Menggambar Obyek Kerucut dan Silinder Menggambar Kerucut
|
|
|
- Budi Sudirman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Menggambar Obyek Kerucut dan Silinder Menggambar Kerucut Kerucut bentuknya seperti ice-cream, yaitu menghubungkan lingkaran sebagai luasan bagian bawah dan sebuah titik di bagian atas. Bentuk kerucut dapat dilihat pada gambar 7.7 berikut ini Gambar 7.7. Kerucut Untuk menggambar sebuh kerucut, maka terlebih dahulu ditentukan jumlah titik yang akan membangun lingkaran di bawah, misalkan jumlah titik pada lingkaran adalah n, maka kerucut dapat digambarkan seperti gambar 6.7 di atas. Pembentukan obyek 3 dimensi dilakukan dengan: - mendefinisikan titik-titik pada obyek yang terdiri dari jumlah titik, dan koordinat masing-masing titik. - Mendefinisikan face-face pada obyek yang terdiri dari jumlah face dan struktur pada masing-masing face. Dengan demikian jumlah titik pada kerucut tersebut adalah n+1, dengan n untuk membentuk lingkaran dan 1 di atas. Dan jumlah face adalah n+1, dengan n untuk membentuk bagian sisi dan 1 bagian alas (lingkaran). Posisi titik-titik pada kerucut dengan tinggi h dan jari-jari r dapat didefinisikan dengan: Titik 0: (Bagian puncak) (0,h,0) Titik 1 sampai dengan n:
2 x y z i i i = r *cos( i. a) = r *sin( i. a) dimana a adalah unit sudut: = 0 Face pada kerucut didefinisikan dengan: π a = n Untuk face 0 sampai dengan n-1: Face i: terdiri dari 3 titik yaitu: 0, i, i+1 Untuk face ke n: terdiri dari 3 titik yaitu 0, n, 1 Face terakhir berupa alas lingkaran mempunyai n titik yaitu: {1, 2, 3,..., n Gambar 7.8. Proses pembuatan kerucut Sehingga fungsi untuk membuat kerucut adalah sebagai berikut: void createcone(object3d_t &kerucut, int n, float r, float h){ float a=6.28/n; int i; kerucut.pnt[0].x=0; kerucut.pnt[0].y=h; kerucut.pnt[0].z=0; for(i=1;i<=n;i++){ kerucut.pnt[i].x=r*cos(i*a); kerucut.pnt[i].y=0; kerucut.pnt[i].z=r*sin(i*a);
3 for(i=0;i<n;i++){ kerucut.fc[i].numberofvertices=3; kerucut.fc[i].pnt[0]=0; kerucut.fc[i].pnt[1]=i+2; kerucut.fc[i].pnt[2]=i+1; if(i==(n-1)) kerucut.fc[i].pnt[1]=1; kerucut.fc[n].numberofvertices=n; for(i=0;i<n;i++) kerucut.fc[n].pnt[i]=i+1; kerucut.numberofvertices=n+1; kerucut.numberoffaces=n+1; Untuk menggambar kerucut dengan tinggi 150 dan jari-jari 80, pada userdraw() dapat ditulis dengan: void userdraw(void) { matrix3d_t tilting=rotationxmtx(0.25)*rotationymtx(-0.5); setcolor(0,1,0); drawaxes(tilting); object3d_t kerucut; makecone(kerucut,20,80,150); setcolor(1,1,1); draw3d(kerucut,tilting); Hasil dari program di atas adalah:
4 Gambar 7.9. Contoh hasil kerucut Untuk menggambar kerucut dituliskan: createcone(obyek3d, n, r, h) Dimana: Obyek3D menyatakan nama obyek 3D n adalah jumlah titik pembentuk lingkaran alas r adalaj jari-jari alas h adalah tinggi kerucut Pada gambar 7.9 kerucut dibentuk dengan n=20. Berikut ini contoh kerucut dengan n=3, n=4, n=6 dan n=8. Pada n=3 menghasilkan limas segitiga dan pada n=4 menghasilkan limas segi empat.
5 Gambar Contoh kerucut dengan n=3,4,6 dan 8 Terlihat bahwa semakin banyak n akan menghasilkan lingkaran yang semakin sempurna. Hal ini juga menunjukkan bahwa limas dapat dihasilkan dari kerucut. Menggambar Silinder Silinder bentuknya seperti tong, yaitu mempunyai 2 lingkaran sebagai luasan bagian atas dan bawah. Bentuk silinder dapat dilihat pada gambar 7.10 berikut ini. Teknik pembuatan silinder hampir sama dengan teknik pembuatan kerucut, hanya saja pada masing-masing face pembentuk bagian samping terdiri dari 4 titik, berbeda dengan kerucut yang hanya mempunyai 3 titik. Fungsi pembuatan silinder adalah sebagai berikut:... n+3 n+2 n+1 n Gambar Silinder Fungsi untuk membuat silinder dengan jari-jari r dan tinggi h adalah sebagai berikut:
6 void createcylinder(object3d_t &silinder, int n, float r, float h){ float a=6.28/n; int i; for(i=0;i<n;i++){ silinder.pnt[i].x=r*cos(i*a); silinder.pnt[i].y=0; silinder.pnt[i].z=r*sin(i*a); silinder.pnt[n+i].x=r*cos(i*a); silinder.pnt[n+i].y=h; silinder.pnt[n+i].z=r*sin(i*a); silinder.numberofvertices=2*n; for(i=0;i<n;i++){ silinder.fc[i].numberofvertices=4; silinder.fc[i].pnt[0]=i; silinder.fc[i].pnt[1]=n+i; silinder.fc[i].pnt[2]=n+i+1; silinder.fc[i].pnt[3]=i+1; if(i==(n-1)){ silinder.fc[i].pnt[2]=n; silinder.fc[i].pnt[3]=0; silinder.fc[n].numberofvertices=n; for(i=0;i<n;i++) silinder.fc[n].pnt[i]=i; silinder.fc[n+1].numberofvertices=n; for(i=0;i<n;i++) silinder.fc[n+1].pnt[i]=2*n-1-i; silinder.numberoffaces=n+2; Untuk menggambar silinder dengan tinggi 150 dan jari-jari 80, pada userdraw() dapat ditulis dengan: void userdraw(void) { matrix3d_t tilting=rotationxmtx(0.25)*rotationymtx(-0.5); setcolor(0,1,0); drawaxes(tilting);
7 object3d_t silinder; createcylinder(silinder,20,80,150); setcolor(1,1,1); draw3d(silinder,tilting); Hasil dari program di atas adalah: Gambar Contoh hasil silinder Untuk menggambar silinder dituliskan: createcylinder(obyek3d, n, r, h) Dimana: Obyek3D menyatakan nama obyek 3D n adalah jumlah titik pembentuk lingkaran alas r adalaj jari-jari alas h adalah tinggi silinder Pada gambar 7.12 silinder dibentuk dengan n=20. Berikut ini contoh kerucut dengan n=3, n=4, n=6 dan n=8. Pada n=3 menghasilkan prisma, pada n=4 menghasilkan balok dan pada n=8 akan menghasilkan hexagon.
8 Gambar Contoh silinder dengan n=3,4,6 dan 8
Menggambar Obyek Kerucut dan Silinder Menggambar Kerucut
Menggambar Obyek Kerucut dan Silinder Menggambar Kerucut Kerucut bentuknya seperti ice-cream, yaitu menghubungkan lingkaran sebagai luasan bagian bawah dan sebuah titik di bagian atas. Bentuk kerucut dapat
7.6. Menggambar Bola. Gambar Bola adalah setengah lingkaran yang diputar. Pembentukan bola adalah: Y. Gambar 7.15.
7.6. Menggambar Bola Bola memunyai koordinat khusus, dimana setia titik ada bola memunyai jarak yang sama terhada titik usatnya. Bola adalah hasil utar dari setengah lingkaran. Gambar 7.14. Bola adalah
8.3. Memberi Warna Pada Obyek 3 Dimensi
8.3. Memberi Warna Pada Obyek 3 Dimensi Pada pembahasan di atas, obyek 3 dimensi digambar dalam model wireframe (kerangka), padahal dalam pemakaian sebenarrnya setiap obyek diberi warna. Pada obyek 3 dimensi
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB. SHEET PRAKTIKUM GRAFIKA KOMPUTER
No. : ST/EKA/PTI223/10 Revisi : 00 Senin 010509 Hal. 1 dari 23 hal. Pengantar Dalam pembuatan sebuah gambar obyek sebenarnya merupakan gabungan dari beberapa obyek sederhana. Misalnya sebuah gambar robot
BAB 9 SHADING DAN OPTICAL VIEW
BAB 9 SHADING DAN OPTICAL VIEW 9.1. Vektor Satuan Vektor satuan (unit vector) adalah vektor yang besarnya satu. Untuk mendapatkan vektor satuan maka setiap elemen vektor dibagi dengan besarnya vektor tersebut
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA
No. : ST/EKA/PTI275/10 Revisi : 00 Senin/Selasa Hal. 1 dari 23 hal. Pengantar Dalam pembuatan sebuah gambar obyek sebenarnya merupakan gabungan dari beberapa obyek sederhana. Misalnya sebuah gambar robot
Bangun yang memiliki sifat-sifat tersebut disebut...
1. Perhatikan sifat-sifat bangun ruang di bawah ini: i. Memiliki 6 sisi yang sama atau kongruen ii. Memiliki 12 rusuk yang sama panjang Bangun yang memiliki sifat-sifat tersebut disebut... SD kelas 6 -
Grafik 3 Dimensi. Achmad Basuki Nana R Politeknik Elektronika Negeri Surabaya Surabaya 2009
Grafik 3 Dimensi Achmad Basuki Nana R Politeknik Elektronika Negeri Surabaya Surabaya 29 Materi Sistem Koordinat 3D Definisi Obyek 3D Cara Menggambar Obyek 3D Konversi Vektor 3D menjadi Titik 2D Konversi
Pertemuan 1. Membuat Sudut Siku-Siku. Pengukuran Guna Pembuatan Peta dengan Alat-alatalat Sederhana Can be accessed on: http://haryono_putro.staff.gunadarma.ac.id/ Email: [email protected]
PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E.
PAKET 4 Jumlah Soal : 0 soal Kompetensi :. Bangun Datar. Trigonometri. Bangun Ruang 4. Barisan dan Deret Compile By : Syaiful Hamzah Nasution No Soal Jawaban Luas Segiempat PQRS pada gambar di bawah ini
DIMENSI TIGA. 3. Limas. Macam-macam Bangun Ruang : 1. Kubus : 1 luas alas x tinggi. Volume Limas = 3. = luas alas + luas bidang sisi tegak
DIMENSI TIA Macam-macam angun Ruang :. Limas. Kubus : Volume Limas luas alas x tinggi Kubus AD. EH di atas mempunyai rusuk-rusuk yang panjangnya a. Panjang diagonal bidang (AH) a Panjang diagonal ruang
KISI KISI PENULISAN SOAL UKK TAPEL 2012/2013SMP PROVINSI DKI JAKARTA. Mata Pelajaran : Matematika Kurikulum : StandarIsi
KISI KISI PENULISAN SOAL UKK TAPEL 2012/2013SMP PROVINSI DKI JAKARTA Mata Pelajaran : Matematika Kurikulum : StandarIsi K e l a s : 8 (delapan) AlokasiWaktu : 120 menit Banyak : 40 Bentuk : PilihanGanda
Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY
SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik
20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b
. TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis
BAB I PENDAHULUAN. Salah satu upaya guru menciptakan suasana belajar yang menyenangkan
1 BAB I PENDAHULUAN A. Latar Belakang Masalah Salah satu upaya guru menciptakan suasana belajar yang menyenangkan yaitu dapat menarik minat, antusiasme siswa, dan memotivasi siswa agar senantiasa belajar
PREDIKSI ULANGAN KENAIKAN KELAS VIII SMP/MTs TAHUN PELAJARAN 2009/2010 MATA PELAJARAN MATEMATIKA PAKET 3
PREDIKSI ULNGN KENIKN KELS VIII SMP/MTs THUN PELJRN 2009/2010 MT PELJRN MTEMTIK PKET 3. Untuk soal nomor 1 sampai dengan 30 pilihlah satu jawaban yang paling benar dengan memberi tanda silang (X) pada
FIsika KTSP & K-13 KESEIMBANGAN BENDA TEGAR. K e l a s. A. Syarat Keseimbangan Benda Tegar
KTSP & K-1 FIsika K e l a s XI KESEIMNGN END TEG Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami sarat keseimbangan benda tegar.. Memahami macam-macam
3. Daerah yang dibatasi oleh dua buah jari-jari dan sebuah busur pada lingkaran adalah
1. Unsur-unsur di bawah ini yang merupakan unsur lingkaran adalah. A. Jari-jari, tali busur, juring dan diagonal B. Diameter, busur, sisi dan bidang diagonal C. Juring, tembereng, apotema dan jari-jari
ABSTRAK. Aplikasi ini dibuat menggunakan Adobe Flash CS 3 dengan bahasa pemrograman Action Script 2.
ABSTRAK Aplikasi ini dirancang untuk pembelajaran siswa di sekolah menengah tentang geometri bangun datar dan bangun ruang. Aplikasi ini dirancang semenarik mungkin untuk para siswa. Fitur-fitur pada aplikasi
Matematika ITB Tahun 1975
Matematika ITB Taun 975 ITB-75-0 + 5 6 tidak tau ITB-75-0 Nilai-nilai yang memenui ketidaksamaan kuadrat 5 7 0 atau atau 0 < ITB-75-0 Persamaan garis yang melalui A(,) dan tegak lurus garis + y = 0 + y
Daftar kelompok Kelas Mahasiswa Angkatan 52 Program Pendidikan Kompetensi Umum Institut Pertanian Bogor
1 INT INT B04158001 2 INT INT B04158004 3 INT INT B04158005 4 INT INT B04158006 5 INT INT B04158007 6 INT INT B04158008 7 INT INT B04158009 8 INT INT B04158010 9 INT INT B04158011 10 INT INT B04158013
GEOMETRI BANGUN RUANG
OMTRI NUN RUN. ambar angun Ruang a. aris frontal, yaitu garis yang terletak pada bidang yang digambarkan sebenarnya. ruas garis,,,,,,, dan b. aris orthogonal, yaitu garis yang tidak terletak pada bidang
Untuk lebih jelasnya buatlah sebuah tabel untuk membuktikan kaidah euler!
BAB V BANGUN RUANG Bangun ruang adalah bagian ruang yang dibatasi oleh himpunan titik-titik yang terdapat pada seluruh permukaan bangun tersebut. Permukaan yang dimaksud pada definisi tersebut adalah bidang
Pembahasan SNMPTN 2011 Matematika IPA Kode 576
Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.
Geometri Ruang (Dimensi 3)
Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =
OBYEK GRAFIK 2 DIMENSI
OBYEK GRAFIK 2 DIMENSI Achmad Basuki Nana Ramadijanti Achmad Basuki, Nana Ramadijanti - Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya (PENS-ITS) Materi Definisi Obyek Grafik 2-D PolyLine
PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK
PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.
Inisiasi 2 Geometri dan Pengukuran
Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik
(KD) Item Soal 6. Memahami sifat- 6.2 Mengidentifikasi. 1, 7, 12, 20 sifat bangun dan. sifat-sifat bangun. menyebutkan hubungan antar. ruang.
Lampiran 1 Instrumen Pretest dan Posttest a) Kisi-kisi Instrumen Pretest dan Posttest Standar Kompetensi Dasar Indikator Nomor Kompetensi (SK) (KD) Item Soal 6. Memahami sifat- 6.2 Mengidentifikasi a)
MATEMATIKA EBTANAS TAHUN 1993
MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Ditentukan A = {v, o, k, a, l} ; B = {a, i, u, e, o} Diagram yang menyatakan hal tersebut di atas A. B. v o u v o i a k u k l I l a e v o u v o u a k a k l e l i
04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )
0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :
Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama.
Gracia Education Page 1 of 6 Trigonometri Pengertian Dasar Jumlah sudut-sudut dalam suatu segitiga selalu 180. Segitiga-segitiga istimewa: 1. Segitiga Siku-siku (Right-angled Triangle) - Salah satu sudutnya
DINAMIKA ROTASI DAN KESETIMBANGAN
FIS A. BENDA TEGAR Benda tegar adalah benda yang tidak mengalami perubahan bentuk dan volume selama bergerak. Benda tegar dapat mengalami dua macam gerakan, yaitu translasi dan rotasi. Gerak translasi
PREDIKSI ULANGAN KENAIKAN KELAS VIII SMP/MTs TAHUN PELAJARAN 2009/2010 MATA PELAJARAN MATEMATIKA PAKET 1
PREIKSI ULNGN KENIKN KELS VIII SMP/MTs THUN PELJRN 2009/2010 MT PELJRN MTEMTIK PKET 1. Untuk soal nomor 1 sampai dengan 30 pilihlah satu jawaban yang paling benar dengan memberi tanda silang (X) pada lembar
UJI COBA UJIAN NASIONAL 2011
UJI COA UJIAN NASIONAL 2011 Mata Pelajaran Alokasi Waktu Jumlah Soal entuk Soal : Matematika Teknik : 120 menit : 40 item : Pilihan Ganda 1. Seorang pedagang sparepart sepeda motor membeli dua lusin busi
pagar kebun, ternyata masih kurang dan Pak Sulis membeli kawat lagi sebanyak 3 m.
PREDIKSI UJIAN NASIONAL 207 [email protected] Pilihlah jawaban yang paling tepat!. Hasil dari - x (-2 + ) : (9 5) adalah... A. - B. - C. D. 2. Pak Sulis mempunyai persediaan kawat sepanjang 5 m. Ketika
PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1
PERSIAPAN TES SKL X, MATEMATIKA 1. Pangkat, Akar dan Logaritma Menentukan hasil operasi bentuk pangkat (1 6) Menentukan hasil operasi bentuk akar (7 11) Menentukan hasil operasi bentuk logarithma (12 15)
LATIHAN ULANGAN UMUM SEMESTER GENAP 2012 MATEMATIKA XI RPL
14 Siap Ulangan Umum Semester enap 2012 PILIN N LTIN ULNN UMUM SMSTR NP 2012 MTMTIK XI RPL 1. esar sudut = radian, dalam satuan derajat besar sudut =.... 120 o. 240 o. 150 o. 00 o. 210 o 2. Sudut 225 o
Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan
Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan
RENCANA PELAKSANAAN PEMBELAJARAN
RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMK Negeri 1 Banyudono Mata Diklat : Matematika Kelas / Semester : XI / 3 Alokasi Waktu : 4 x 45 menit A. Standar Kompetensi : Menentukan Kedudukan Jarak
MATEMATIKA DASAR TAHUN 1987
MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,
2009 ACADEMY QU IDMATHCIREBON
NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan
4. Diketahui M = dan N = Bentuk sederhana dari M N adalah... Pilihlah jawaban yang benar.
Pilihlah jawaban yang benar.. Diketahui premis-premis berikut. Premis : Jika terjadi kemarau panjang maka air sulit diperoleh. Premis : Jika air sulit diperoleh maka semua Kesimpulan dari premis-premis
Evaluasi Belajar Tahap Akhir Nasional Tahun 1991 Matematika
Evaluasi Belajar Tahap Akhir Nasional Tahun 99 Matematika EBTANAS-SMP-9-0 Amir, Adi dan Budi selalu berbelanja ke Toko "Anda". Amir tiap 3 hari sekali, Adi tiap 4 hari sekali dan Budi tiap hari sekali.
BAB I PENDAHULUAN. terdapat perkembangan teknologi augmented reality (AR). Augmented reality
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sejak komputer ditemukan, penelitian terus dilakukan untuk mengembangkan atau menciptakan hal baru. Sejalan perkembangan tersebut, terdapat perkembangan teknologi
Matematika EBTANAS Tahun 1999
Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar
MAKALAH BANGUN RUANG. Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika. Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5.
MAKALAH BANGUN RUANG Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5. Ayu YAYASAN PENDIDIKAN TERPADU PONDOK PESANTREN MADRASAH THASANAWIYAH
LAMPIRAN. Universitas Sumatera Utara
LAMPIRAN HALAMAN AWAL : fscommand ("fullscreen", true); Tombol Next : loadmovie("menu Pembuka.swf", 0); MENU PEMBUKA : 1. Pilihan kubus-balok : loadmovie("mulai belajar1.swf", 0); 2. Pilihan prisma loadmovie("mulai
Beberapa Benda Ruang Yang Beraturan
Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma
MATEMATIKA EBTANAS TAHUN 2002
MATEMATIKA EBTANAS TAHUN UAN-SMP-- Notasi pembentukan himpunan dari B = {, 4, 9} adalah A. B = { kuadrat tiga bilangan asli yang pertama} B = { bilangan tersusun yang kurang dari } C. B = { kelipatan bilangan
SOAL TRY OUT MATEMATIKA SMP CENDANA PEKANBARU TAHUN PELAJARAN 2016/2017
SOAL TRY OUT MATEMATIKA SMP CENDANA PEKANBARU TAHUN PELAJARAN 06/07 Petunjuk : Berilah tanda silang pada jawaban yang kamu anggap paling benar!. Hasil dari 5 : (-5) + 6 x 6 =... a. 93 b. 80 c. -80 d. -96.
OBYEK GRAFIK 2 DIMENSI
OBYEK GRAFIK 2 DIMENSI Achmad Basuki Nana Ramadijanti Achmad Basuki, Nana Ramadijanti - Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya (PENS-ITS) Materi Definisi Obyek Grafik 2-D PolyLine
SOAL TO UN SMA MATEMATIKA
1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas
MA1201 MATEMATIKA 2A Hendra Gunawan
MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 10 Maret 01 Kuliah ang Lalu 10.1- Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem
SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII
SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII 1. Bidang arsiran yang menunjukkan tembereng lingkaran pada gambar berikut adalah.... a. c. b. d. 2. Keliling lingkaran yang panjang
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola Tim Kalkulus II Koordinat Kartesius Sistem Koordinat 2 Dimensi Sistem koordinat kartesian dua dimensi merupakan sistem koordinat yang terdiri dari
Copyright Hak Cipta dilindungi undang-undang
Latihan Soal UN SMP/MTs Mata Pelajaran : Matematika Jumlah Soal : 0. Hasil dari.7 +.75 adalah. 5 c. 57 d 7. Suhu di dalam kulkas - 0 C. Pada saat mati lampu suhu di dalam kulkas naik 0 C setiap menit.
PUSAT MASSA DAN TITIK BERAT
PUSAT MASSA DAN TITIK BERAT Pusat massa dan titik berat suatu benda memiliki pengertian yang sama, yaitu suatu titik tempat berpusatnya massa/berat dari benda tersebut. Perbedaannya adalah letak pusat
4. Jika log 3 = 0,477 dan log 5 = 0,699, maka nilai log 45 adalah. a. 1,176 b. 1,431 c. 1,649 d. 1,653 e. 1,954. merupakan invers dari fungsi f (x)
. Sebuah tempat air berbentuk balok digambar dengan menggunakan skala : 00, mempunyai ukuran cm x cm x cm. Volume tempat air sebenarnya adalah.600 cm 60.000 cm 6 m.600 m 6.000 m. Nilai dari () 6 6 8 x
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E
1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8
KESEIMBANGAN BENDA TEGAR
Dinamika Rotasi, Statika dan Titik Berat 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal ME KANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINE MATI KA = Ilmu
UN SMP Matematika (A) 53 (B) 57 (C) 63 (D) 67
UN SMP Matematika Doc Name: UNSMP2008MAT999 Version : 202-0 halaman 0. Hasil dari 3.764 3. 37 (A) 3 (B) 7 (C) 63 (D) 67 02. Suhu di dalam kulkas -2 0 C. Pada saat mati lampu suhu di dalam kulkas naik 3
Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika
Evaluasi Belajar Tahap Akhir Nasional Tahun 986 Matematika EBTANAS-SMP-86-0 Himpunan faktor persekutuan dari dan 0 {,,, 6} {,, 6} {, } {6} EBTANAS-SMP-86-0 Bilangan 0,0000 jika ditulis dalam bentuk baku.0
SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT
SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu
CONTOH SOAL UAN/UN/UASBN SD 2012
CONTOH SOAL UAN/UN/UASBN SD 2012 DISESUAIKAN DENGAN KISI-KISI UASBN SD 2012 Kompetensi 3 : Memahami konsep, sifat, dan unsur-unsur bangun geometeri, dapat menghitung besar-besaran yang terkait dengan bangun
Luas Sisi Kerucut. Apa yang akan kamu pelajari? Menyatakan luas sisi
2.2 Apa yang akan kamu pelajari? Menyatakan luas sisi Menghitung luas sisi Menyatakan volume Menghitung volume prisma. Kata Kunci: Luas sisi Selimut kerucut Volume kerucut Tinggi kerucut P Luas Sisi ernahkah
( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari
ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan
19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran)
9. TRANSFORMASI A. Translasi (Pergeseran) ; T = b a b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis =, dan
2. Untuk interval 0 < x < 360, nilai x yang nantinya akan memenuhi persamaan trigonometri cos x 2 sin x = 2 3 cos adalah
Soal Babak Semifinal OMITS 007. Hubungan antara a dan b agar fungsi f x = a sin x + b cos x mempunyai nilai stasioner di x = π adalah a. a = b b. a = b d. a = b e. a = b a = b. Untuk interval 0 < x < 60,
TRY OUT MATEMATIKA PAKET 2B TAHUN 2010
TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang
f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}
1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1
TABEL SITUASI DIDAKTIS, PREDIKSI RESPON SISWA DAN ANTISIPASINYA (LESSON DESIGN REVISI)
Lampiran B.4 TABEL SITUASI DIDAKTIS, PREDIKSI RESPON SISWA DAN ANTISIPASINYA (LESSON DESIGN REVISI) Materi : Volume Limas Kelas : VIII Semester : II Waktu : 2 x 80 menit Tujuan Pembelajaran : Siswa dapat
Standar Kompetensi : Memahami sifat-sifat tabung, kerucut dan bola serta menentukan ukurannya
Standar Kompetensi : Memahami sifat-sifat tabung, kerucut dan bola serta menentukan ukurannya Kompetensi Dasar : 1. Mengidentifikasi unsur-unsur tabung, kerucut dan bola 2. Menghitung luas selimut dan
Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran
KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)
BANGUN RUANG BAHAN BELAJAR MANDIRI 5
BAHAN BELAJAR MANIRI 5 BANGUN RUANG PENAHULUAN untuk membantu calon guru dan guru Sekolah dasar dalam memahami konsep geometri bangun ruang, bidang empat (limas), bidang enam (prisma), dan bangun ruang
Perkalian & Pembagian Pecahan
MATERI PEMBELAJARAN Jika anda menyusun rencana untuk jangka setahun, semailah benih padi Jika rencana anda untuk satu dekade, tanamlah pohon Namun jika rencana anda berjangka seumur hidup, didiklah orang.
C D Tanda yang tepat untuk kalimat : 3,2 x ( 4,3 + 0,7 )... ( 4,3-0,3 ) x 0,4 adalah... A. B. <
1. Hasil penjumlahan bilangan-bilangan di bawah ini adalah... 14.826 B. 14.824 C. 14.816 14.126 2. Harga b pada kalimat : b - 3 = 1 adalah... C. B. 3. Tanda yang tepat untuk kalimat : 3,2 x ( 4,3 + 0,7
Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT
KULIAH MEDAN ELEKTROMAGNETIK Pengantar Definisi Arsitektur MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT Operasional Sinkronisasi Kesimpulan & Saran Muhamad Ali, MT Http://www.elektro-uny.net/ali Pengantar
Matematika Ujian Akhir Nasional Tahun 2004
Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke
( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75
Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran
Menghitung Luas dan Volume
Bab 3 Menghitung Luas dan Volume Pada pembelajaran bab ini kamu akan memantapkan pemahaman kamu terhadap cara mengitung bangun datar, karena kamu telah mengenal dan mempelajari luas bangun datar, terutama
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus
PERANCANGAN APLIKASI PEMBELAJARAN BANGUN DATAR DAN BANGUN RUANG DENGAN MENGGUNAKAN MICROSOFT VISUAL BASIC 6.0 TUGAS AKHIR M. DZAKY ARRAUF
i PERANCANGAN APLIKASI PEMBELAJARAN BANGUN DATAR DAN BANGUN RUANG DENGAN MENGGUNAKAN MICROSOFT VISUAL BASIC 6.0 TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Ahli Madya
UJIAN NASIONAL SMK/MAK Tahun Pelajaran 2014/2015
T RY O U T UJIAN NASIONAL SMK/MAK Tahun Pelajaran 014/01 Bidang Studi: MATEMATIKA Kelompok teknologi, kesehatan, dan pertanian Petunjuk Umum 1. Periksalah Naskah Soal yang Anda terima sebelum mengerjakan
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0
Pembahasan Matematika IPA SNMPTN 2012 Kode 483
Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,
Rencana Pelaksanaan Pembelajaran (RPP) I. Standar Kompetensi 6. Memahami sifat-sifat bangun dan hubungan antar bangun ruang
Rencana Pelaksanaan Pembelajaran (RPP) Satuan Pendidikan : SD N 05 Sendangharjo Mata Pelajaran : Matematika Kelas/semester : V / 2 Alokasi Waktu : 2 X Pertemuan I. Standar Kompetensi 6. Memahami sifat-sifat
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota
LENGKUNG MENDATAR LENGKUNG SEDERHANA LENGKUNG DGN TITIK PERANTARA LENGKUNG DGN PERANTARA KOORDINAT LENGKUNG SEPEREMPAT BAGIAN
LENGKUNG MENDATAR LENGKUNG SEDERHANA LENGKUNG DGN TITIK PERANTARA LENGKUNG DGN PERANTARA KOORDINAT LENGKUNG SEPEREMPAT BAGIAN LENGKUNG MENDATAR LENGKUNG SEDERHANA LENGKUNG DGN TITIK PERANTARA LENGKUNG
B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0
UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...
Konsep Dasar Geometri
Konsep Dasar Geometri. Segitiga 1. Definisi Segitiga Segitiga merupakan model bangun ruang datar yang dibatasi oleh tiga ruas garis. 2. Klasifikasi Segitiga a) Segitiga menurut panjang sisinya 1) Segitiga
SILABUS. 8 Silabus Matematika Kelas 5. Standar Kompetensi : 5. Menggunakan pecahan dalam pemecahan masalah. desimal dan sebaliknya.
8 Silabus Matematika Kelas 5 SILABUS Sekolah : SD Kelas : V Mata Pelajaran : Matematika Semester : 2 Standar Kompetensi : 5. Menggunakan pecahan dalam pemecahan masalah. Dasar 5.1 Mengubah pecahan ke bentuk
Perbandingan trigonometri sin x merupakan relasi yang memetakan setiap x tepat satu nilai sin x yang dinyatakan dengan notasi f : x sinx
MENGGAMBAR GRAFIK FUNGSI TRIGONOMETRI Perbandingan trigonometri dari suatu sudut tertentu terdapat tepat satu nilai dari sinus, kosinus dan tangens dari sudut tersebut. Sehingga perbandingan trigonometri
BAB IV TOOLS UNTUK MENGGAMBAR (WINDOW DAN VIEWPORT)
BAB IV TOOLS UNTUK MENGGAMBAR (WINDOW DAN VIEWPORT) Menggambar Objek 2D Bagaimana cara menggambar objek 2D? Langsung pada layar kesulitan manipulasi yaitu dalam transformasi Melalui sistem koordinat kartesius
Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan
pagar kebun, ternyata masih kurang dan Pak Sulis membeli kawat lagi sebanyak 3 m.
PREDIKSI UJIAN NASIONAL 207 [email protected] Pilihlah jawaban yang paling tepat!. Hasil dari - x (-2 + 4) : (9 5) adalah... A. -4 B. - C. D. 4 - x (-2 + 4) : (9 5) = - x (-8) : (-6) = 24 : (-6) =
DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KABUPATEN BANDUNG BARAT UJI KOMPETENSI KENAIKAN KELAS TAHUN PELAJARAN 2010/2011. Mata Pelajaran : Matematika
INS PENIIKN PEMU N OLHRG KUPTEN NUNG RT UJI KOMPETENSI KENIKN KELS THUN PELJRN 2010/2011 Mata Pelajaran : Matematika Kelas : VIII Waktu : 120 menit Hari/tanggal :. Pilihan Ganda 1. entuk sederhana dari
SOAL-SOAL LATIHAN DIMENSI TIGA UJIAN NASIONAL
SOL-SOL LIN IMNSI I UJIN NSIONL Peserta didik memiliki kemampuan memahami konsep pada topik () Kedudukan dan jarak dari titik, garis, dan bidang, () esar sudut antara garis dan bidang serta antara ua idang.
