Peramalan (Forecasting) dalam Perencanaan Sentral
|
|
|
- Liana Sudirman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Peramalan (Forecastng) dalam Perencanaan Sentral
2 Pendahuluan Perencanaan arngan telepon ddasarkan pada estmas kebutuhan trafk masa depan Long-term forecast dbutuhkan dalam rencana pengembangan untuk menamn koordnas pengembangan sampa peroda tahun (setap 2-4 tahun harus dbuat up to date) Short-term forecast dperlukan dalam menyedakan basc data untuk perencanaan langkah aktual pengembangan. Memuat estmas trafk untuk 4-6 tahun kedepan (setap tahun short-term term forecast harus dbuat up to date) Untuk forecast kebutuhan trafk: Trafk dalam masng-masng area sentral destmas Trafk antara pasangan sentral destmas, umumnya dpsahkan untuk tap arah
3 Matrks Trafk Untuk memudahkan dalam peramalan trafk pada seluruh node/smpul/sentral dalam seluruh arngan, maka trafk dsusu dalam benruk Matrks Trafk. A(,,0) : trafk saat n A(,,t) : estmas trafk saat t
4 Forecast Pont-to-Pont Untuk estmas trafk pont-to-pont ke depan, ddasarkan kalkulas pada forecast pertumbuhan saluran pelanggan dan matrks trafk saat n Macam-macam metoda basa dgunakan tdak ada ketentuan metoda mana yang palng akurat Feedback dar future record yang akan mengndkaskan Feedback dar future record yang akan mengndkaskan metoda mana yang palng bak untuk stuas tertentu
5 A. Estmas Jumlah Trafk Total Mengngat tkategor pelanggan berbeda b membangktkan umlah trafk yang berbeda, trafk kedepan dapat destmas dar: A(t) = 1 () (t).α () (t).α () (t).α () (t).α Dmana (t) forecast umlah pelanggan kategor pada tahun t dan α lau (trafk per pelanggan) untuk kategor Jka tdak dmungknkan untuk memsahkan kedalam kategor dengan trafk berbeda, trafk kedepan dapat destmas sebaga: A ( t ) = ( t ) A (0) (0) dmana (t) () dan (0) )umlah pelanggan pada saat t dan 0 dan A(0) merupakan total trafk yang sekarang
6 B. Estmas Trafk Pont-to-Pont to Untuk estmas trafk dar satu sentral ke sentral lannya berbaga formula dapat daplkaskan Idea dasarnya adalah kut mempertmbangkan pertambahan pelanggan d kedua sentral dan dan menerapkan faktor bobot tertentu terhadap pertumbuhan n A ( t) W G + W G = A (0) W + W dmana W dan W adalah bobot serta G dan G pertumbuhan pelanggan d sentral dan ( ) ( t) t G = G = (0) (0) Untuk menghtung W dan W berbaga b metoda terseda
7 Menghtung Faktor Bobot tw dan W Rapp s Formula 1 W =(t) W =(t) Asums dsn trafk per pelanggan dar sentral ke sentral proporsonal ke umlah pelanggan d sentral Rapp s Formula 2 W = (t) 2 W = (t) 2 Asums dsn perubahan orgnated dan termnated traffc per pelanggan sekecl mungkn
8 Menghtung Faktor Bobot Formula Telecom Australa (APO S) W = ( 0) + ( t) (0) + ( t) W = 2 2 Formula n adalah modufkas dar Rapp s formula 1 Formula keempat Dturunkan dengan asums trafk per satu pelanggan d sentral ke semua pelanggan d sentral adalah konstan A ( t) ( t). ( t) = A ( t) = A (0). G. G A (0) (0). (0)
9 C. Kruthof s Double Factor Method Kruthof s method memungknkan mengestmas harga ndvdual trafk A(,) kedepan pada matrks trafk Harga saat n dasumskan dketahu, demkan uga future row dan column sums Prosedur adalah untuk meng-adust ndvdual A(,) sehngga sesua dengan row dan column sums yang baru A(, ) dubah ke A(, ) S S 1 0 dmana S 0 adalah sum saat n dan S 1 adalah sum baru untuk ndvdual row dan column
10 Penyesuaan Bars &Kolom Penyesuaan terhadap Bars dengan formula: A t 1 (, ) At (, ) = Af ( ) At 1( ) Penyesuaan terhadap Kolom dengan formula: A At 1(, ) (, ) = Af ( ) A t 1 ( ) t f = future, konds trafk yang akan datang dan t = umlah teras perulangan. Jka hasl dar dua teras berurutan (terakhr dengan sebelumnya) tdak berbeda auh, maka teras dhentkan.
11 Contoh : Penggunaan Kruthof s Double Factor Method (1)
12 Contoh : Penggunaan Kruthof s Double Factor Method (2)
13 Contoh : Penggunaan Kruthof s Double Factor Method (3)
14 Contoh : Penggunaan Kruthof s Double Factor Method (4)
15 Contoh : Penggunaan Kruthof s Double Factor Method (5 - Fnsh)
PERANCANGAN JARINGAN AKSES KABEL (DTG3E3)
PERCG JRIG KSES KBEL (DTG3E3) Dsusun Oleh : Hafdudn,ST.,MT. (HFD) Rohmat Tulloh, ST.,MT (RMT) Prod D3 Teknk Telekomunkas Fakultas Ilmu Terapan Unverstas Telkom 015 Peramalan Trafk Peramalan Trafk Peramalan
BAB VI PERAMALAN TRAFIK UNTUK PERENCANAAN JARINGAN (TRAFFIC FORECASTING FOR NETWORK PLANNING)
55 Dktat Rekayasa Trafk BB V PERMLN TRFK UNTUK PERENCNN JRNGN (TRFFC FORECSTNG FOR NETWORK PLNNNG) Peramalan sangat dperlukan untuk membuat keputusan. Dalam perencanaan arngan peramalan dgunakan sebaga
BAB VB PERSEPTRON & CONTOH
BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur
Bab III Analisis Rantai Markov
Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang
BAB II DASAR TEORI. 2.1 Definisi Game Theory
BAB II DASAR TEORI Perkembangan zaman telah membuat hubungan manusa semakn kompleks. Interaks antar kelompok-kelompok yang mempunya kepentngan berbeda kemudan melahrkan konflk untuk mempertahankan kepentngan
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2 Masalah Transportas Jong Jek Sang (20) menelaskan bahwa masalah transportas merupakan masalah yang serng dhadap dalam pendstrbusan barang Msalkan ada m buah gudang (sumber) yang
BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c
6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan
BAB V ANALISA PEMECAHAN MASALAH
BAB V ANALISA PEMECAHAN MASALAH 5.1 Analsa Pemlhan Model Tme Seres Forecastng Pemlhan model forecastng terbak dlakukan secara statstk, dmana alat statstk yang dgunakan adalah MAD, MAPE dan TS. Perbandngan
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB 1 PENDAHULUAN 1.1 Latar belakang Dalam memlh sesuatu, mula yang memlh yang sederhana sampa ke hal yang sangat rumt yang dbutuhkan bukanlah berpkr yang rumt, tetap bagaman berpkr secara sederhana. AHP
2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil
.1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)
BAB I PENDAHULUAN. 1.1 Latar Belakang
I ENDHULUN. Latar elakang Mengambl keputusan secara aktf memberkan suatu tngkat pengendalan atas kehdupan spengambl keputusan. lhan-plhan yang dambl sebenarnya membantu dalam penentuan masa depan. Namun
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Manova atau Multvarate of Varance merupakan pengujan dalam multvarate yang bertujuan untuk mengetahu pengaruh varabel respon dengan terhadap beberapa varabel predktor
Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN
BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan
Bab 2 AKAR-AKAR PERSAMAAN
Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat
REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear
REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana
BAB II TEORI ALIRAN DAYA
BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan
Perbaikan Sistem Persediaan Tinta Fotokopi di CV. NEC, Surabaya
Perbakan Sstem Persedaan Tnta Fotokop d CV. NEC, Surabaya Indr Hapsar, Jerry Agus Arlanto, dan Albert Sutanto Teknk Industr Unverstas Surabaya Jl. Raya Kalrungkut Surabaya Emal: [email protected] Abstrak
BAB II PENDEKATAN PROBABILITAS DAN MODEL TRAFIK
Dktat Rekayasa Trafk BB II PDKT PROBBILITS D MODL TRFIK 2. Pendahuluan Trafk merupakan perstwa-perstwa kebetulan yang pada dasarnya tdak dketahu kapan datangnya dan berapa lama akan berlangsung. Maka untuk
P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman
OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan
JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN :
JURNA MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : 1410-8518 MASAAH RUTE TERPENDEK PADA JARINGAN JAAN MENGGUNAKAN AMPU AU-INTAS Stud Kasus: Rute Peralanan Ngesrep Smpang ma Eko Bud
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang
BAB II TINJAUAN PUSTAKA
7 II TINJUN PUSTK 2.1 Manaemen Proyek 2.1.1 Pengertan Manaemen Proyek Sebelum mengemukakan apa art dar Manaemen Proyek, terlebh dahulu akan mengetahu art dar Manaemen dan Proyek tu. Menurut Hamng dan Nurnaamuddn
BAB IV PERHITUNGAN DAN ANALISIS
BAB IV PERHITUNGAN DAN ANALISIS 4.1 Survey Parameter Survey parameter n dlakukan dengan mengubah satu jens parameter dengan membuat parameter lannya tetap. Pengamatan terhadap berbaga nla untuk satu parameter
Bab 1 PENDAHULUAN Latar Belakang
11 Bab 1 PENDAHULUAN 1.1. Latar Belakang Perbankan adalah ndustr yang syarat dengan rsko. Mula dar pengumpulan dana sebaga sumber labltas, hngga penyaluran dana pada aktva produktf. Berbaga kegatan jasa
BAB IV TRIP GENERATION
BAB IV TRIP GENERATION 4.1 PENDAHULUAN Trp Generaton td : 1. Trp Producton 2. Trp Attracton j Generator Attractor - Setap tempat mempunya fktor untuk membangktkan dan menark pergerakan - Bangktan, Tarkan
(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a
Lecture 2: Pure Strategy A. Strategy Optmum Hal pokok yang sesungguhnya menad nt dar teor permanan adalah menentukan solus optmum bag kedua phak yang salng bersang tersebut yang bersesuaan dengan strateg
BAB 5 HASIL DAN PEMBAHASAN. Sampel yang digunakan dalam penelitian ini adalah data pengujian pada
BAB 5 ASIL DAN PEMBAASAN 5. asl Peneltan asl peneltan akan membahas secara lebh lengkap mengena penyajan data peneltan dan analss data. 5.. Penyajan Data Peneltan Sampel yang dgunakan dalam peneltan n
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
Perhitungan Bunga Kredit dengan Angsuran
Perhtungan Kredt dengan / Mengapa Perhtungan Kredt Perlu Dketahu? Perhtungan bunga kredt yang dgunakan bank akan menentukan besar keclnya angsuran pokok dan bunga yang harus dbayar Debtur atas kredt yang
V. DISTRIBUSI PERJALANAN
V. DISTRIBUSI PERJALANAN 5.. PENDAHULUAN Trp strbuton aalah suatu tahapan yang menstrbuskan berapa jumlah pergerakan yang menuju an berasal ar suatu zona. Paa tahapan n yang perhtungkan aalah :. Sstem
BAB 4 HASIL DAN PEMBAHASAN. smoothing, dan siklis untuk barang jadi Mie Atom Metode Regresi Linier. Nama barang jadi: Mie Atom.
BAB 4 HASIL DAN PEMBAHASAN 4.1 Penghtungan 4.1.1 Penghtungan Peramalan 4.1.1.1 Peramalan Me Atom Contoh perhtungan peramalan permntaan dengan metode regres lner, regres kuadrats, double movng average,
Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik
Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,
BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I. Kesulitan ekonomi yang tengah terjadi akhir-akhir ini, memaksa
BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I 4. LATAR BELAKANG Kesultan ekonom yang tengah terjad akhr-akhr n, memaksa masyarakat memutar otak untuk mencar uang guna memenuh kebutuhan hdup
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan
III. METODE PENELITIAN. Penelitian ini merupakan penelitian pengembangan (Research and
III. METODE PENELITIAN A. Desan Peneltan Peneltan n merupakan peneltan pengembangan (Research and Development). Peneltan pengembangan yang dlakukan adalah untuk mengembangkan penuntun praktkum menjad LKS
BAB III METODE PENELITIAN. penelitian dilakukan secara purposive atau sengaja. Pemilihan lokasi penelitian
BAB III METODE PENELITIAN 3.1 Lokas Peneltan Peneltan dlaksanakan d Desa Sempalwadak, Kecamatan Bululawang, Kabupaten Malang pada bulan Februar hngga Me 2017. Pemlhan lokas peneltan dlakukan secara purposve
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan
METODE PENELITIAN. Penentuan lokasi dilakukan secara tertuju (purposive) karena sungai ini termasuk
IV. METODE PENELITIAN 4.1. Tempat dan Waktu Peneltan Peneltan n dlakukan d Sunga Sak, Kota Pekanbaru, Provns Rau. Penentuan lokas dlakukan secara tertuju (purposve) karena sunga n termasuk dalam 13 sunga
INFERENSI FUNGSI KETAHANAN DENGAN METODE KAPLAN-MEIER
Tatk Wdharh dan Naschah ska Andran (Inferens Fungs Ketahanan dengan Metode Kaplan-Meer INFERENI FUNGI KETAHANAN DENGAN METODE KAPLAN-MEIER Tatk Wdharh dan Naschah ska Andran Jurusan Matematka FMIPA UNDIP
Dalam sistem pengendalian berhirarki 2 level, maka optimasi dapat. dilakukan pada level pertama yaitu pengambil keputusan level pertama yang
LARGE SCALE SYSEM Course by Dr. Ars rwyatno, S, M Dept. of Electrcal Engneerng Dponegoro Unversty BAB V OPIMASI SISEM Dalam sstem pengendalan berhrark level, maka optmas dapat dlakukan pada level pertama
ANALISIS REGRESI. Catatan Freddy
ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.
BAB IV PENGUJIAN DAN ANALISA
BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam
Analitik Data Tingkat Lanjut (Regresi)
0 Oktober 206 Analtk Data Tngkat Lanut (Regres) Imam Cholssodn [email protected] Pokok Bahasan. Konsep Regres 2. Analss Teknkal dan Fundamental 3. Regres Lnear & Regres Logstc (Optonal) 4. Regres
PEMODELAN PASANG SURUT AIR LAUT DI KOTA SEMARANG DENGAN PENDEKATAN REGRESI NONPARAMETRIK POLINOMIAL LOKAL KERNEL
PEMODELAN PASANG SURUT AIR LAUT DI KOTA SEMARANG DENGAN PENDEKATAN REGRESI NONPARAMETRIK POLINOMIAL LOKAL KERNEL Tan Wahyu Utam, Indah Manfaat Nur Unverstas Muhammadyah Semarang, emal : [email protected]
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk
UKURAN S A S MPE P L P of o. D r D. r H. H Al A ma m s a d s i d Sy S a y h a z h a, SE S. E, M P E ai a l i : l as a y s a y h a
UKURAN SAMPEL Prof. Dr. H. Almasd Syahza, SE., MP Emal: [email protected] Webste: http://almasd. almasd.staff. staff.unr.ac.d Penelt Senor Unverstas Rau Penentuan Sampel Peneltan lmah hampr selalu hanya
SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KINERJA DAN PEMILIHAN MITRA BADAN PUSAT STATISTIK (BPS) KABUPATEN GUNUNGKIDUL MENGGUNAKAN METODE SAW BERBASIS WEB
SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KINERJA DAN PEMILIHAN MITRA BADAN PUSAT STATISTIK (BPS) KABUPATEN GUNUNGKIDUL MENGGUNAKAN METODE SAW BERBASIS WEB Putr Har Ikhtarn ), Bety Nurltasar 2), Hafdz Alda
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya
UJI NORMALITAS X 2. Z p i O i E i (p i x N) Interval SD
UJI F DAN UJI T Uj F dkenal dengan Uj serentak atau uj Model/Uj Anova, yatu uj untuk melhat bagamanakah pengaruh semua varabel bebasnya secara bersama-sama terhadap varabel terkatnya. Atau untuk menguj
Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012
Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar
Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara
Bab IV Pemodelan dan Perhtungan Sumberdaa Batubara IV1 Pemodelan Endapan Batubara Pemodelan endapan batubara merupakan tahapan kegatan dalam evaluas sumberdaa batubara ang bertuuan menggambarkan atau menatakan
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Dalam pembuatan tugas akhr n, penulsan mendapat referens dar pustaka serta lteratur lan yang berhubungan dengan pokok masalah yang penuls ajukan. Langkah-langkah yang akan
BAB 4 METODOLOGI PENELITIAN. data, dan teknik analisis data. Kerangka pemikiran hipotesis membahas hipotesis
BAB 4 METODOLOGI PENELITIAN Pada bab n akan durakan kerangka pemkran hpotess, teknk pengumpulan data, dan teknk analss data. Kerangka pemkran hpotess membahas hpotess pengujan pada peneltan, teknk pengumpulan
Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah
Performa (2004) Vol. 3, No.1: 28-32 Model Potensal Gravtas Hansen untuk Menentukan Pertumbuhan Populas Daerah Bambang Suhard Jurusan Teknk Industr, Unverstas Sebelas Maret, Surakarta Abstract Gravtaton
BAB 4 IMPLEMENTASI DAN EVALUASI
65 BAB IMPLEMENTASI DAN EVALUASI. Penyaan Data Hasl Peneltan Data-ata hasl peneltan yang gunakan alam pengolahan ata aalah sebaga berkut: a. ata waktu kera karyawan b. ata umlah permntaan konsumen c. ata
Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :
Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan
BABY. S!MPULAN DA:"i SARAN. Rumah sakit adalah bentuk organisasi pengelolaan jasa pelayanan
BABY S!MPULAN DA:" SARAN A. Smpulan Rumah sakt adalah bentuk organsas pengelolaan jasa pelayanan kesehatan ndvdual secara menyeluruh oleh karena tu dperlukan penerapan vs. ms. dan strateg seara tepat oleh
EVALUASI TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN FIRST ORDER CONFIGURAL FREQUENCY ANALYSIS
EVALUASI TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN FIRST ORDER CONFIGURAL FREQUENCY ANALYSIS Resa Septan Pontoh Departemen Statstka Unverstas Padjadjaran [email protected] ABSTRAK.
BAB 1 PENDAHULUAN. dependen (y) untuk n pengamatan berpasangan i i i. x : variabel prediktor; f x ) ). Bentuk kurva regresi f( x i
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan analss statstk yang dgunakan untuk memodelkan hubungan antara varabel ndependen (x) dengan varabel ( x, y ) n dependen (y) untuk n pengamatan
MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak
JURAL MATEMATIKA DA KOMUTER Vol. 6. o., 86-96, Agustus 3, ISS : 4-858 MECERMATI BERBAGAI JEIS ERMASALAHA DALAM ROGRAM LIIER KABUR Mohammad Askn Jurusan Matematka FMIA UES Abstrak Konsep baru tentang hmpunan
III. METODE PENELITIAN
III. METODE PEELITIA 3.1. Kerangka Pemkran Peneltan BRI Unt Cbnong dan Unt Warung Jambu Uraan Pekerjaan Karyawan Subyek Analss Konds SDM Aktual (KKP) Konds SDM Harapan (KKJ) Kuesoner KKP Kuesoner KKJ la
OPTIMASI MASALAH PENUGASAN. Siti Maslihah
JPM IIN ntasar Vol. 01 No. 2 Januar Jun 2014, h. 95-106 OPTIMSI MSLH PNUGSN St Maslhah bstrak Pemrograman lner merupakan salah satu lmu matematka terapan yang bertuuan untuk mencar nla optmum dar suatu
Eksistensi Bifurkasi Mundur pada Model Penyebaran Penyakit Menular dengan Vaksinasi
1 Eksstens Bfurkas Mundur pada Model Penyebaran Penyakt Menular dengan Vaksnas Intan Putr Lestar, Drs. M. Setjo Wnarko, M.S Jurusan Matematka, Fakultas Matematka dan Ilmu Pengetahuan Alam, Insttut Teknolog
MANAJEMEN LOGISTIK & SUPPLY CHAIN MANAGEMENT KULIAH 3: MERANCANG JARINGAN SUPPLY CHAIN
MANAJEMEN LOGISTIK & SUPPLY CHAIN MANAGEMENT KULIAH 3: MERANCANG JARINGAN SUPPLY CHAIN By: Rn Halla Nasuton, ST, MT MERANCANG JARINGAN SC Perancangan jarngan SC merupakan satu kegatan pentng yang harus
3 METODE HEURISTIK UNTUK VRPTW
12 3 METODE HEURISTIK UNTUK VRPTW 3.1 Metode Heurstk Metode heurstk merupakan salah satu metode penentuan solus optmal dar permasalahan optmas kombnatoral. Berbeda dengan solus eksak yang menentukan nla
BAB 2 LANDASAN TEORI
2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan
BADAN PUSAT STATISTIK KABUPATEN JAYAPURA
BADAN PUSAT STATISTIK KABUPATEN JAYAPURA BADAN PUSAT STATISTIK KABUPATEN JAYAPURA Sensus Penduduk 2010 merupakan sebuah kegatan besar bangsa Badan Pusat Statstk (BPS) berdasarkan Undang-undang Nomor 16
III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam
III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Neger 3 Bandar Lampung. Populas dalam peneltan n yatu seluruh sswa kelas VIII SMP Neger 3 Bandar Lampung Tahun Pelajaran 0/03 yang
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam
MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224
MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bntaro Sektor 7, Bntaro Jaya Tangerang Selatan 15224 MODEL KERUNTUHAN ROTASI ANALISIS CARA KESEIMBANGAN BATAS Cara n
LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES
LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod
Kata kunci : daya, bahan bakar, optimasi, ekonomis. pembangkitan yang maksimal dengan biaya pengoperasian unit pembangkit yang minimal.
Makalah Semnar Tugas Akhr MENGOPTIMALKAN PEMBAGIAN BEBAN PADA UNIT PEMBANGKIT PLTGU TAMBAK LOROK DENGAN METODE LAGRANGE MULTIPLIER Oleh : Marno Sswanto, LF 303 514 Abstrak Pertumbuhan ndustr pada suatu
Referensi: 1) Smith Van Ness Introduction to Chemical Engineering Thermodynamic, 6th ed. 2) Sandler Chemical, Biochemical adn
Referens: 1) Smth Van Ness. 2001. Introducton to Chemcal Engneerng Thermodynamc, 6th ed. 2) Sandler. 2006. Chemcal, Bochemcal adn Engneerng Thermodynamcs, 4th ed. 3) Prausntz. 1999. Molecular Thermodynamcs
VLE dari Korelasi nilai K
VLE dar orelas nla Penggunaan utama hubungan kesetmbangan fasa, yatu dalam perancangan proses pemsahan yang bergantung pada kecenderungan zat-zat kma yang dberkan untuk mendstrbuskan dr, terutama dalam
BAB IV PEMBAHASAN MODEL
BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup
BAB 2 LANDASAN TEORI
7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut
Penentuan Lokasi Ideal SD dan MI Se-Kecamatan Pejagoan Kabupaten Kebumen dengan Menggunakan Model P-Median, P-Center, dan Max Covering
Performa (2010) Vol. 9, No.2: 1-10 Penentuan Lokas Ideal SD dan MI Se-Kecamatan Peagoan Kabupaten Kebumen dengan Menggunakan Model P-Medan, P-Center, dan Max Coverng Ike Nurcahyono, I Wayan Suletra * dan
Oleh : Harifa Hanan Yoga Aji Nugraha Gempur Safar Rika Saputri Arya Andika Dumanauw
Oleh : Harfa Hanan Yoga A Nugraha Gemur Safar ka Sautr Arya Andka Dumanau Dosen : Dr.rer.nat. Ded osad, S.S., M.Sc. Program Stud Statstka Fakultas Matematka dan Ilmu Pengetahuan Alam Unverstas Gadah Mada
ANALISIS DATA KATEGORIK (STK351)
Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat
RANGKAIAN SERI. 1. Pendahuluan
. Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor
III. METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode
8 III. METODE PENELITIAN A. Metode Peneltan Metode peneltan adalah suatu cara yang dpergunakan untuk pemecahan masalah dengan teknk dan alat tertentu sehngga dperoleh hasl yang sesua dengan tujuan peneltan.
berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat
10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus
BAB III PENGAMBILAN KEPUTUSAN DISPLACED IDEAL. Inti dari pengambilan keputusan adalah memilih alternatif, tentunya harus
40 BAB III PENGAMBILAN KEPUTUSAN DISPLACED IDEAL 3.1. Pengamban Keputusan Int dar pengamban keputusan adaah memh aternatf, tentunya harus aternatf yang terbak (the best aternatve). Tujuan dar anass keputusan
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tnjauan Pustaka Dar peneltan yang dlakukan Her Sulstyo (2010) telah dbuat suatu sstem perangkat lunak untuk mendukung dalam pengamblan keputusan menggunakan
PROPOSAL SKRIPSI JUDUL:
PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan
BAB VI PROYEKSI PENDUDUK DAN FASILITAS
c^ %> -*»Y««I LAPORAN KJAS AKHIR BAB VI PROYEKSI PENDUDUK DAN FASILITAS Pembuatan rencana sstem penyaluran ar buangan ddasarkan pada asas kebutuhan sesua dengan adanva skala prortas dan sejalan dengan
PENGURUTAN DATA. A. Tujuan
PENGURUTAN DATA A. Tuuan Pembahasan dalam bab n adalah mengena pengurutan data pada sekumpulan data. Terdapat beberapa metode untuk melakukan pengurutan data yang secara detl akan dbahas ddalam bab n.
