BAB I PENDAHULUAN Latar Belakang Masalah

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN Latar Belakang Masalah"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering digunakan untuk pemodelan matematika dalam bidang sains dan teknik (Mathews dan Fink, 1999). Sebagian besar permasalahan tersebut membutuhkan solusi masalah nilai awal (MNA), yaitu solusi persamaan diferensial yang memenuhi kondisi masalah nilai awal (MNA) yang diberikan (Burden dan Faires, 2010). Terkadang persamaan diferensial bisa berbentuk rumit akibatnya sulit untuk diselesaikan secara eksak, sehingga dibutuhkan metode yang lebih mudah yaitu dengan metode numerik. Metode numerik digunakan untuk menghitung nilai pendekatan solusi persamaan diferensial. Metode numerik yang digunakan untuk menyelesaikan masalah nilai awal (MNA) dibagi menjadi 2, yaitu metode satu langkah dan metode banyak langkah. Metode satu langkah hanya membutuhkan 1 nilai awal untuk mendapatkan nilai sekarang, dengan kata lain hanya dibutuhkan y n untuk mendapatkan nilai y n+1 (Kreyszig, 2011). Sedangkan metode banyak langkah membutuhkan 2 atau lebih nilai sebelumnya untuk mendapatkan nilai sekarang, dengan kata lain dibutuhkan y 0, y 1,... y n dengan n = 0, 1,..., m 1 untuk menghitung nilai y n+1 (Burden dan Faires, 2010). Nilai-nilai awal tersebut didapatkan dari metode 1 langkah. Gabungan dari 2 metode banyak langkah disebut dengan metode prediktor korektor. Dari kedua metode banyak langkah tersebut, kedua metode saling berbagi peran sebagai prediktor dan korektor dilihat dari besar galatnya. Metode yang memiliki galat lebih besar berperan sebagai prediktor, sedangkan metode yang memiliki galat lebih kecil berperan sebagai korektor. Prediktor untuk mencari nilai 1

2 2 pendekatan y n+1, selanjutnya oleh korektor nilai y n+1 tersebut akan dikoreksi lagi untuk mendapat hasil yang lebih mendekati nilai eksaknya. Metode Adams Bashforth Moulton adalah salah satu metode prediktor korektor. Adams Bashforth sebagai prediktor sedangkan Adams Moulton berperan sebagai korektornya. Penulis tertarik untuk membahas metode prediktor korektor Adams Bashforth Moulton 5 langkah, untuk menyelesaikan persamaan diferensial biasa orde 1 dan 2 disertai nilai awal, karena metode tersebut lebih mendekati nilai eksak dibandingkan dengan metode prediktor korektor Adams Bashforth Moulton 4 langkah yang keduanya menggunakan analisis langkah h dengan lebar langkah h yang sama, serta membahas kekonvergenan, kestabilan dan kekonsistenan metode prediktor-korektor Adams Bashforth Moulton 5 langkah Rumusan Masalah Rumusan masalah yang akan dibahas adalah sebagai berikut: 1. Bagaimana algoritma penggabungan metode Adams Bashforth dan Adams Moulton menjadi metode prediktor korektor Adams Bashforth Moulton dengan menggunakan analisis langkah h? 2. Bagaimanakah kekonsistenan, kestabilan, dan kekonvergenan dari metode prediktor korektor Adams Bashforth Moulton 5 langkah? 3. Lebih baik manakah antara metode Adams Bahsforth dan Adams Moulton 5 langkah dan lebih baik manakah antara metode Adams Bashforth Moulton 5 langkah dengan metode Adams Bashforth Moulton 4 langkah? 4. Bagaimana membuat program MATLAB untuk mencari nilai pendekatan dari pemecahan masalah nilai awal pada persamaan diferensial biasa orde 1 dan 2 menggunakan metode prediktor korektor Adams Bashforth Moulton 5 langkah dengan analisis langkah h?

3 Batasan Masalah Masalah yang dibahas pada skripsi ini dibatasi pada penyelesaian persamaan diferensial biasa orde 1 dan 2 disertai nilai awal menggunakan metode prediktor korektor Adams Bashforth Moulton 5 langkah, dengan nilai-nilai awalnya didapatkan dari metode Runge Kutta orde 4, dibantu dengan program MATLAB. Serta perbandingan keakuratan antara metode Adams Bashforth Moulton 5 langkah dengan metode Adams Bashforth Moulton 4 langkah, yang keduanya menggunakan analisis langkah h dengan lebar langkah h yang sama Maksud dan Tujuan Penelitian Maksud penulisan skripsi ini adalah untuk memenuhi syarat kelulusan Program Strata-1 (S1) Program Studi Matematika Universitas Gadjah Mada. Tujuan dari penulisan skripsi ini adalah sebagai berikut: 1. Mengetahui penggabungan metode Adams Bashforth dan Adams Moulton menjadi metode prediktor korektor Adams Bashforth Moulton dengan menggunakan analisis langkah h. 2. Mengetahui kekonsistenan, kestabilan, dan kekonvergenan dari metode prediktor korektor Adams Bashforth Moulton 5 langkah. 3. Membandingkan keakuratan pendekatan antara metode Adams Bahsforth dan Adams Moulton 5 langkah dan keakuratan antara metode Adams Bashforth Moulton 5 langkah dengan metode Adams Bashforth Moulton 4 langkah. 4. Memanfaatkan program MATLAB untuk mencari nilai pendekatan dari pemecahan masalah nilai awal pada persamaan diferensial biasa orde 1 dan 2 menggunakan metode prediktor korektor Adams Bashforth Moulton 5 langkah dengan analisis langkah h.

4 Tinjauan Pustaka Bentuk umum metode banyak langkah diberikan oleh Burden dan Faires (2010). Penurunan rumus metode Adams Bashforth dan Adams Moulton 5 langkah menggunakan interpolasi selisih mundur Newton diberikan oleh Gear (1971). Galat pemotongan (truncation error) metode Adams Bashforth dan Adams Moulton 5 langkah dengan menggunakan deret Taylor diberikan oleh Atkinson dkk.(2009). Error bounds metode Adams Bashforth dan Adams Moulton 5 langkah dturunkan dari teorema dan lemma yang digunakan untuk menurunkan error bounds metode Euler diberikan oleh Burden dan Faires (2010). Kekonsistenan, kestabilan, dan kekonvergenan metode Adams Bashforth dan Adams Moulton 5 langkah diberikan oleh Griffiths dan Higham (2010), Atkinson dkk.(2009), Burden dan Faires (2010), Wahyuni (2001), Suli (2014), Johnson (2008), Dafik (1998), dan Purnama (2013). Hubungan ketiganya diberikan oleh Gear (1971), Atkinson (1989), dan Atkinson dkk. (2009). Algoritma analisis perubahan langkah h pada metode prediktor korektor Adams Bashforth Moulton 5 langkah diberikan oleh Mathews dan Fink (1999) dan Apriadi dkk. (2014). Berbagai definisi dari persamaan diferensial biasa diberikan oleh Ross (1984) dan Aryati dkk.(2003). Definisi masalah nilai awal dan interpolasi selisih mundur Newton yang digunakan untuk menurunkan rumus metode Adams Bashforth dan metode Adams Moulton 5 langkah diberikan oleh Kreyszig (2011). Definisi dan teorema mengenai eksistensi dan ketunggalan diberikan oleh Mathews dan Fink (1999) dan Ross (1984). Definisi polinomial karakteristik metode banyak langkah diberikan oleh Burden dan Faires (2010). Deret Taylor, Teorema sisa Taylor, definisi galat diberikan oleh Aryati (2012) dan Sari dkk.(2014). Galat pemotongan (truncation error) diberikan oleh Sutarno dan Rachmatin (2008) dan Aryati (2012). Teorema dan lemma error bounds Euler sebagai acuan mencari error bounds metode Adams Bashforth dan Adams Moulton 5 langkah, kekonsistenan, kestabilan, dan kekonvergenan metode numerik diberikan oleh Burden dan Faires (2010), Dafik (1998), Purnama (2013), dan Lambers (2014).

5 Metode Penelitian Metode penulisan yang digunakan dalam skripsi ini adalah studi literatur. Diawali dengan mempelajari metode banyak langkah dan metode prediktor korektor secara umum melalui literatur-literatur yang berisi topik tersebut. Menurunkan rumus metode Adams Bashforth dan Adams Moulton 5 langkah dengan integral dan interpolasi selisih mundur Newton. Selanjutnya menurunkan galat pemotongan (truncation error) metode Adams Bashforth dan Adams Moulton 5 langkah menggunakan teorema sisa Taylor. Menurunkan error bounds metode Adams Bashforth dan Adams Moulton 5 langkah yang berpacu pada error bounds metode Euler. Error bounds metode Adams Bashforth dan Adams Moulton 5 langkah ini selanjutnya digunakan untuk menganalisis kekonvergenan metode prediktor korektor Adams Bashforth Moulton 5 langkah melalui kekonvergenan masing-masing metode Adams Bashforth dan Adams Moulton 5 langkah. Menganalisis kekonsistenan dan kestabilan metode prediktor korektor Adams Bashforth Moulton 5 langkah melalui kekonsistenan dan kestabilan masing-masing metode Adams Bashforth dan Adams Moulton 5 langkah. Mempelajari hubungan antar kekonsistenan, kestabilan, dan kekonvergenan metode numerik dengan membuktikan teorema-teorema yang ada dengan berpacu pada gambar hubungan ketiganya. Mempelajari algoritma metode prediktor korektor Adams Bashfroth Moulton 5 langkah menggunakan analisis langkah h, sesuai dengan syarat yang terpenuhi. Pembuatan program sesuai algoritma metode prediktor korektor Adams Bashforth Moulton 5 langkah, dengan analisis langkah h menggunakan MATLAB. Program yang pertama dibuat untuk menyelesaikan persamaan diferensial biasa orde 1 disertai dengan nilai awal. Program kedua, yang berpacu pada program pertama, untuk menyelesaikan persamaan diferensial biasa orde 2 disertai dengan nilai awal. Berlatih menyelesaikan persoalan persamaan diferensial biasa orde 1 dan 2 disertai nilai awal, menggunakan metode prediktor korektor Adams Bashforth Moulton 5 langkah, dengan analisis langkah h menggunakan MATLAB. Selanjutnya

6 6 sebagai pembanding, membuat program untuk metode Adams Bashforth Moulton 4 langkah. Membandingkan keakuratan pendekatan metode Adams Bashforth Moulton 5 langkah dengan Adams Bashforth Moulton 4 langkah, dengan lebar langkah h yang sama. Berkonsultasi terus menerus dengan dosen pembimbing skripsi. Hasil studi literatur pada skripsi ini untuk mempermudah mencari penyelesaian persamaan diferensial biasa orde 1 dan 2 disertai nilai awal, yang didapatkan dari pendekatan solusi dengan menggunakan metode Adams Bashforth Moulton 5 langkah, dengan analisis langkah h dibantu MATLAB. Serta perbandingannya dengan metode Adams Bashforth Moulton 4 langkah, dengan analisis langkah h dan lebar langkah h yang sama Sistematika Penulisan Sistematika penulisan yang digunakan dalam penulisan skripsi ini adalah sebagai berikut: BAB I PENDAHULUAN Bab ini berisi latar belakang masalah, rumusan masalah, batasan masalah, maksud dan tujuan penelitian, tinjauan pustaka, metode penelitian, dan sistematika penulisan. BAB II DASAR TEORI Bab ini berisi teori yang mendasari pembahasan skripsi, yang berkaitan dengan penyelesaian persamaan diferensial biasa orde 1 dan 2 disertai nilai awal dengan menggunakan metode prediktor korektor Adams Bashforth Moulton 5 langkah. Dasar teori meliputi persamaan diferensial biasa, masalah nilai awal (MNA), eksistensi dan ketunggalan penyelesaian masalah nilai awal (MNA), interpolasi selisih mundur Newton, metode satu langkah, metode banyak langkah, metode prediktorkorektor, polinomial karakteristik metode banyak langkah, deret Taylor, galat, big- O, error bounds, dan kekonsistenan, kestabilan, serta kekonvergenan metode satu langkah. spasi spasi

7 7 BAB III METODE PREDIKTOR-KOREKTOR: ADAMS BASHFORTH MOULTON 5 LANGKAH UNTUK MENYELESAIKAN PERSAMAAN DI- FERENSIAL BIASA ORDE 1 DAN 2 DISERTAI NILAI AWAL Bab ini berisi tentang pembahasan metode prediktor-korektor Adams Bashforth Moulton 5 langkah, yang merupakan kombinasi dari metode banyak langkah Adams Bashforth dan Adams Moulton 5 langkah, yang nilai-nilai awalnya dicari melalui metode Runge Kutta orde 4, analisis kekonsistenan, kestabilan, dan kekonvergenan metode Adams Bashforth Moulton 5 langkah, dan aplikasi metode Adams Bashforth Moulton pada persamaan diferensial orde 1 dan 2, serta perbandingannya dengan metode Adams Bashforth Moulton 4 langkah. BAB IV PENUTUP Bab ini berisi kesimpulan dari pembahasan penyelesaian persamaan diferensial biasa orde 1 dan 2 disertai nilai awal menggunakan metode prediktor korektor Adams Bashforth Moulton 5 langkah.

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 21 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB 1 PENDAHULUAN Persamaan diferensial adalah suatu persamaan yang mengandung derivatif dari variabel terikat terhadap satu atau lebih variabel bebas. Persamaan diferensial sendiri

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu Pengetahuan memberikan landasan teori bagi perkembangan teknologi, salah satunya adalah matematika. Cabang matematika modern yang mempunyai cakupan wilayah penelitian

Lebih terperinci

PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU

PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS 1. LATAR BELAKANG

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 117 124. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada metode numerik, dikenal suatu metode untuk menaksir atau mencari solusi pendekatan nilai eksak dari suatu ordinat y n+1 dengan diketahui nilai dari y n,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika selaku ilmu menalar logis tumbuh berkembang secara mandiri, akan tetapi banyak diterapkan dalam ilmu-ilmu lain. Persamaan integral merupakan salah

Lebih terperinci

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 Asep Juarna, SSi, MKom. Fakultas Ilmu Komputer, Universitas

Lebih terperinci

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni LAPORAN TUGAS AKHIR Topik Tugas Akhir : Kajian Matematika Murni SOLUSI NUMERIK DAN ANALISIS GALAT SISTEM PERSAMAAN DIFERENSIAL ORDE-3 DENGAN MENGGUNAKAN METODE SATU LANGKAH (ONE STEP METHOD) DAN METODE

Lebih terperinci

PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD

PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 376 PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD KUSBUDIONO 1, KOSALA DWIDJA PURNOMO 2,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan

Lebih terperinci

Kata Pengantar... Daftar Isi... Daftar Padan Kata...

Kata Pengantar... Daftar Isi... Daftar Padan Kata... Daftar Isi Kata Pengantar... Daftar Isi... Daftar Padan Kata... iii v xi 1. Metode Numerik Secara Umum... 1 1.1 Metode Analitik versus Metode Numerik... 4 1.2 Metode Numerik dalam Bidang Rekayasa... 6

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

EFEKTIVITAS METODE ADAMS BASHFORTH-MOULTON ORDE DELAPAN TERHADAP METODE RUNGE-KUTTA ORDE ENAM PADA MODEL PENYEBARAN VIRUS AVIAN INFLUENZA TESIS.

EFEKTIVITAS METODE ADAMS BASHFORTH-MOULTON ORDE DELAPAN TERHADAP METODE RUNGE-KUTTA ORDE ENAM PADA MODEL PENYEBARAN VIRUS AVIAN INFLUENZA TESIS. EFEKTIVITAS METODE ADAMS BASHFORTH-MOULTON ORDE DELAPAN TERHADAP METODE RUNGE-KUTTA ORDE ENAM PADA MODEL PENYEBARAN VIRUS AVIAN INFLUENZA TESIS Oleh Said Ripin Bukaryo NIM 091820101015 PROGRAM PASCA SARJANA

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I ARTI PENTING ANALISIS NUMERIK BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan

Lebih terperinci

Yogyakarta, Maret 2011 Penulis. Supardi, M.Si

Yogyakarta, Maret 2011 Penulis. Supardi, M.Si PRAKATA Puji syukur kami panjatkan kepada Alloh swt yang telah melimpahkan kasih sayangnya sehingga buku yang berjudul METODE NUMERIK dengan MATLAB ini dapat kami selesaikan penulisannya. Metode numerik

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral merupakan salah satu dari dua operasi utama dalam kalkulus. Jauh sebelum integral diperkenalkan, para matematikawan telah lebih dulu mengembangkan

Lebih terperinci

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem persamaan dapat dipandang F(x) = 0 [5], merupakan kumpulan dari beberapa persamaan nonlinear dengan fungsi tujuannya saja atau bersama fungsi kendala berbentuk

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

BAB 1 PENDAHULUAN. perumusan persamaan integral tidak memerlukan syarat awal dan syarat batas.

BAB 1 PENDAHULUAN. perumusan persamaan integral tidak memerlukan syarat awal dan syarat batas. BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Banyak masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan diferensial adalah salah satu model matematika yang banyak digunakan pada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

Prakata Hibah Penulisan Buku Teks

Prakata Hibah Penulisan Buku Teks Prakata Syukur Alhamdulillah kami panjatkan ke hadhirat Allah SwT, atas hidayah dan kekuatan yang diberikannya kepada penulis sehingga penulis dapat menyelesaikan buku Pengantar Komputasi Numerik dengan

Lebih terperinci

PERBANDINGAN METODE HEUN DAN ADAM BASHFORTH MOULTON DALAM MENYELESAIKAN PERSAMAAN LEGENDRE SKRIPSI. oleh. Marihot Janter Sinaga NIM

PERBANDINGAN METODE HEUN DAN ADAM BASHFORTH MOULTON DALAM MENYELESAIKAN PERSAMAAN LEGENDRE SKRIPSI. oleh. Marihot Janter Sinaga NIM PERBANDINGAN METODE HEUN DAN ADAM BASHFORTH MOULTON DALAM MENYELESAIKAN PERSAMAAN LEGENDRE SKRIPSI oleh Marihot Janter Sinaga NIM 071810101077 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

PENURUNAN FUNGSI SECARA NUMERIK

PENURUNAN FUNGSI SECARA NUMERIK 6 PENURUNAN FUNGSI SECARA NUMERIK Èada bab ini kita membicarakan metode numerik untuk menaksir nilai turunan suatu fungsi. Suatu fungsi, baik diketahui rumusnya secara eksplisit maupun dalam bentuk data

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

APLIKASI METODE ADAMS BASHFORTH-MOULTON (ABM) PADA MODEL PENYAKIT KANKER

APLIKASI METODE ADAMS BASHFORTH-MOULTON (ABM) PADA MODEL PENYAKIT KANKER APLIKASI METODE ADAMS BASHFORTH-MOULTON (ABM) PADA MODEL PENYAKIT KANKER Kuzairi 1, Tony Yulianto 2, Lilik Safitri 3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

- Persoalan nilai perbatasan (PNP/PNB)

- Persoalan nilai perbatasan (PNP/PNB) PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL Persamaan diferensial biasanya digunaan untu pemodelan matematia dalam sains dan reayasa. Seringali tida terdapat selesaian analiti seingga diperluan ampiran

Lebih terperinci

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan Jurnal Matematika Integratif. Vol. 14, No. 1 (2018), pp. 51 60. p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v14.n1.15953.51-60 Penyelesaian Persamaan Diferensial Linier Orde Satu dan Dua disertai

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

Galat & Analisisnya. FTI-Universitas Yarsi

Galat & Analisisnya. FTI-Universitas Yarsi BAB II Galat & Analisisnya Galat - error Penyelesaian secara numerik dari suatu persamaan matematis hanya memberikan nilai perkiraan yang mendekati nilai eksak (yang benar dari penyelesaian analitis. Penyelesaian

Lebih terperinci

EFEKTIVITAS METODE ADAMS BASHFORTH-MOULTON ORDER DUA BELAS DALAM MENGANALISIS MODEL DINAMIKA PENULARAN VIRUS RABIES SKRIPSI

EFEKTIVITAS METODE ADAMS BASHFORTH-MOULTON ORDER DUA BELAS DALAM MENGANALISIS MODEL DINAMIKA PENULARAN VIRUS RABIES SKRIPSI EFEKTIVITAS METODE ADAMS BASHFORTH-MOULTON ORDER DUA BELAS DALAM MENGANALISIS MODEL DINAMIKA PENULARAN VIRUS RABIES SKRIPSI Oleh: Qurrota A yuni Ar Ruhimat NIM. 090210101094 PROGRAM STUDI PENDIDIKAN MATEMATIKA

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Numerical Analysis of Double Integral of Trigonometric Function Using Romberg Method ABSTRAK Umumnya penyelesaian integral

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

ISBN. PT SINAR BARU ALGENSINDO

ISBN. PT SINAR BARU ALGENSINDO Drs. HERI SUTARNO, M. T. DEWI RACHMATIN, S. Si., M. Si. METODE NUMERIK DENGAN PENDEKATAN ALGORITMIK ISBN. PT SINAR BARU ALGENSINDO PRAKATA Segala puji dan syukur penulis panjatkan kepada Alloh SWT yang

Lebih terperinci

BAB I PENDAHULUAN. Sepeda motor adalah alat tranportasi yang memiliki beberapa kelebihan

BAB I PENDAHULUAN. Sepeda motor adalah alat tranportasi yang memiliki beberapa kelebihan BAB I PENDAHULUAN A. Latar Belakang Masalah Sepeda motor adalah alat tranportasi yang memiliki beberapa kelebihan diantara lain, ekonomis dalam penggunaan bahan bakar, tidak membutuhkan tempat parkir yang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial adalah persamaan yang memuat derivatif dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas. Persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

EFEKTIFITAS PENERAPAN METODE MULTISTEP LINEAR IMPLISIT ORDER LIMA (MML) UNTUK MENYELESAIKAN MODEL PERSAMAAN PENYEBARAN BAKTERI LEPTOSPIRA SKRIPSI

EFEKTIFITAS PENERAPAN METODE MULTISTEP LINEAR IMPLISIT ORDER LIMA (MML) UNTUK MENYELESAIKAN MODEL PERSAMAAN PENYEBARAN BAKTERI LEPTOSPIRA SKRIPSI EFEKTIFITAS PENERAPAN METODE MULTISTEP LINEAR IMPLISIT ORDER LIMA (MML) UNTUK MENYELESAIKAN MODEL PERSAMAAN PENYEBARAN BAKTERI LEPTOSPIRA SKRIPSI Oleh: Nawal Ika Susanti NIM: 060210191139 PROGRAM STUDI

Lebih terperinci

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik. SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Definisi Metode Numerik

Definisi Metode Numerik Definisi Metode Numerik Seringkali kita menjumpai suatu model matematis yang berbentuk persamaan, baik itu linier ataupun non-linier, sistem persamaan linier ataupun sistem persamaan non-linier, differensial,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, batasan masalah, maksud dan tujuan penulisan, tinjauan pustaka serta sistematika penulisan skirpsi ini. 1.1.

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 Tornados P. Silaban 1, Faiz Ahyaningsih 2 1) FMIPA, UNIMED, Medan, Indonesia email: tornados.p_silaban@yahoo.com 2)

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

TJUKUP MARNOTO. Carl Friedrich Gauss. Leonhard Euler. Isaac Newton. ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB

TJUKUP MARNOTO. Carl Friedrich Gauss. Leonhard Euler. Isaac Newton. ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB TJUKUP MARNOTO Carl Friedrich Gauss Leonhard Euler Isaac Newton ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB ANALISA NUMERIK dan PEMROGRAMAN dengan BAHASA SCILAB Penulis Tjukup Marnoto Desain

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

ANALISIS PERSAMAAN RANGKAIAN RESISTOR, INDUKTOR DAN KAPASITOR (RLC) DENGAN METODE RUNGE-KUTTA DAN ADAMS BASHFORTH MOULTON ( SKRIPSI ) Oleh

ANALISIS PERSAMAAN RANGKAIAN RESISTOR, INDUKTOR DAN KAPASITOR (RLC) DENGAN METODE RUNGE-KUTTA DAN ADAMS BASHFORTH MOULTON ( SKRIPSI ) Oleh ANALISIS PERSAMAAN RANGKAIAN RESISTOR, INDUKTOR DAN KAPASITOR (RLC) DENGAN METODE RUNGE-KUTTA DAN ADAMS BASHFORTH MOULTON ( SKRIPSI ) Oleh YUDANDI KUPUTRA AJI JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

METODA NUMERIK (3 SKS)

METODA NUMERIK (3 SKS) METODA NUMERIK (3 SKS) Dosen Dr. Julan HERNADI Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Masa Perkuliahan Semester Ganjil 2013/2014 Deskripsi dan Tujuan Perkuliahan Mata kuliah ini berisi

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

METODE ADAMS BASHFORTH MOULTON PADA PENYELESAIAN MODEL OSILASI VERTIKAL DAWAI SKRIPSI OLEH SRI SASI YUNI NURHAYATI NIM

METODE ADAMS BASHFORTH MOULTON PADA PENYELESAIAN MODEL OSILASI VERTIKAL DAWAI SKRIPSI OLEH SRI SASI YUNI NURHAYATI NIM METODE ADAMS BASHFORTH MOULTON PADA PENYELESAIAN MODEL OSILASI VERTIKAL DAWAI SKRIPSI OLEH SRI SASI YUNI NURHAYATI NIM. 11610047 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI

Lebih terperinci

BAB I PENDAHULUAN. Persamaan Diferensial Stokastik (PDS) telah memegang peranan yang

BAB I PENDAHULUAN. Persamaan Diferensial Stokastik (PDS) telah memegang peranan yang BAB I PENDAHULUAN 1.1 LATAR BELAKANG Stochastic Differential Equations (SDEs) yang disebut juga dengan Persamaan Diferensial Stokastik (PDS) telah memegang peranan yang penting dalam pemodelan di berbagai

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang ilmu yang sangat berperan dalam kehidupan sehari-hari. Banyak permasalahan dalam kehidupan sehari-hari yang akan lebih

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

EFEKTIVITAS METODE RUNGE-KUTTA ORDE TUJUH TERHADAP METODE MULTISTEP ADAMS ORDE ENAM PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS (TB)

EFEKTIVITAS METODE RUNGE-KUTTA ORDE TUJUH TERHADAP METODE MULTISTEP ADAMS ORDE ENAM PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS (TB) EFEKTIVITAS METODE RUNGE-KUTTA ORDE TUJUH TERHADAP METODE MULTISTEP ADAMS ORDE ENAM PADA MODEL PENYEBARAN PENYAKIT TUBERKULOSIS (TB) SKRIPSI Oleh LUKMAN JAKFAR SHODIQ NIM 080210101050 PROGRAM STUDI PENDIDIKAN

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang permasalahan, tujuan penulisan, tinjauan pustaka, metode penelitian, dan sistematika penulisan. 1.1. Latar Belakang Permasalahan Dalam

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB I PENDAHULUAN Demografi merupakan ilmu yang mempelajari tentang penduduk, khususnya pada lima aspek yaitu ukuran, distribusi geografi, komposisi, komponen perubahan (kelahiran, kematian,

Lebih terperinci

Konsep Deret & Jenis-jenis Galat

Konsep Deret & Jenis-jenis Galat Metode Numerik (IT 402) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 2 Konsep Deret & Jenis-jenis Galat ALZ DANNY WOWOR 1. Pengatar Dalam Kalkulus, deret sering digunakan untuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu bentuk model matematika adalah berupa persamaan diferensial. Persamaan diferensial sering digunakan dalam memodelkan suatu permasalahan untuk menggambarkan

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pembahasan tentang persamaan diferensial parsial terus berkembang baik secara teori maupun aplikasi. Dalam pemodelan matematika pada permasalahan di bidang

Lebih terperinci

Penerapan Metode Beda Hingga pada Model Matematika Aliran Banjir dari Persamaan Saint Venant

Penerapan Metode Beda Hingga pada Model Matematika Aliran Banjir dari Persamaan Saint Venant Penerapan Metode Beda Hingga pada Model Matematika Aliran Banjir dari Persamaan Hasan 1*, Tony Yulianto 2, Rica Amalia 3, Faisol 4 1,2,3) Jurusan Matematika, Fakultas MIPA,Universitas Islam Madura Jl.

Lebih terperinci

Ikhtisar: Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial

Ikhtisar: Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial ISSN 979-867 (print) Electrical Engineering Journal Vol. 4 (4) No., pp. -3 Ikhtisar Teknik Kontrol Optimal Untuk Menyelesaikan Persamaan Diferensial Tio Dewantho Sunoto Jurusan Teknik Elektro, Universitas

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Keputusan yang nyata biasanya dibuat dalam keadaan ketidakpastian. Untuk memodelkan ketidakpastian, selama ini digunakan teori probabilitas yang ditemukan

Lebih terperinci

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA)

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) 2 Deskripsi Mata Kuliah 2017/2018 2. KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 2.1 Kelompok Mata Kuliah

Lebih terperinci

METODE NUMERIK. MODUL 1 Galat dalam Komputasi Numerik 1. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2008 年 09 月 21 日 ( 日 )

METODE NUMERIK. MODUL 1 Galat dalam Komputasi Numerik 1. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2008 年 09 月 21 日 ( 日 ) METODE NUMERIK MODUL Galat dalam Komputasi Numerik Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 008 年 09 月 日 ( 日 ) Galat dalam Komputasi Numerik Dalam praktek sehari-hari, misalkan

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

I. PENDAHULUAN. kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini

I. PENDAHULUAN. kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini 1 I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus mengalami kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini mengalami

Lebih terperinci

BAB 1 PENDAHULUAN. Metode Numerik

BAB 1 PENDAHULUAN. Metode Numerik Metode Numerik BAB 1 PENDAHULUAN Metode numerik adalah metode menggunakan komputer untuk mengaproksimasi solusi masalah matematika melalui kinerja dari sejumlah operasi dasar pada angka. Alasan penggunaan

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci