Pengantar Proses Stokastik
|
|
|
- Glenna Yuwono
- 10 tahun lalu
- Tontonan:
Transkripsi
1 Bab 5: Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015
2 Waktu Antar Kedatangan Waktu Antar Kedatangan Misalkan T 1 menyatakan waktu dari kejadian/kedatangan pertama. Misalkan T n menyatakan waktu tersisa antara kejadian ke-n 1 dan kejadian ke-n. Barisan {T n, n = 1, 2,...} adalah barisan waktu antar kejadian (interarrival time).
3 Waktu Antar Kedatangan Untuk menentukan distribusi dari T n, perhatikan bahwa kejadian {T 1 > t} terjadi jika dan hanya jika tidak ada kejadian dari proses Poisson yang terjadi pada interval [0, t], sehingga P(T 1 > t) = e λt λt (λt)0 = e 0! = P(N t = 0) Jadi, T 1 berdistribusi eksponensial dengan parameter λ atau mean 1 λ.
4 Waktu Antar Kedatangan Karena T 1 Eksp(λ), maka f T1 (t 1 ) = λe λt 1 Dengan demikian, perhatikan bahwa P(T 2 > t) = E(P(T 2 > t T 1 )) (mengapa demikian?) Bukti: E(P(T 2 > t T 1 )) = P(T 2 > t T 1 )f T1 (t 1 ) t 1 =0 = P(T 2 > t T 1 ) f T1 (t 1 ) t 1 =0 = P(T 2 > t T 1 ) memoryless property = P(T 2 > t)
5 Waktu Antar Kedatangan Sedangkan P(T 2 > t T 1 ) = P(tidak ada kejadian pada (s, s + t] T 1 = s) = P(tidak ada kejadian pada (s, s + t]) = e λt Dengan demikian, T 2 juga peubah acak eksponensial dengan parameter λ, dan T 2 saling bebas dengan T 1. Hal tersebut berlaku juga untuk T 3, T 4,..., T n, sehingga peubah acak T n dengan n = 1, 2,... juga berdistribusi eksponensial dengan parameter λ dan peubah acak-peubah acak tersebut saling bebas.
6 Waktu Tunggu Waktu Tunggu Terdapat statistik lain yaitu S n, merupakan waktu kedatangan kejadian ke-n atau waktu tunggu (waiting time) hingga kejadian ke-n S n = T 1 + T T n, n 1
7 Waktu Tunggu Contoh Misalkan waktu kedatangan turis-turis ke suatu pulau berdistribusi eksponensial dengan mean 1 hari. 1. Berapa waktu yang diharapkan hingga turis kesepuluh datang? 2. Berapa peluang bahwa waktu yang dibutuhkan (elapsed time) antara turis kesepuluh dengan kesebelas datang melebihi 2 hari?
8 Waktu Tunggu 1. E(S 10 ) = E(T 1 +T T 10 ) = E(T 1 )+...+E(T 10 ) = 10(1) = P(T 11 > 2) = e 1(2) = e 2
9 Perhatikan P(T 1 > t) = e λt λt (λt)0 = e 0! = P(N t = 0) Proses tersebut menyatakan bahwa kejadian pertama akan terjadi setelah t waktu (P(T 1 > t)), atau dapat dinyatakan pula bahwa tidak ada kejadian pada selang waktu [0, t] (P(N t = 0)). Hal ini menunjukkan kaitan antara distribusi eksponensial dengan proses Poisson. adalah proses menghitung (counting process) untuk banyaknya kejadian yang terjadi hingga suatu waktu sering disebut juga proses lompatan (jump process) karena keadaan akan berpindah ke yang lebih tinggi setiap kali kejadian terjadi.
10 Counting Process Suatu proses stokastik {N t, t 0} dikatakan sebagai proses menghitung (counting process) jika N t menyatakan total banyaknya kejadian yang terjadi sampai waktu t. Beberapa contoh dari proses menghitung adalah sebagai berikut Banyaknya orang yang masuk ke dalam sebuah toko pada/sampai waktu t. Banyaknya bayi yang lahir sampai waktu t Banyaknya gol yang dicetak pemain, dsb
11 Berdasarkan definisinya, proses menghitung {N t, t 0} harus memenuhi kriteria-kriteria berikut ini i. N t 0 ii. N t bernilai integer (bilangan bulat) iii. Jika s < t, maka N s N t iv. Untuk s < t, N t N s adalah banyaknya kejadian pada interval (s, t]
12 Sebuah proses menghitung dikatakan memiliki kenaikan independen (independent increments) jika banyaknya kejadian yang terjadi pada selang waktu yang saling asing adalah saling bebas. Sebagai contoh, banyaknya kejadian yang terjadi sampai waktu s (yaitu N s ) saling bebas dengan banyaknya kejadian yang terjadi pada selang waktu [s, t] (yaitu N t N s ). Sebuah proses menghitung dikatakan memiliki kenaikan stasioner (stationary increments) jika distribusi banyaknya kejadian pada setiap selang hanya bergantung pada panjang selang. Dengan kata lain, suatu proses memiliki kenaikan stasioner jika banyaknya kejadian pada selang (s, s + t) mempunyai distribusi yang sama untuk semua s.
13 Definisi Proses menghitung {N t, t 0} dikatakan sebagai proses Poisson dengan laju λ, λ > 0, jika i. N 0 = 0 ii. Proses memiliki kenaikan independen iii. Banyaknya kejadian di sebarang interval waktu dengan panjang t berdistribusi Poisson dengan mean λt. Untuk setiap s, t 0 P(N t+s N s = n) = e λt (λt)n, n = 0, 1,... n! Berdasarkan kondisi [iii.] proses Poisson memiliki kenaikan stasioner dan E(N t ) = λt menunjukkan bahwa λ dinamakan laju dari proses Poisson.
14 Contoh 1. Misalkan {N t } adalah proses Poisson dengan laju λ = 3. Hitung a. P(N 4 = 5) b. P(N 4 = 5, N 6 = 9) c. E(2N 2 4N 6 ) d. Var(2N 2 4N 6 )
15 Penyelesaian: 3 4 (3 4)5 P(N 4 = 5) = e 5!
16 P(N 4 = 5, N 6 = 9) = P(N 4 = 5, N 6 N 4 = 4) = P(N 4 = 5)P(N 6 N 4 = 4) = e 3 4 (3 4)5 3 2 (3 2)4 e 5! 4!
17 E(2N 2 4N 6 ) = E(2N 2 ) E(4N 6 ) = 2E(N 2 ) 4E(N 6 ) = 2(3 2) 4(3 6)
18 Var(2N 2 4N 6 ) = 4 Var(N 2 ) + 16 Var(N 6 ) = 4(3 2) + 16(3 6)
19 2. Misalkan {N t } proses Poisson dengan laju λ. Misalkan s, t > 0, dan k j 0. Tentukan distribusi N t+s diberikan N s = j.
20 Penyelesaian: Kita ketahui bahwa N s dengan N t+s N s saling bebas, jadi P(N t+s = k N s = j) = P(N t+s N s = k j N s = j) = P(N t+s N s = k j) = P(N t = k j) λt (λt)k j = e (k j)! Jadi, distribusi N t+s N s = j adalah Poisson dengan parameter (λt).
21 3. Misalkan {N t } adalah proses Poisson dengan laju λ = 2. Hitung peluang T 2 > 5 diberikan N 4 = 1
22 Penyelesaian: P(T 2 > 5 N 4 = 1) = P(T 2 > 5 T 1 4) = P(T 2 > 5) = e 2 5 = e 10
23 4. Misalkan T K menyatakan waktu yang dibutuhkan (elapsed time) untuk klaim-klaim asuransi diproses; T 1 menyatakan waktu yang dibutuhkan hingga klaim pertama diproses. Diketahui T 1, T 2,... saling bebas dan berdistribusi dengan fungsi peluang f (t) = 0.1 e 0.1t, t > 0 dengan t diukur dalam setengah jam. Hitung peluang bahwa setidaknya sebuah klaim akan diproses pada 5 jam ke depan! Berapa peluang bahwa setidaknya 3 klaim diproses dalam 5 jam?
24 Penyelesaian: P(T 1 10) = 1 P(T 1 > 10) = 1 e 0.1(10) = 1 e 1 Selanjutnya N 10 POI (0.1(10) = 1) Jadi, P(N 10 3) = 1 [P(N 10 = 0) + P(N 10 = 1) + P(N 10 = 2)] = 1 e e e 1 1! 2!
25 Jumlahan Jumlahan Pandang sebuah proses Poisson {N t, t 0} dengan laju λ, dan misalkan setiap kali sebuah kejadian terjadi diklasifikasikan ke dalam dua tipe, tipe I dengan peluang p dan tipe II dengan peluang 1 p saling bebas satu sama lain. Sebagai contoh, misalkan kedatangan pelanggan pada sebuah toko merupakan proses Poisson dengan laju λ; dan misalkan masing-masing kedatangan pelanggan pria memiliki peluang 1 2 dan kedatangan pelanggan wanita memiliki peluang 1 2.
26 Jumlahan Misalkan N 1 (t) dan N 2 (t) berturut-turut menyatakan banyaknya kejadian tipe I dan tipe II pada selang [0, t]. Kita mendapatkan N(t) = N 1 (t) + N 2 (t) yang juga merupakan proses Poisson dengan parameter λ 1 + λ 2.
27 Contoh Jumlahan 1. Mahasiswa-mahasiswa Stat UII akan datang ke Gedung Baru FMIPA melewati pintu barat atau pintu timur gedung (pintu utaranya sedang diperbaiki). Kedatangan mahasiswa melalui dua pintu tersebut berturut-turut mengikuti proses Poisson dengan parameter λ 1 = 1 2 dan λ 2 = 3 2 per menit. a. Berapa peluang tidak ada mahasiswa datang pada selang waktu 5 menit? b. Hitung mean waktu antar kedatangan mahasiswa-mahasiswa tersebut! c. Berapa peluang seorang mahasiswa benar-benar datang melalui pintu barat? d. Berapa peluang setidaknya ada 2 orang yang masuk gedung dalam 5 menit?
28 Jumlahan Penyelesaian: N B POI ( ) 1, N T POI 2 maka N(t) = N B (t) + N T (t) POI (2) Karena λ = 2 = , maka T 1 Eksp(2), ( ) 3 2 a. Peluang tidak ada mahasiswa datang pada selang waktu 5 menit adalah P(T 1 > 5) = e 2(5) = e 10
29 Jumlahan b. Mean waktu antar kedatangan mahasiswa-mahasiswa E(T K ) = 1 2 c. Peluang seorang mahasiswa benar-benar datang melalui pintu barat P(T B < T T ) = = 1 4 d. Peluang setidaknya ada 2 orang masuk gedung dalam 5 menit P(N 5 2) = 1 P(N 5 = 0) P(N 5 = 1) = 1 e (2 5)1 e 1! = 1 e 10 10e 10
30 Jumlahan 2. Seorang mahasiswi UII sedang menjadi selebriti medsos. Dia memiliki 3 akun media sosial yang masing-masing memiliki jumlah follower yang selalu bertambah setiap waktu. Penambahan jumlah follower mengikuti tiga proses Poisson sebagai berikut Penambahan jumlah follower di instagram: 2/menit Penambahan jumlah follower di facebook: 4/menit Penambahan jumlah follower di twitter: 3/menit
31 Jumlahan Tentukan: a. Waktu harapan hingga penambahan follower berikutnya b. Waktu harapan hingga penambahan follower instagram berikutnya c. Peluang bahwa follower akun twitternya akan bertambah pada 1 2 menit ke depan
32 Jumlahan Penyelesaian: N(t) = N IG (t) + N FB (t) + N TW (t) dengan parameter λ = λ IG + λ FB + λ TW = 9. Sehingga a. E(T ) = 1 9 b. E(T IG ) = 1 2 c. T TW Eksp(λ TW = 3), maka ( P T TW < 1 ) 2 = 1 e = 1 e 3 2
33 Latihan Latihan 1. Di suatu terminal bis, bis A dan bis B datang saling bebas mengikuti proses Poisson. Sebuah bis A datang setiap 12 menit dan sebuah bis B datang setiap 8 menit. Misalkan Vina akan melakukan observasi terhadap bis-bis tersebut. a. Berapa peluang bahwa tepat 3 bis A akan datang pada 36 menit pertama dan tepat 2 bis B akan datang pada 16 menit pertama? b. Hitung mean waktu tunggu (expected waiting time) hingga sebuah bis datang!
34 Latihan 2. Sebuah perusahaan asuransi memiliki dua jenis polis yaitu polis A dan polis B. Pengajuan klaim yang datang mengikuti proses Poisson dengan parameter 9 (per hari). Pemilihan klaim secara acak menunjukkan bahwa peluang polis jenis A terpilih adalah 1 3. Hitung peluang bahwa klaim-klaim polis jenis A (atau B) yang diajukan pada suatu hari kurang dari 2. Berapa peluang bahwa total klaim yang diajukan pada suatu hari kurang dari 2?
35 Latihan 3. Adi datang ke halte bis Transjogjakarta pukul pagi. Informasi yang ada adalah sbb: hingga pukul 09.45, bis akan datang mengikuti proses Poisson dengan parameter 2 (per 30 menit) mulai pukul 09.45, bis akan datang mengikuti proses Poisson dengan parameter 1 (per 30 menit) Berapa waktu tunggu yang diharapkan (expected waiting time) Adi hingga sebuah bis datang?
36 Pustaka Pustaka Pustaka Ross, Sheldon M Introduction to Probability Models; 9th Edition. New York: Academic Press. Syuhada, Khreshna I.A. Materi Kuliah: MA4181 Pengantar Proses Stokastik. Departemen Matematika ITB, Bandung. Taylor, Howard M. dan Samuel Karlin A First Course in Stochastic Processes; Second Edition. New York: Academic Press. Virtamo, J Queueing Theory/ Probability Theory.
MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson
MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC Pengantar Seperti sudah disampaikan sebelumnya, analog
Pengantar Proses Stokastik
Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai
Pengantar Proses Stokastik
Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai
MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po
MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Poisson: Suatu Pengantar Orang Pintar Belajar Stokastik Tentang Kuliah Proses Stokastik Bab 1 : Tentang Peluang Bab 2 : Peluang dan Ekspektasi Bersyarat*
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan
Pengantar Proses Stokastik
: Dasar-dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Diskusi 1. Misalkan sebuah koin yang mempunyai peluang muncul muka sebesar.7, dilantunkan tiga kali. Misalkan X menyatakan banyaknya
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
Pengantar Proses Stokastik
: Peluang dan Ekspektasi Bersyarat Statistika FMIPA Universitas Islam Indonesia Peluang dan Ekspektasi Bersyarat 1. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan
Pengantar Proses Stokastik
Bab 3: Rantai Markov Diskrit Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Rantai Markov Rantai Markov Rantai Markov Misalkan sebuah proses stokastik {X t } dengan t = 0, 1, 2,....
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
Pengantar Proses Stokastik
Diskusi 1: Dasar-dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 215 Latihan 1 Dasar-dasar Probabilitas Latihan 1 1. Diketahui Tentukan: a. P ( ) X > 1 4 b. Tentukan F (x) 2. Diketahui
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK (not just) Always Listening, Always Understanding disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012
Pengantar Proses Stokastik
: Dasar-dasar Probabilitas, Peluang dan Ekspektasi Bersyarat Statistika FMIPA Universitas Islam Indonesia April 13, 2017 1. Misalkan sebuah koin yang mempunyai peluang muncul muka sebesar 0.7, dilantunkan
Penggabungan dan Pemecahan. Proses Poisson Independen
Penggabungan dan Pemecahan Proses Poisson Independen Hanna Cahyaningtyas 1, Respatiwulan 2, Pangadi 3 1 Mahasiswa Program Studi Matematika/FMIPA, Universitas Sebelas Maret 2 Dosen Program Studi Statistika/FMIPA,
IKG3F3 PEMODELAN STOKASTIK Proses Poisson
Non Homogen IKG3F3 PEMODELAN STOKASTIK Dosen: Aniq A. Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA IKG3F3 PEMODELAN STOKASTIK Non Homogen Proses Menghitung Proses stokastik
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK (not just) Always Listening, Always Understanding disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012
DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak
DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan
MA5181 PROSES STOKASTIK Bab 3 Proses Renewal
MA5181 PROSES STOKASTIK Bab 3 (not just) Always Listening, Always Understanding MA5181 PROSES STOKASTIK Bab 3 Soal Solusi Ujian Toko kue KP-Khusus Pria (ini toko apaan sih?) buka pukul 8 pagi. Pelanggan
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)
POISSON PROSES NON-HOMOGEN. Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS
POISSON PROSES NON-HOMOGEN Abdurrahman Valid Fuady, Hasih Pratiwi, dan Supriyadi Wibowo Program Studi Matematika FMIPA UNS ABSTRAK. Proses Poisson merupakan proses stokastik sederhana dan dapat digunakan
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
BAB III PROSES POISSON MAJEMUK
BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau
PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK
Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 72 79 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN KELAHIRAN MURNI DAN KEMATIAN MURNI DENGAN DUA JENIS KELAMIN DENGAN PROSES STOKASTIK FEBI OKTORA
PROSES POISSON MAJEMUK. 1. Pendahuluan
PROSES POISSON MAJEMUK Chris Risen, Respatiwulan, Pangadi Program Studi Matematika FMIPA UNS Abstrak. Proses Poisson merupakan proses menghitung {; t 0} yang digunakan untuk menentukan jumlah kejadian
Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang
Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:
PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK
PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK Ririn Dwi Utami, Respatiwulan, dan Siswanto Program Studi Matematika FMIPA UNS Abstrak.
PENERAPAN PROSES POISSON NON-HOMOGEN UNTUK MENENTUKAN DISTRIBUSI PROBABILITAS KEDATANGAN NASABAH DI BNI BANJARBARU
tnp PENERAPAN PROSES POISSON NON-HOMOGEN UNTUK MENENTUKAN DISTRIBUSI PROBABILITAS KEDATANGAN NASABAH DI BNI BANJARBARU Mida Yanti 1 Nur Salam 1 Dewi Anggraini 1 Abstract: Poisson process is a special event
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika
BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang
BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika
REKAYASA TRAFIK ARRIVAL PROCESS.
REKAYASA TRAFIK ARRIVAL PROCESS [email protected] OVERVIEW Point Process Fungsi Distribusi Point Process Karakteristik Point Process Teorema Little Distribusi Point Process PREVIEW Proses
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) IKG3F3 PEMODELAN STOKASTIK Disusun oleh: Sri Suryani P, S.Si., M.Si. PROGRAM STUDI ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 2015 LEMBAR PENGESAHAN Rencana
Catatan Kuliah. MA4183 Model Risiko
Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko
Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183
PENDAHULUAN LANDASAN TEORI
1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu
Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pemodelan Sistem Antrian Satu Server Dengan Vacation Queueing Model Pada Pola Kedatangan Berkelompok Sucia Mentari, Retno Subekti, Nikenasih
Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang
MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya
MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya Orang Pintar Belajar Stokastik Kuliah ProsStok, untuk apa? Fakultas Ekonomi ITB? Math is the language of economics. If you
IDENTIFIKASI MODEL ANTRIAN PADA ANTRIAN BUS KAMPUS UNIVERSITAS ANDALAS PADANG
Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 44 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND IDENTIFIKASI MODEL ANTRIAN PADA ANTRIAN BUS KAMPUS UNIVERSITAS ANDALAS PADANG ZUL AHMAD ERSYAD, DODI DEVIANTO
MA4181 MODEL RISIKO Risk is managed, not avoided
Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko
ANALISIS MODEL JUMLAH KEDATANGAN DAN WAKTU PELAYANAN BAGIAN LABORATORIUM INSTALASI RAWAT JALAN RSUP Dr. KARIADI SEMARANG
ANALISIS MODEL JUMLAH KEDATANGAN DAN WAKTU PELAYANAN BAGIAN LABORATORIUM INSTALASI RAWAT JALAN RSUP Dr. KARIADI SEMARANG Rany Wahyuningtias 1, Dwi Ispriyanti 2, Sugito 3 1 Alumni Jurusan Statistika FSM
MA4183 MODEL RISIKO Control your Risk!
Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal
PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN Tbk
PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN Tbk oleh RIRIN DWI UTAMI M0113041 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan
SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION
SISTEM ANTRIAN MODEL GEO/G/1 DENGAN VACATION Novita Eka Chandra 1, Supriyanto 2, dan Renny 3 1 Universitas Islam Darul Ulum Lamongan, [email protected] 2 Universitas Jenderal Soedirman, supriyanto
Mela Arnani, Isnandar Slamet, Siswanto Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret
PENDEKATAN LATTICE PATH UNTUK SISTEM ANTRIAN M/M/c Mela Arnani, Isnandar Slamet, Siswanto Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Abstrak. Sistem
MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan
MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan Control your risk! Konsep Surplus 1 Perusahaan asuransi memiliki modal awal atau initial surplus 2 Perusahaan menerima premi dan membayarkan klaim 3 Premi bersifat
Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA
CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Teori Antrian 2.1.1. Sejarah Teori Antrian. Teori antrian adalah teori yang menyangkut studi matematis dari antrian atau baris-baris penungguan. Teori antrian berkenaan dengan
MODEL EKSPONENSIAL GANDA PADA PROSES STOKASTIK (STUDI KASUS DI STASIUN PURWOSARI)
Model Eksponensial (Sugito) MODEL EKSPONENSIAL GANDA PADA PROSES STOKASTIK (STUDI KASUS DI STASIUN PURWOSARI) Sugito 1, Yuciana Wilandari 2 1,2 Staf Pengajar Jurusan Statistika FSM Undip [email protected],
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
Pengantar Statistika Matematik(a)
Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014
PEMODELAN DAN SIMULASI PELUANG KEBANGKRUTAN PERUSAHAAN ASURANSI DENGAN ANALISIS NILAI PREMI DAN UKURAN KLAIM DIASUMSIKAN BERDISTRIBUSI EKSPONENSIAL
ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 2017 Page 1294 PEMODELAN DAN SIMULASI PELUANG KEBANGKRUTAN PERUSAHAAN ASURANSI DENGAN ANALISIS NILAI PREMI DAN UKURAN KLAIM DIASUMSIKAN
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN
Analisa Sistem Antrian (Ayi Umar Nawawi) 11 ANALISA SISTEM ANTRIAN M/M/1/N DENGAN RETENSI PELANGGAN YANG MEMBATALKAN ANTRIAN ANALYSIS OF M/M/1/N QUEUEUING SYSTEM WITH RETENTION OF RENEGED CUSTOMERS Oleh:
PENENTUAN KLASIFIKASI STATE PADA RANTAI MARKOV DENGAN MENGGUNAKAN NILAI EIGEN DARI MATRIKS PELUANG TRANSISI
PENENTUAN KLASIFIKASI STATE PADA RANTAI MARKOV DENGAN MENGGUNAKAN NILAI EIGEN DARI MATRIKS PELUANG TRANSISI Yohanes A.R. Langi 1) 1) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 95115
P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)
Diskusi 1 Tanggal 29 Januari 2014, Waktu: suka-suka menit Peluang suatu kejadian; sifat-sifat peluang (termasuk kejadian-kejadian saling asing dan saling bebas); peluang bersyarat; peluang total; 1. Buktikan
Catatan Kuliah. MA4183 Model Risiko
Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko
Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.
6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin
MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting
Catatan Kuliah MA6281 PREDIKSI DERET WAKTU DAN COPULA Forger The Past(?), Do Forecasting disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014
MA4081 PENGANTAR PROSES STOKASTIK
Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang
Pengantar Statistika Matematika II
Pengantar a Matematika II - Estimator Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia April 17, 2017 atinaahdika.com Dalam kondisi real, kita tidak mengetahui parameter dari populasi
Minggu 1 Review Peubah Acak dan Fungsi Distribusi. Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting
IKG4Q3 Ekonometrik Dosen: Aniq A Rohmawati, M.Si [Kelas Ekonometrik] CS-36-02 [Jadwal] Senin 10.30-12.30 R.A208A; Selasa 10.30-12.30 R.E302 [Materi Ekonometrik] Kuliah Pemodelan dan Simulasi berisi tentang
Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 017 1 Tentang AK5161 Matematika
II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang
II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan
/ /16 =
Kuis Selamat Datang MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Tanggal 22 Agustus 2017, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. 1. Widya (akan) memenangkan
MA4183 MODEL RISIKO Control your Risk!
Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal
PROSES PERCABANGAN PADA DISTRIBUSI POISSON
PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik
Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko
MA4181 MODEL RISIKO Risk is managed, not avoided
Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko
Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika
Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan
PERANCANGAN DAN SIMULASI ANTRIAN PAKET DENGAN MODEL ANTRIAN M/M/N DI DALAM SUATU JARINGAN KOMUNIKASI DATA
PERANCANGAN DAN SIMULASI ANTRIAN PAKET DENGAN MODEL ANTRIAN M/M/N DI DALAM SUATU JARINGAN KOMUNIKASI DATA Idatriska P 1, R. Rumani M 2, Asep Mulyana 3 1,2,3 Gedung N-23, Program Studi Sistim Komputer,
MA4181 MODEL RISIKO Risk is managed, not avoided
Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko
PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM PELAYANAN PT. BANK NEGARA INDONESIA (PERSERO) Tbk. KANTOR LAYANAN TEMBALANG ABSTRACT
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 741-749 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENENTUAN MODEL DAN PENGUKURAN KINERJA SISTEM PELAYANAN PT.
Oleh: Isna Kamalia Al Hamzany Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si
Oleh: Isna Kamalia Al Hamzany 1207 100 055 Dosen Pembimbing : Dra. Laksmi Prita W, M.Si. Dra. Nur Asiyah, M.Si Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh
Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA
CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi
UNY. Modul Praktikum Teori Antrian. Disusun oleh : Retno Subekti, M.Sc Nikenasih Binatari, M.Si Jurusan Pendidikan Matematika FMIPA UNY
UNY Modul Praktikum Teori Antrian Disusun oleh : Retno Subekti, M.Sc Nikenasih Binatari, M.Si Jurusan Pendidikan Matematika FMIPA UNY Daftar Halaman : Halaman Muka... Bagian I. Mengenal Model Antrian...
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)
ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION
ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION Oleh: Desi Nur Faizah 1209 1000 17 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA
MODEL SISTEM ANTRIAN PESAWAT TERBANG DI BANDAR UDARA INTERNASIONAL HUSEIN SASTRANEGARA
MODEL SISTEM ANTRIAN PESAWAT TERBANG DI BANDAR UDARA INTERNASIONAL HUSEIN SASTRANEGARA untuk memenuhi Tugas Besar mata kuliah Pemodelan Sistem disusun oleh: Graham Desmon 131141264 Hafizha Fauzani 131144294
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat
MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
MODEL PREDIKSI DENGAN BINOMIAL POISSON INAR(1) DAN TRINOMIAL POISSON INAR(2)
Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (SESIOMADIKA) 2017 ISBN: 978-602-60550-1-9 Statistika, hal. 36-41 MODEL PREDIKSI DENGAN BINOMIAL POISSON INAR(1) DAN TRINOMIAL POISSON INAR(2)
Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)
CNH4S3 Analisis Time Series [Dosen] Aniq A Rohmawati, M.Si [Jadwal] Need to reschedule? [About] The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism
