan = n +sh, dengan d = hds, dan dengan menggunakan definisi fungsi binomial i 1 1 i!h i polinomial interpolasi (4.2) menjadi i= ( n 1 j ) = i 1 s + j i! ( ) s = ( 1) i, i ( ) s p () = ( 1) i i f n 1. (4.5) i i= Dengan memperhatikan persamaan (4.3) dan (4.5), persamaan (4.1) menjadi [ ( ) n ] y( n) = y( n 1) + ( 1) i s n i f (k) (ξ n 1, y(ξ n 1)) f n 1d + ( n 1 j)d n 1 i i= n 1 k! ( ) 1 = y( n 1) + h ( 1) i i s 1 f n 1 ds + hk+1 ( n 1 j)f (k) (ξ n 1, y(ξ n 1))ds. i k!

4 Jika ( 1) i 1 diperoleh dengan eror lokal ( s ) i ds dievaluasi dengan i =, 1, 2,..., k 1 dan y(n) y n serta y( n 1) = y n 1, ( y n = y n 1 + h ( ) ( 1) i s )ds f n 1, (4.6) i T n = hk+1 k! 1 ( n 1 j)f (k) (ξ n 1, y(ξ n 1))ds. Ambil i = 3, maka persamaan (4.6) menjadi y n = y n 1 + h( )f n 1. (4.7) Menurut Gear [3], selisih mundur dapat diekspresikan sebagai nilai fungsi di titik-titik sebelumnya, yaitu q f n 1 = Akibatnya persamaan (4.7) menjadi ( ) q ( 1) j q j f n 1 j. y n = y n 1 + h (55fn 1 57fn fn 3 9fn 4), n = 4, 5, 6, yang merupakan metode Adams-Bashforth orde empat Estimasi Eror. Jika penyelesaian eksak masalah nilai awal tidak diketahui, maka eror perlu diestimasi dan digunakan ide ekstrapolasi Richardson untuk mengestimasi eror (Apsley, [1]). Ide dari ekstrapolasi RIchardson adalah menghitung eror global pada iterasi ke-n dengan mengambil ukuran step h, y() y n(h), dan 2h, y() y n(2h). Selanjutnya kedua eror tersebut digunakan untuk mengestimasi eror penyelesaian dengan ukuran step h. Jika orde dari algorita yang diterapkan adalah k maka berlaku y() y n(h) O(h k ) (4.8) dan y() y n(2h) 2 k O(h k ). (4.9) Persamaan (4.8) dikalikan dengan 2 k dan dikurangi dengan (4.9), diperoleh y() y n(h) 1 (yn(h) yn(2h)). (4.1) 2 k 1 Dari persamaan (4.1), maka estimasi eror penyelesaian dengan ukuran step h menggunakan algoritma berorde k adalah 1 (yn(h) yn(2h)). 2 k 1

5 5. PENERAPAN KASUS Kasus 5.1. Diberikan masalah nilai awal y = 2 y + 2 e, 1 2, y(1) =. (5.1) Masalah nilai awal (5.1) memiliki penyelesaian eksak y() = ( e + e ) 2. Masalah nilai awal (5.1) diselesaikan dengan metode Runge-Kutta dan Adams-Bashforth orde empat dengan ukuran step h =.5,.25,.125, dan.625. Karena penyelesaian eksaknya diketahui, maka eror dapat ditentukan dengan mudah. Eror mutlak penyelsaian yang terjadi ditunjukkan pada Tabel 1 dan 2. Tabel 1. Eror mutlak yang terjadi di lima titik, jika digunakan metode Runge-Kutta orde empat untuk masalah nilai awal (5.1) h =.5 h =.25 h =.125 h = Tabel 2. Eror mutlak yang terjadi di lima titik, jika digunakan metode Adams-Bashforth orde empat untuk masalah nilai awal (5.1) h =.5 h =.25 h =.125 h =

6 Orde dari kedua metode dapat ditunjukkan dengan menghitung rasio eror mutlak eror h eror dengan h/2 h =.5,.25, dan.125 untuk masing-masing metode di titik yang sama. Hasil perhitungan dapat dilihat pada Gambar 1, dengan garis hitam untuk h =.5, hitam tebal untuk h =.25, dan hitam putus-putus untuk h =.125. RasioErorRK4 RasioErorAB Gambar 1. Rasio eror mutlak h dan h/2 di lima titik, berturut-turut dengan metode Runge-Kutta (kiri) dan Adams-Bashforth (kanan) orde empat. Dari Gambar 1 terlihat bahwa untuk pengambilan h =.5,.25, dan.125, rasio eror mutlak eror h eror 16. Hal ini menunjukkan bahwa orde dari algoritma yang diterapkan adalah empat. h/2 Tabel 1 dan 2 menunjukkan bahwa pada ukuran step h yang sama, eror mutlak penyelesaian dengan metode Runge-Kutta orde empat lebih kecil dibandingkan dengan metode Adams-Bashforth orde empat. Keakuratan kedua metode dapat dibandingkan dengan menghitung rasio eror mutlak eror AB4 eror RK4 pada setiap pengambilan h di titik yang sama. Hasil perhitungan rasio ini dapat dilihat pada Gambar 2, dengan garis hitam untuk h =.5, hitam tebal untuk h =.25, hitam putus-putus untuk h =.125, dan hitam tebal putus-putus untuk h =.625. RasioRK4_AB Gambar 2. Rasio eror mutlak Runge-Kutta dan Adams-Bashforth orde empat untuk berbagai nilai h. Gambar 2 menunjukkan bahwa untuk pengambilan h =.5,.25,.125, dan.625, semakin kecil ukuran step h maka rasio eror mutlak eror AB4 eror RK4 5. Hal ini menunjukkan bahwa pada orde empat, keakuratan Runge-Kutta adalah 5 kali metode Adams-Bashforth. Dapat disimpulkan, pada orde empat, metode Runge-Kutta lebih akurat daripada metode Adams-Bashforth. Efisiensi dapat dibandingkan dengan menghitung lama waktu program berjalan hingga diperoleh penyelesaian pendekatan. Hasil perhitungan lama waktu dapat dilihat pada Tabel 3.

7 Tabel 3. Lama waktu proses dengan menggunakan metode Runge-Kutta dan metode Adams-Bashforth orde empat dengan ukuran step h =.5,.25,.125, dan.625 h Runge-Kutta orde Adams-Bashforth orde Tabel 3 menunjukkan bahwa pada ukuran step h yang sama, dengan h =.5,.25,.125, dan.625, lama waktu proses program Adams-Bashforth orde empat lebih cepat daripada Runge-Kutta orde empat. Dapat disimpulkan, pada orde empat, metode Adams-Bashforth lebih efisien daripada metode Runge-Kutta. Kasus 5.2. Diberikan masalah nilai awal, y = 2y 2 + 4, 1, y() = 1 (5.2) dengan penyelesaian eksak tidak diketahui. Masalah nilai awal (5.2) diselesaikan menggunakan metode Runge-Kutta dan Adams-Bashforth orde empat dengan pengambilan h =.1,.5,.25, dan.125. Karena penyelsaian eksak tidak diketahui, maka dihitung estimasi eror penyelesaian pendekatan masalh nilai awal (5.1) menggunakan persamaan (4.1) dengan k = 4. Hasil dapat dilihat pada Tabel 4 dan 5. Tabel 4. Estimasi eror mutlak yang terjadi di lima titik, jika digunakan metode Runge-Kutta orde empat untuk masalah nilai awal (5.2) h =.1 h =.5 h =.25 h = Tabel 5. Estimasi eror mutlak yang terjadi di lima titik, jika digunakan metode Adams-Bashforth orde empat untuk masalah nilai awal (5.2) h =.1 h =.5 h =.25 h =

8 Orde dari kedua metode dapat ditunjukkan dengan menghitung rasio estimasi eror mutlak esteror h esteror h/2 dengan h =.1,.5, dan.25 untuk masing-masing metode di titik yang sama. Hasil perhitungan dapat dilihat pada Gambar 3, dengan garis hitam untuk h =.1, hitam tebal untuk h =.5, hitam putus-putus untuk h =.25. RasioEstErorRK4 17. RasioEstErorAB Gambar 3. Rasio estimasi eror mutlak h dan h/2 di limat titik, berturut-turut dengan metode Runge- Kutta (kiri) dan Adams-Bashforth (kanan) orde empat. Dari Gambar 3 terlihat bahwa untuk pengambilan h =.1,.5, dan.25 rasio estimasi eror mutlak esteror h esteror h/2 16. Hal ini menunjukkan bahwa orde dari algoritma yang diterapkan adalah empat. Tabel 4 dan 5 menunjukkan bahwa pada ukuran step h yang sama, estimasi eror mutlak penyelesaian dengan metode Runge-Kutta orde empat lebih kecil dibandingkan dengan metode Adams-Bashforth orde empat. Hal ini menunjukkan bahwa pada orde empat, pada orde empat, metode Runge-Kutta lebih akurat daripada metode Adams-Bashforth. Efisiensi dapat dibandingkan dengan menghitung lama waktu program berjalan hingga diperoleh penyelesaian pendekatan. Hasil perhitungan lama waktu dapat dilihat pada Tabel 3. Tabel 6. Lama waktu proses dengan menggunakan metode Runge-Kutta dan metode Adams-Bashforth orde empat dengan ukuran step h =.1,.5,.25, dan.125 h Runge-Kutta orde Adams-Bashforth orde Tabel 6 menunjukkan bahwa pada ukuran step h yang sama, dengan h =.1,.5,.25, dan.125, lama waktu proses program Adams-Bashforth orde empat lebih cepat daripada Runge-Kutta orde empat. Dapat disimpulkan, pada orde empat, metode Adams-Bashforth lebih efisien daripada metode Runge-Kutta.

9 6. KESIMPULAN Dari pembahasan dan penerapan kasus, diperoleh kesimpulan (1) Algoritma Runge-Kutta orde empat adalah y n+1 = y n + h (k1 + 2k2 + 2k3 + k4) for n =, 1, 2,... 6 k 1 = f( n, y n) k 2 = f( n + h 2, yn + h 2 k1) k 3 = f( n + h 2, yn + h 2 k2) k 4 = f( n + h, y n + hk 3) dan algoritma Adams-Bashforth orde empat adalah y n = y n 1 + h (55fn 1 57fn fn 3 9fn 4), n = 4, 5, 6,..., 24 (2) pada orde empat, metode Runge-Kutta lebih akurat dibandingkan metode Adams-Bashforth, (3) pada orde empat, metode Adams-Bashforth lebih efisien daripada metode Runge-Kutta. Pustaka [1] Apsley, D., Initial Value Problem, [2] Burden, R. L. and Faires, J. D., Numerical Analysis, Brooks/Cole, California, 21. [3] Gear, J. A., Numerical Solution of Ordinary Differential Equation, Royal Melbourne Institute of Technology Ltd, Melbourne, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, UNS, Jl. Ir. Sutami 36A, Kentingan, Surakarta, yukitothemonk@gmail.com

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS. LATAR BELAKANG Tidak semua fungsi mudah dievaluasi, terlebih fungsi yang rumit. Pendekatan dengan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering

Lebih terperinci

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 Asep Juarna, SSi, MKom. Fakultas Ilmu Komputer, Universitas

Lebih terperinci

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 Tornados P. Silaban 1, Faiz Ahyaningsih 2 1) FMIPA, UNIMED, Medan, Indonesia email: tornados.p_silaban@yahoo.com 2)

Lebih terperinci

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 21 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 117 124. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD

PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 376 PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD KUSBUDIONO 1, KOSALA DWIDJA PURNOMO 2,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB 1 PENDAHULUAN Persamaan diferensial adalah suatu persamaan yang mengandung derivatif dari variabel terikat terhadap satu atau lebih variabel bebas. Persamaan diferensial sendiri

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan Jurnal Matematika Integratif. Vol. 14, No. 1 (2018), pp. 51 60. p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v14.n1.15953.51-60 Penyelesaian Persamaan Diferensial Linier Orde Satu dan Dua disertai

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Dewi Erla Mahmudah 1, Ratna Dwi Christyanti 2, Moh. Khoridatul Huda 3,

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

BAB 1 PENDAHULUAN. perumusan persamaan integral tidak memerlukan syarat awal dan syarat batas.

BAB 1 PENDAHULUAN. perumusan persamaan integral tidak memerlukan syarat awal dan syarat batas. BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Banyak masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan diferensial adalah salah satu model matematika yang banyak digunakan pada

Lebih terperinci

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni LAPORAN TUGAS AKHIR Topik Tugas Akhir : Kajian Matematika Murni SOLUSI NUMERIK DAN ANALISIS GALAT SISTEM PERSAMAAN DIFERENSIAL ORDE-3 DENGAN MENGGUNAKAN METODE SATU LANGKAH (ONE STEP METHOD) DAN METODE

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

Kata Pengantar... Daftar Isi... Daftar Padan Kata...

Kata Pengantar... Daftar Isi... Daftar Padan Kata... Daftar Isi Kata Pengantar... Daftar Isi... Daftar Padan Kata... iii v xi 1. Metode Numerik Secara Umum... 1 1.1 Metode Analitik versus Metode Numerik... 4 1.2 Metode Numerik dalam Bidang Rekayasa... 6

Lebih terperinci

Ikhtisar: Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial

Ikhtisar: Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial ISSN 979-867 (print) Electrical Engineering Journal Vol. 4 (4) No., pp. -3 Ikhtisar Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial Tio Dewantho Sunoto Jurusan Teknik Elektro, Universitas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada metode numerik, dikenal suatu metode untuk menaksir atau mencari solusi pendekatan nilai eksak dari suatu ordinat y n+1 dengan diketahui nilai dari y n,

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

PENURUNAN FUNGSI SECARA NUMERIK

PENURUNAN FUNGSI SECARA NUMERIK 6 PENURUNAN FUNGSI SECARA NUMERIK Èada bab ini kita membicarakan metode numerik untuk menaksir nilai turunan suatu fungsi. Suatu fungsi, baik diketahui rumusnya secara eksplisit maupun dalam bentuk data

Lebih terperinci

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA oleh FIQIH SOFIANA M0109030 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

BAB IV IMPLEMENTASI SKEMA RUNGE-KUTTA. Pada bab ini akan dibahas implementasi skema skema yang telah

BAB IV IMPLEMENTASI SKEMA RUNGE-KUTTA. Pada bab ini akan dibahas implementasi skema skema yang telah BAB IV IMPLEMENTASI SKEMA RUNGE-KUTTA Pada bab ini akan dibahas implementasi skema skema yang telah dijelaskan pada Bab II dan Bab III pada suatu model pergerakan harga saham pada Bab II. Pada akhir bab

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Sistem persamaan linear yang terdiri dari n persamaan dengan n variabel x 1, x 2,..., x n

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Bab 4 Simulasi Kasus dan Penyelesaian Numerik

Bab 4 Simulasi Kasus dan Penyelesaian Numerik 28 Bab 4 Simulasi Kasus dan Penyelesaian Numerik Pada bab berikut dibahas tentang simulasi suatu kasus yang bertujuan untuk mencegah terjadinya penyumbatan aliran (bottleneck) serta mencari solusi numerik

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 9 16. PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

Lebih terperinci

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 47 55 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING LIDYA PRATIWI, MAHDHIVAN SYAFWAN, RADHIATUL HUSNA

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Numerical Analysis of Double Integral of Trigonometric Function Using Romberg Method ABSTRAK Umumnya penyelesaian integral

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial 2 BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu Pengetahuan memberikan landasan teori bagi perkembangan teknologi, salah satunya adalah matematika. Cabang matematika modern yang mempunyai cakupan wilayah penelitian

Lebih terperinci

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA Vanny Restu Aji 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PAM 252 Metode Numerik Bab 5 Turunan Numerik

PAM 252 Metode Numerik Bab 5 Turunan Numerik Pendahuluan PAM 252 Metode Numerik Bab 5 Turunan Numerik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Turunan Numerik Permasalahan

Lebih terperinci

Metode Numerik Newton

Metode Numerik Newton 1. March 1, 2016 1. 1. 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. 1. Berbeda dengan Metode

Lebih terperinci

Metode Numerik Dichotomus

Metode Numerik Dichotomus Algoritma Prodi S1 Pendidikan Matematika UMT April 4, 016 Algoritma Algoritma Algoritma adalah salah satu metode numerik yang dapat digunakan untuk menentukan nilai x yang meminimumkan suatu fungsi dari

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR Suci Dini Anggraini 1, Khozin Mu tamar 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

UJIAN AKHIR SEMESTER METODE NUMERIS I

UJIAN AKHIR SEMESTER METODE NUMERIS I PETUNJUK UJIAN AKHIR SEMESTER METODE NUMERIS I DR. IR. ISTIARTO, M.ENG. KAMIS, 8 JUNI 017 OPEN BOOK 150 MENIT 1. Saudara tidak boleh menggunakan komputer untuk mengerjakan soal ujian ini.. Tuliskan urutan/cara/formula

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PENERAPAN METODE NEWTON-COTES OPEN FORM 5 TITIK UNTUK MENYELESAIKAN SISTEM PERSAMAAN NONLINIER M Ziaul Arif, Yasmin

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

PENGARUH PERUBAHAN PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDO-2 SKRIPSI MIZWAR ARIFIN SRG

PENGARUH PERUBAHAN PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDO-2 SKRIPSI MIZWAR ARIFIN SRG PENGARUH PERUBAHAN PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDO-2 SKRIPSI MIZWAR ARIFIN SRG 070803030 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

Interpolasi Polinom dan Applikasi pada Model Autoregresif

Interpolasi Polinom dan Applikasi pada Model Autoregresif Interpolasi Polinom dan Applikasi pada Model Autoregresif Rio Cahya Dwiyanto 13506041 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1 5. INTERPOLASI PENDAHULUAN Bentuk umum persamaan polinomial orde n adalah: f() = a + a. + a. +.. + a n. n Untuk n+ titik data, hanya terdapat satu polinomial orde n atau kurang yang melalui semua titik.

Lebih terperinci

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL Siti Nurjanah 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK

BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK 41 METODE EULER Pertimbangkan masalah menentukan nilai uang saat ini dan akan datang dengan menggunakan suku bunga misalkan pada saat $ didepositokan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Integral Integral merupakan invers atau kebalikan dari differensial. Integral terdiri dari dua macam yakni integral tentu dan integral tak tentu. Integral

Lebih terperinci

EFEKTIVITAS METODE RUNGE-KUTTA ORDE TUJUH TERHADAP METODE MULTISTEP ADAMS ORDE ENAM PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS (TB)

EFEKTIVITAS METODE RUNGE-KUTTA ORDE TUJUH TERHADAP METODE MULTISTEP ADAMS ORDE ENAM PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS (TB) EFEKTIVITAS METODE RUNGE-KUTTA ORDE TUJUH TERHADAP METODE MULTISTEP ADAMS ORDE ENAM PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS (TB) SKRIPSI Oleh LUKMAN JAKFAR SHODIQ NIM 080210101050 PROGRAM STUDI PENDIDIKAN

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY Jurnal Matematika UNAND Vol. VI No. 1 Hal. 97 104 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY YOSI ASMARA Program Studi Magister

Lebih terperinci

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR ISI LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR... viii DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN...

Lebih terperinci

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017 TOPIK Pengenalan

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NT'MERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NT'MERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NT'MERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 Asep Juarna, SSi, MKom. Fakultas Ilmu Komputer, Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com November 12, 2006 Suatu

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LOTKA-VOLTERRA DENGAN MENGGUNAKAN METODE RUNGE-KUTTA ORDE LIMA TUGAS AKHIR DARMIYANTI

PENYELESAIAN SISTEM PERSAMAAN LOTKA-VOLTERRA DENGAN MENGGUNAKAN METODE RUNGE-KUTTA ORDE LIMA TUGAS AKHIR DARMIYANTI PENYELESAIAN SISTEM PERSAMAAN LOTKA-VOLTERRA DENGAN MENGGUNAKAN METODE RUNGE-KUTTA ORDE LIMA TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika

Lebih terperinci

Kontrol Optimum. MKO dengan Kendala pada Peubah Kontrol. Toni Bakhtiar. Departemen Matematika IPB. Februari 2017

Kontrol Optimum. MKO dengan Kendala pada Peubah Kontrol. Toni Bakhtiar. Departemen Matematika IPB. Februari 2017 Kontrol Optimum MKO dengan Kendala pada Peubah Kontrol Toni Bakhtiar Departemen Matematika IPB Februari 2017 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2017 1 / 53 Outline MKO berkendala

Lebih terperinci

MODUL PRAKTIKUM FISIKA KOMPUTASI. Disusun Oleh:

MODUL PRAKTIKUM FISIKA KOMPUTASI. Disusun Oleh: MODUL PRAKTIKUM FISIKA KOMPUTASI Disusun Oleh: JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PGRI PALEMBANG 2017 i PRAKATA Puji syukur penulis ucapkan kepada Tuhan yang Maha

Lebih terperinci

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Muliana 1, Syamsudhuha 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR

MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh LYLY YULIARNI

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

Rifqi Choiril Affan, Purnami Widyaningsih, Dewi Retno Sari Saputro Program Studi Matematika FMIPA UNS

Rifqi Choiril Affan, Purnami Widyaningsih, Dewi Retno Sari Saputro Program Studi Matematika FMIPA UNS MODEL SUSCEPTIBLE DIABETES COMPLICATIO (SDC ) Rifqi Choiril Affan, Purnami Widyaningsih, Dewi Retno Sari Saputro Program Studi Matematika FMIPA US Abstrak. Prevalensi penyakit diabetes tergolong cukup

Lebih terperinci

Prakata Hibah Penulisan Buku Teks

Prakata Hibah Penulisan Buku Teks Prakata Syukur Alhamdulillah kami panjatkan ke hadhirat Allah SwT, atas hidayah dan kekuatan yang diberikannya kepada penulis sehingga penulis dapat menyelesaikan buku Pengantar Komputasi Numerik dengan

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. digunakan dalam pengujian program perbandingan solusi numerik persamaan integral

BAB 4 IMPLEMENTASI DAN EVALUASI. digunakan dalam pengujian program perbandingan solusi numerik persamaan integral BAB 4 IMPLEMENTASI DAN EVALUASI Pada bab ini disajikan hasil pengujian program beserta spesifikasi sistem yang digunakan dalam pengujian program perbandingan solusi numerik persamaan integral Volterra

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 23-30 Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Elis Ratna Wulan, Fahmi

Lebih terperinci

METODA NUMERIK (3 SKS)

METODA NUMERIK (3 SKS) METODA NUMERIK (3 SKS) Dosen Dr. Julan HERNADI Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Masa Perkuliahan Semester Ganjil 2013/2014 Deskripsi dan Tujuan Perkuliahan Mata kuliah ini berisi

Lebih terperinci

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neng Ipa Patimatuzzaroh Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

... Difference equation dapat diselesaikan menggunakan proses iterasi. Didefinisikan fungsi

... Difference equation dapat diselesaikan menggunakan proses iterasi. Didefinisikan fungsi LECTURE 1: EXAMPLE OF DYNAMICAL SYSTEM A. An Example from Finance Misalkan kita mendeposito uang $1000 di sebuah bank dengan bunga 10% setiap tahun. Diasumsikan bunga 10% ditambahkan pada setiap akhir

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB 1 Konsep Dasar 1 BAB Solusi Persamaan Fungsi Polinomial BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal 5

Lebih terperinci

Inisialisasi Sistem Peringatan Dini Penyebaran Penyakit Demam Berdarah Dengue

Inisialisasi Sistem Peringatan Dini Penyebaran Penyakit Demam Berdarah Dengue BAB V Inisialisasi Sistem Peringatan Dini Penyebaran Penyakit Demam Berdarah Dengue Bab ini menjelaskan konstruksi perangkat lunak sistem peringatan dini outbreaks DBD. Sistem peringatan dini ini dirancang

Lebih terperinci

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL N.D. Monti 1, M. Imran, A. Karma 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR Yeni Cahyati 1, Agusni 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Aziskhan, Mardhika W.A, Syamsudhuha Jurusan MatematikaFMIPA Universitas Riau Abstract. The aim of this paper is to solve a heat equation

Lebih terperinci

Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon 2 ABSTRAK

Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon   2 ABSTRAK Jurnal Barekeng Vol. 8 No. 1 Hal. 39 43 (2014) APLIKASI METODE RUNGE KUTTA ORDE EMPAT PADA PENYELESAIAN RANGKAIAN LISTRIK RLC Application of Fourth Order Runge Kutta methods on Completion of the Electrical

Lebih terperinci

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace M. Nizam Muhaijir 1, Wartono 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

KAJIAN SEJUMLAH METODE UNTUK MENCARI SOLUSI NUMERIK PERSAMAAN DIFERENSIAL

KAJIAN SEJUMLAH METODE UNTUK MENCARI SOLUSI NUMERIK PERSAMAAN DIFERENSIAL KAJIAN SEJUMLAH METODE UNTUK MENCARI SOLUSI NUMERIK PERSAMAAN DIFERENSIAL Mulyono 1) 1) Program StudiSistemKomputer FMIPA UNJ mulyono_unj_2006@yahoo.co.id Abstrak Penelitian ini bertujuan untuk membandingkan

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR Istawi Arwannur 1, Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

Pengkajian Metode Extended Runge Kutta dan Penerapannya pada Persamaan Diferensial Biasa

Pengkajian Metode Extended Runge Kutta dan Penerapannya pada Persamaan Diferensial Biasa JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (215 2337-352 (231-928X Print A-25 Pengkajian Metode Extended Runge Kutta dan Penerapannya pada Persamaan Diferensial Biasa Singgi Tawin Muammad, Erna Apriliani,

Lebih terperinci