LINEAR QUADRATIC REGULATOR (LQR) UNTUK SISTEM DESKRIPTOR BERINDEKS SATU

Ukuran: px
Mulai penontonan dengan halaman:

Download "LINEAR QUADRATIC REGULATOR (LQR) UNTUK SISTEM DESKRIPTOR BERINDEKS SATU"

Transkripsi

1 LINEAR QUADRAIC REGULAOR (LQR) UNUK SISEM DESKRIPOR BERINDEKS SAU Muhammad Wakhid Mushoa Program Sudi Maemaika Universias Islam Negeri Sunan Kalijaga Yogyakara, Absrak Dalam makalah ini dikaji masalah Linear Quadraic Regulaor(LQR) pada inerval waku berhingga unuk sisem deskrirpor berindeks sau Berdasarkan prinsip minimum Ponryagin akan dikonsruksikan persamaan dierensial Riccai unuk masalah LQR ersebu yang berperan pening dalam penyelesaiannyaselanjunya, akan diurunkan eorema yang menyaakan keberadaan solusi masalah LQR pada sisem linear kuadraik Kaa kunci: linear quadraic regulaor, sisem deskripor berindeks sau, persamaan dierensial riccai Pendahuluan Desain kendali opimal pada suau sisem bekerja dengan ujuan mengendalikan sisem ersebu dengan biaya seminimal mungkin Dalam hal sisem disajikan dengan beberapa persamaan dierensial dan ungsi yang menyaakan biaya yang dikeluarkan oleh kendali dinyakaan dalam benuk ungsi kuadraik maka masalah kendali ersebu disebu kendali linear kuadraik Pada umumnya kendali didesain unuk membawa sae dari sisem yang dikendalikan menuju ke sae nol aaupun ke sebuah persekiaran yang sanga deka dengan nol Masalah ini disebu sebagai masalah regulaor Sehingga masalah Linear Quadraic Regulaor dapa dipandang sebagai masalah mencari kendali pada suau sisem linear yang akan meminimumkan biaya pengendalian yang disajikan dalam benuk ungsi kuadraik dengan ujuan pengendalian membawa sae dari sisem ersebu menuju ke sae nol aaupun ke sebuah persekiaran yang sanga deka dengan nol Masalah Linear Quadraic Regulaor merupakan bagian dari masalah kendali opimal yang paling banyak dikaji dan dikembangkan baik dari sisi pengembangan eori maupun aplikasinya Reerensi dari masalah ersebu unuk sisem nonsingular dapa diliha pada Bryson dan Ho (975), Lewis (995), Kirk (998) dan Viner () Makalah ini akan mengkaji desain kendali opimal pada masalah Linear Quadraic Regulaor unuk sisem deskripor berindeks sau Sisem deskripor adalah generalisasi dari sisem biasa (sisem nonsingular) Sisem ini memua persamaan dierensial dan sekaligus persamaan aljabar Banyak permasalahan yang disajikan dalam sisem ini, dianaranya adalah proses-proses kimia (Kumar dan Dauoidis 996), sisem sirkui lisrik (Newcomb 98, Newcomb dan Dziurla 989), sisem ekonomi (Luenberger 977), inerkoneksi anar sisem berskala besar (Luenberger dan Arbel 977, Singh dan Liu 973), sisem pada eknik mesin (Hemami dan Wyman 979), sisem pembangki daya (Sco 979) dan sisem robo (Mills dan Goldenberg 989) Muhammad Wakhid Mushoa

2 Makalah ini disajikan dengan runuan alur sebagai beriku Seelah pendahuluan, bagian kedua dari makalah ini menyajikan rumusan masalah yang akan diselesaikan, yaiu mencari kendali opimal pada masalah Linear Quadraic Regulaor unuk sisem deskripor berindeks sau Pada bagian ini juga dipaparkan ransormasi masalah Linear Quadraic Regulaor dari sisem deskripor ke sisem nonsingular Selanjunya pada bagian keiga akan dikonsruksikan persamaan dierensial Riccai yang dibuuhkan dalam mencari kendali opimal dengan memanaakan hasil ransormasi bada bagian sebelumnya Bagian keempa adalah bagian ini dari makalah ini Pada bagian ini disajikan eorema yang memberikan eksisensi solusi dari masalah Linear Quadraic Regulaor erakhir, bagian kelimamenyajikan conoh numerik yang menggambarkan aplikasi dari sebagian eori yang elah dipaparkan pada bagian-bagian sebelumnya Rumusan Masalah Ex Ax Bu, x x () dengan Diberikan sisem deskripor, R n r E A n r, rank E n, R n B r m Vekor u s adalah kendali yang diberikan oleh desainer kendali pada sisem () Masalah yang ingin diselesaikan dalam makalah ini adalah masalah Linear Quadraic Regulaor yaiu mendesain kendali u s pada sisem () yang akan meminimalkan ungsi ongkos kuadraik J u x Qx u Ru d x Q x, () dengan mariks-mariks Q, R dan Q adalah mariks simeri dan diasumsikan mariks R mempunyai invers Selanjunya dikarenakan kendali u s yang didesain meminimalkan ungsi ongkos () maka kendali u s disebu kendali opimal dan dilambangkan dengan u s Sisem () dikaakan regular jika de E A Sisem () mempunyai solusi unuk seiap nilai awal yang konsisen jika dan hanya jika sisem () regular (Dai 989) Jika sisem () regular maka berlaku eorema ransormasi benuk kanonik Weiersrass beriku eorema (Ganmacher, 959)Jika sisem deskripor () regular maka erdapa X X X Y Y Y sedemikian sehingga dua mariks nonsingular dan I n A Y EX N dan Y AX I (3) r dengan A adalah mariks dalam benuk Jordan yang elemen-elemennya nilai-nilai eigen dari A, I k adalah mariks idenias dan N adalah mariks nilpoen juga dalam benuk Jordan Jika sisem () regular, maka solusi dari sisem () berbenuk (Engwerda dan Salmah 9) Muhammad Wakhid Mushoa

3 x Xx X x dengan X X X, dan, X, Y Y Y J Js x e x e Y s ds n k i i d, i i x I X x, R n Y r n, X Jurnal Konvergensi, R n Y r n x N Y d nilai awal bagi persamaan di aas diberikan oleh k i i d Ir X x N Y i i d Bilangan k adalah deraja kenilpoenan mariks N Yaiu bilangan bula k dengan k k sia N and N Indeks dari sisem deskripor () dinyaakan dengan deraja kenilpoenan k dari mariks N Jika mariks E nonsingular maka dideinisikan sisem ersebu berindeks nol Selanjunya berdasarkan eorema di aas, dengan mendeinisikan variabel sae yang baru x x x R r, maka sisem () dapa diulis sebagai I x A x n : X Y Bu x I r x (4) aau x A x Y Bu, n x Ir Y Bu (6) Y Bu x, x x I X x (5) x R n dengan x dan X x Sedangkan ungsi ongkos () dapa diulis sebagai x J u x x X QX u Ru d x Q x x (7) Berdasarkan hubungan (6), ungsi ongkos (7) dapa disajikan sebagai Muhammad Wakhid Mushoa 3

4 X QX X QX Y B B Y X QX x J u x u B Y X QX Y B u u Ru d x Q x Q V x x u d x Q x u V R (8) Dengan demikian masalah LQR (,) ekuivalen dengan masalah LQR (5,8) 3 Persamaan Dierensial Riccai Pada bagian ini akan dikonsruksikan persamaan dierensial Riccai yang memegang peranan pening dalam menenukan eksisensi solusi dari masalah LQR (,) aau LQR (5,8) ransormasi masalah LQR sisem deskripor (,) ke dalam masalah LQR sisem nonsingular (5,8) yang elah berhasil dilakukan mengakibakan meode pengkonsruksian persamaan dierensial Riccai pada masalah LQR sisem deskripor dapa menggunakan meode pengkonsruksian persamaan dierensial Riccai pada masalah LQR sisem nonsingular Unuk kepeningan ersebu, dibenuk ungsi Hamilonian (Lewis 995) Q V x H x u A x Y Bu V R u x Qx u V x x Vu u Ru A x Y Bu (9) Berdasarkan prinsip maksimum Ponriagyn (Lewis 6) syara perlu penyelesaian opimal masalah di aas adalah i H x A x Y Bu ii H Qx Vu A, Q x x iii H V x Ru B Y aau u Ru V x B Y Dengan mengasumsikan mariks R mempunyai invers diperoleh u R V x B Y () 4 Muhammad Wakhid Mushoa

5 Selanjunya dideinisikan and cosae x A x Y Bu yang akan menghasilkan persamaansae Qx Vu A, Q x () Berikunya dengan menggunakan meode sweep akan dicari persamaan dierensial Riccai unuk masalah LQR (5,8) sebagai beriku Diasumsikan K x dengan K Q () (3) urunkan persamaan (3) erhadap variabel dihasilkan K x K x, (4) Subsiusikan persamaan () (3 )ke dalam persamaan (4) dihasilkan Qx V R V x B Y K x A K x K x K A x Y B R V x B Y K x, K Q Persamaan (5) dapa pula diulis sebagai K x A K x K A x K Y Bx Vx R K Y B V R B Y K V Q, K Q B Y K x V x Qx, K Q Dikarenakan persamaan (6) berlaku unuk semua nilai awal K A K K A (5) (6) x maka diperoleh Persamaan (7) adalah persamaan dierensial Riccai yang diurunkan dari syara perlu penyelesaian opimal masalahlqr (5,8) 3 Eksisensi Solusi Seelah berhasil dikonsruksikan persamaan dierensial Riccai pada masalah LQR, beriku disajikan eorema eksisensi solusi dari masalah LQR (,) yang ekuivalen dengan (5,8) eorema Diberikan masalah Linear Quadraic Regulaor (,) yang ekuivalen dengan (5,8) Masalah ersebu mempunyai solusi unuk seiap nilai awal x jika dan hanya jika persamaan dierensial Riccai (7) mempunyai solusi simeri K (7) pada Muhammad Wakhid Mushoa 5

6 , Jika masalah LQR ersebu mempunyai solusi maka solusi ersebu adalah unggal dan kendali opimal eedback ersebu berbenuk u R V x B Y K x (8) Dalam srukur lingkar erbuka, benuk kendali (8) adalah u R V x B Y K, x (9) dengan mariks memenuhi persamaan ransisi, A Y BR V B Y K,,, I Lebih lanju, nilai opimal yang diberikan oleh kendali opimal J u x K x u adalah () Pembukikan dari eorema di aas dilakukan dengan beberapa langkah beriku Perama, akan diunjukkan bahwa jika persamaan dierensial Riccai (7) mempunyai solusi simeri maka masalah LQR (,) aau (5,8) mempunyai solusi pada, Buki eorema, bagian Menggunakan hubungan d x K x d x K x x K x, d maka ungsi ongkos (8) dapa diulis sebagai Q V x d u d V R J u x u d x K x d x K x x Q K x Q V x d J u x u x K x d u d V R x K x x Q K x Kemudian, dengan menggunakan persamaan (5) dan (7), inegrand dari persamaan di aas dapa diulis sebagai (keerganungan erhadap waku dihilangkan) Q V x d x u x Kx u R V x B Y Kx R u R V x B Y Kx V R u d Akibanya, ungsi ongkos (8) dapa disajikan dengan persamaan 6 Muhammad Wakhid Mushoa

7 J u R V x B Y Kx R u R V x B Y Kx x K x Berdasarkan persamaan di aas didapa J x K x kesamaan akan erjadi jika u dipilih pada persamaan (8) Jurnal Konvergensi unuk semua u dan Unuk membukikan arah sebaliknya dari eorema di aas, diasumsikan bahwa masalah LQR (,) aau (5,8) mempunyai solusi rayekori dari sae yang dihasilkan oleh kendali dari ongkos minimum yang dihasilkan oleh kendali diunjukkan bahwa jika, nilai minimum, u dengan x, u dan u adalah J x adalah nilai Selanjunya akan J x ada unuk sembarang nilai awal maka erdapa J x dari masalah opimisasi Q V x u V R () J u x u d x Q x dengan kendala sisem dinamik x s A x s Y Bu s x x (), Kemudian dengan mengasumsikan bahwa erdapa nilai inimum yang dinyaakan in dengan, in, J x maka dipenuhi J x x P x (3) dengan anpa mengurangi keumuman diasumsikan P adalah mariks simeri Hal di aas akan diunjukkan dengan menggunakan banuan beberapa lemma beriku Lemma (Molinari, 975) Jika suau ungsi V memenuhi idenias parallelogram, V x y V x y V x V y, unuk semua x, y (4) dan unuk seiap y, ungsi W x, y : V x y V x y mempunyai sia, ungsi koninu dalam pada saa (5) Maka kuadraik W x y adalah V x adalah berbenuk in Lemma beriku berguna unuk menunjukkan bahwa, idenias parallelogram (4) Lemma (Engwerda, 5) J x memenuhi Muhammad Wakhid Mushoa 7

8 in in Jika J, x ada maka J, x in in,, J x J x juga ada dan Berdasarkan Lemma di aas dihasilkan akiba beriku Akiba Diasumsikan erdapa nilai inimum pada persamaan () unuk seiap nilai awal Maka, erdapa mariks simeri P sedemikian sehingga in J, x x P x Berdasarkan lemma-lemma dan akiba di aas dapa dikonsruksikan buki arah kanan dari eorema sebagai beriku Buki eorema, bagian Diberikan persamaan dierensial Riccai (7) Berdasarkan eorema undamenal eksisensi dan keunggalan solusi persamaan dierensial erdapa inerval waku maksimal, dengan persamaan dierensial Riccai (7) mempunyai solusi unggal Diasumsikan Dari eorema bagian didapa bahwa pada inerval waku, masalah opimisasi (,) mempunyai solusi yang merupakan solusi minimum Solusi minimum ersebu adalah Dikarenakan hal ini berlaku unuk sembarang nilai awal disimpulkan bahwa P K P erbaas pada x x P x x maka dapa pada inerval waku, Namun dikarenakan K juga harus erbaas pada, maka demikian juga, Hal ini berakiba bahwa persamaan dierensial Riccai (7) juga mempunyai solusi pada suau inerval waku, unuk Sehingga keberadaan inerval, bukanlah inerval yang maksimal Hal ini menunjukkan pengasumsian idaklah epa dan harusnya 4 Conoh Numerik Diberikan masalah Linear Quadraic Regulaor Ex Ax Bu, x x (6) J u x Qx u Ru d x Q x, (7) 8 Muhammad Wakhid Mushoa

9 dengan E, A, B, Q Q, x Menggunakan ransormasi benuk kanonik Weiersrass, dapa dicari mariks nonsingular Y dan X sedemikian sehingga masalah LQR (6,7) ekuivalen dengan x A x Y Bu, x In X x (8) Q V x J u x u d x Q x u V R (9) Q V dengan X Y, X Y, A, V R 3 Subsiusikan mariks-mariks di aas ke dalam persamaan (7) menghasilkan persamaan dierensial Riccai 7 3, K K K K yang mempunyai solusi, R dan K (3) Selanjunya, dengan menggunakan persamaan (8) didapa benuk kendali opimal eedback bagi masalah di aas adalah 55 dan rayekori opimal x diberikan oleh 7 u e x e 7 4 x Gambar kendali opimal u Gambar rayekori opimal Gambar mengilusrasikan kendali opimal yang dilakukan unuk meminimalkan ungsi ongkos (9) erhadap sisem (8), sedangkan Gambar menyaakan Muhammad Wakhid Mushoa 9

10 rayekori opimal pada sisem (8) jika menggunakan kendali u unuk mencapai nilai opimal 5 Kesimpulan Dalam makalah ini elah dikaji konsep Linear Quadraic Regulaor (LQR) unuk sisem deskripor berindeks sau Dengan menggunakan benuk kanonik Weiersrass, masalah LQR unuk sisem deskripor dapa dibawa ke dalam benuk LQR sisem nonsingular Hal ersebu mengakibakan persamaan dierensial Riccai yang memegang peranan pening dalam mencari eksisensi solusi masalah LQR ersebu dapa dikonsruksikan menggunakan meode pada sisem nonsingular Selanjunya elah dibukikan pula eorema yang menjamin eksisensi solusi dari permasalahan ersebu Conoh numerik sederhana yang menggambarkan penggunaan eorema yang elah dikonsruksikan elah pula disajikan di akhir makalah ini Namun demikian kajian dalam makalah ini masih erbaas pada sisem deskripor yang berindeks sau Sehingga pengembangan masalah LQR unuk sisem deskripor berorde inggi merupakan obyek peneliian yang masih harus dikaji lebih lanju Muhammad Wakhid Mushoa

11 6 Daar Pusaka [] Bryson, AE dan Ho, Y-C, (975) Applied Opimal Conrol, aylor and Francis, New York [] Dai, L (989) Singular Conrol Sysems, Springer-Verlag, Berlin [3] Engwerda, JC(5) Linear Quadraic Dynamic Opimizaion and Dierenial Games, John Wiley & Sons, Wes Sussex [4] Engwerda, JC dan Salmah, (9) he Open-Loop Linear Quadraic Dierenial Game or Index One Descripor Sysems, Auomaica, vol 45, pp [5] Ganmacher, F, (959) heory o Marices, Chelsea Publishing Company, New York [6] Hemami, H dan Wyman, B F (979) Modeling and Conrol o Consrained Dynamic Sysems wih Applicaion o Biped Locomoion in he Fronal Plane, IEEE ransacions on Auomaic Conrol, vol 4, [7] Kirk, DE, (998), Opimal Conrol heory: An Inroducion, Dover Publicaions, New York [8] Kumar, A dandaouidis, P (996) Sae-Space Realizaions o Linear Dierenial Algebraic-Equaion Sysems wih Conrol-Dependen Sae Space, IEEE ransacions on Auomaic Conrol, vol 4, [9] Lewis, A D he Maximum Principle o Ponryaginin Conrol and in Opimal Conrol, caaan kuliah, ersedia dihp://wwwmasqueensuca/~andrew/ [] Lewis, FL dan Syrmos, VL, (995), Opimal Conrol, John Wiley and Sons, New York [] Luenberger, D G, (977) Dynamic Equaion in Descripor Form, IEEE ransacion on Auomaic Conrol, vol, 3 3 [] Luenberger, D G danarbel (977) Singular Dynamic Leonie sysems, Economerica, vol 45, [3] Mills, J K dan Goldenberg, A A, (989) Force and Posiion Conrol o Manipulaors During Consrained Moion asks, IEEE ransacions on Roboics and Auomaion, vol 5, 3 46 [4] Molinari, BP (977) Solving Polynomial Sisem Using Coninuaion or Scieniic and Engineering Problems, Prenice-Hall, New Jersey [5] Newcomb, R W (98) he Semisae Descripion o Nonlinear ime- Variable Circuis, IEEE ransacions on Circuis Sysems, vol vol 8, 6 7 [6] Newcomb, R W dan Dziurla, B (989) Some Circuis and Sysems Applicaions o Semisae heory, Circuis Sysems Signal Processes, vol 8, 35 6 [7] Singh, S dan Liu, R W (973) Exisence o Sae Equaion Represenaion o Linear Large-Scale Dynamical Sysems, IEEE ransacion Circuis Sysems, vol, [8] Sco, B, (979) Power sysem Dynamic Response Calculaions, IEEE Proceeding, vol 67, 9 47 [9] Viner, RB, () Opimal Conrol, Birkhauser, Boson Muhammad Wakhid Mushoa

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA PENDUGAAN PARAMEER DERE WAKU HIDDEN MARKOV SAU WAKU SEBELUMNYA BERLIAN SEIAWAY DAN DIMAS HARI SANOSO Deparemen Maemaika Fakulas Maemaika dan Ilmu Pengeahuan Alam Insiu Peranian Bogor Jl Merani, Kampus

Lebih terperinci

PEMODELAN NILAI TUKAR RUPIAH TERHADAP $US MENGGUNAKAN DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA 1. PENDAHULUAN

PEMODELAN NILAI TUKAR RUPIAH TERHADAP $US MENGGUNAKAN DERET WAKTU HIDDEN MARKOV SATU WAKTU SEBELUMNYA 1. PENDAHULUAN PEMODELAN NILAI UKAR RUPIAH ERHADAP $US MENGGUNAKAN DERE WAKU HIDDEN MARKOV SAU WAKU SEBELUMNYA BERLIAN SEIAWAY, DIMAS HARI SANOSO, N. K. KUHA ARDANA Deparemen Maemaika Fakulas Maemaika dan Ilmu Pengeahuan

Lebih terperinci

MEMBAWA MATRIKS KE DALAM BENTUK KANONIK JORDAN. Irmawati Liliana. KD Program Studi Pendidikan Matematika FKIP Unswagati

MEMBAWA MATRIKS KE DALAM BENTUK KANONIK JORDAN. Irmawati Liliana. KD Program Studi Pendidikan Matematika FKIP Unswagati Jurnal Euclid, vol., No., p.568 MEMBW MTRIKS KE DLM BENTUK KNONIK JORDN Irmawai Liliana. KD Program Sudi Pendidikan Maemaika FKIP Unswagai [email protected] bsrak Benuk kanonik Jordan erbenuk apabila

Lebih terperinci

Penyelesaian Persamaan Diferensial Hill Dengan Menggunakan Teori Floquet

Penyelesaian Persamaan Diferensial Hill Dengan Menggunakan Teori Floquet JURNAL FOURIER Okober 6, Vol. 5, No., 67-8 ISSN 5-763X; E-ISSN 54-539 Penyelesaian Persamaan Diferensial Hill Dengan Menggunakan eori Floque Syarifah Inayai Program Sudi Maemaika, Fakulas Maemaika dan

Lebih terperinci

RANK DARI MATRIKS ATAS RING

RANK DARI MATRIKS ATAS RING Dela-Pi: Jurnal Maemaika dan Pendidikan Maemaika ISSN 089-855X ANK DAI MATIKS ATAS ING Ida Kurnia Waliyani Program Sudi Pendidikan Maemaika Jurusan Pendidikan Maemaika dan Ilmu Pengeahuan Alam FKIP Universias

Lebih terperinci

III. PEMODELAN HARGA PENGGUNAAN INTERNET

III. PEMODELAN HARGA PENGGUNAAN INTERNET 8 III EMODELAN HARGA ENGGUNAAN INTERNET 3 Asumsi dan Model ada peneliian ini diperhaikan beberapa asumsi yaiu sebagai beriku: Waku anarkedaangan menyebar eksponensial dengan raaan λ - (laju kedaangan adalah

Lebih terperinci

PENGGUNAAN KONSEP FUNGSI CONVEX UNTUK MENENTUKAN SENSITIVITAS HARGA OBLIGASI

PENGGUNAAN KONSEP FUNGSI CONVEX UNTUK MENENTUKAN SENSITIVITAS HARGA OBLIGASI PENGGUNAAN ONSEP FUNGSI CONVEX UNU MENENUAN SENSIIVIAS HARGA OBLIGASI 1 Zelmi Widyanuara, 2 Ei urniai, Dra., M.Si., 3 Icih Sukarsih, S.Si., M.Si. Maemaika, Universias Islam Bandung, Jl. amansari No.1 Bandung

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Laar Belakang Masalah persediaan merupakan masalah yang sanga pening dalam perusahaan. Persediaan mempunyai pengaruh besar erhadap kegiaan produksi. Masalah persediaan dapa diaasi

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t TKE 305 ISYARAT DAN SISTEM B a b I s y a r a Indah Susilawai, S.T., M.Eng. Program Sudi Teknik Elekro Fakulas Teknik dan Ilmu Kompuer Universias Mercu Buana Yogyakara 009 BAB I I S Y A R A T Tujuan Insruksional.

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang BAB 2 TINJAUAN TEORITIS 2.1 Pengerian dan Manfaa Peramalan Kegiaan unuk mempeirakan apa yang akan erjadi pada masa yang akan daang disebu peramalan (forecasing). Sedangkan ramalan adalah suau kondisi yang

Lebih terperinci

Aljabar C* dan Mekanika Kuantum 1

Aljabar C* dan Mekanika Kuantum 1 Aljabar C* dan Mekanika Kuanum 1 Oleh: Rizky Rosjanuardi [email protected] Jurusan Pendidikan Maemaika FPMIPA Universias Pendidikan Indonesia Absrak Pada makalah ini dibahas konsep aljabar-c* dan kaiannya

Lebih terperinci

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND Noeryani 1, Ely Okafiani 2, Fera Andriyani 3 1,2,3) Jurusan maemaika, Fakulas Sains Terapan, Insiu Sains & Teknologi

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun 43 BAB METODE PEMUUAN EKPONENA TRPE DAR WNTER Meode pemulusan eksponensial elah digunakan selama beberapa ahun sebagai suau meode yang sanga berguna pada begiu banyak siuasi peramalan Pada ahun 957 C C

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 11 BAB I PENDAHULUAN 1.1 Laar Belakang Salah sau masalah analisis persediaan adalah kesulian dalam menenukan reorder poin (iik pemesanan kembali). Reorder poin diperlukan unuk mencegah erjadinya kehabisan

Lebih terperinci

SOLUSI-SOLUSI PERIODIK PADA PERLUASAN FRACTIONAL VAN-DER POL TAK LINEAR

SOLUSI-SOLUSI PERIODIK PADA PERLUASAN FRACTIONAL VAN-DER POL TAK LINEAR Jurnal Maemaika Vol. 8, No., Desember 5: 7-77 SOLUSI-SOLUSI PERIODIK PADA PERLUASAN FRACTIONAL VAN-DER POL TAK LINEAR S. B. Waluya Jurusan Maemaika FMIPA Universias Negeri Semarang [email protected]

Lebih terperinci

PEMODELAN NILAI TUKAR RUPIAH TERHADAP $US MENGGUNAKAN DERET WAKTU HIDDEN MARKOV HAMILTON*

PEMODELAN NILAI TUKAR RUPIAH TERHADAP $US MENGGUNAKAN DERET WAKTU HIDDEN MARKOV HAMILTON* PEMODELAN NILAI TUKAR RUPIAH TERHADAP $US MENGGUNAKAN DERET WAKTU HIDDEN MARKOV HAMILTON* BERLIAN SETIAWATY DAN HIRASAWA Deparemen Maemaika Fakulas Maemaika dan Ilmu Pengeahuan Alam Insiu Peranian Bogor

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. A. Permasalahan Nyata Penyebaran Penyakit Tuberculosis

BAB III HASIL DAN PEMBAHASAN. A. Permasalahan Nyata Penyebaran Penyakit Tuberculosis BAB III HASIL DAN PEMBAHASAN A. Permasalahan Nyaa Penyebaran Penyaki Tuberculosis Tuberculosis merupakan salah sau penyaki menular yang disebabkan oleh bakeri Mycobacerium Tuberculosis. Penularan penyaki

Lebih terperinci

LIMIT FUNGSI. 0,9 2,9 0,95 2,95 0,99 2,99 1 Tidak terdefinisi 1,01 3,01 1,05 3,05 1,1 3,1 Gambar 1

LIMIT FUNGSI. 0,9 2,9 0,95 2,95 0,99 2,99 1 Tidak terdefinisi 1,01 3,01 1,05 3,05 1,1 3,1 Gambar 1 LIMIT FUNGSI. Limi f unuk c Tinjau sebuah fungsi f, apakah fungsi f ersebu sama dengan fungsi g -? Daerah asal dari fungsi g adalah semua bilangan real, sedangkan daerah asal fungsi f adalah bilangan real

Lebih terperinci

Drs. H. Karso, M.M.Pd. Modul 11 NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI METRIKS

Drs. H. Karso, M.M.Pd. Modul 11 NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI METRIKS Drs. H. Karso, M.M.Pd. Modul NILAI EIGEN, VEKTOR EIGEN DAN DIAGONALISASI METRIKS Pendahuluan Modul yang ke- dari maa kuliah Aljabar Linear ini akan mendiskusikan beberapa konsep yang berguna bagi kia sebagai

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 39 III. METODE PENELITIAN 3.1 Waku dan Meode Peneliian Pada bab sebelumnya elah dibahas bahwa cadangan adalah sejumlah uang yang harus disediakan oleh pihak perusahaan asuransi dalam waku peranggungan

Lebih terperinci

BAB IV NILAI EIGEN DAN VEKTOR EIGEN. Bab ini membahas suatu vektor tidak nol x dan skalar l yang mempunyai

BAB IV NILAI EIGEN DAN VEKTOR EIGEN. Bab ini membahas suatu vektor tidak nol x dan skalar l yang mempunyai BAB IV NILAI EIGEN DAN VEKTOR EIGEN Bab ini membahas suau vekor idak nol dan skalar l yang mempunyai hubungan erenu dengan suau mariks A. Hubungan ersebu dinyaakan dalam benuk A λ. Bagaimana kia memperoleh

Lebih terperinci

x 4 x 3 x 2 x 5 O x 1 1 Posisi, perpindahan, jarak x 1 t 5 t 4 t 3 t 2 t 1 FI1101 Fisika Dasar IA Pekan #1: Kinematika Satu Dimensi Dr.

x 4 x 3 x 2 x 5 O x 1 1 Posisi, perpindahan, jarak x 1 t 5 t 4 t 3 t 2 t 1 FI1101 Fisika Dasar IA Pekan #1: Kinematika Satu Dimensi Dr. Pekan #1: Kinemaika Sau Dimensi 1 Posisi, perpindahan, jarak Tinjau suau benda yang bergerak lurus pada suau arah erenu. Misalnya, ada sebuah mobil yang dapa bergerak maju aau mundur pada suau jalan lurus.

Lebih terperinci

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1 PERSAMAAN GERAK Posisi iik maeri dapa dinyaakan dengan sebuah VEKTOR, baik pada suau bidang daar maupun dalam bidang ruang. Vekor yang dipergunakan unuk menenukan posisi disebu VEKTOR POSISI yang diulis

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan BAB II LADASA TEORI 2.1 Pengerian peramalan (Forecasing) Peramalan (Forecasing) adalah suau kegiaan yang mengesimasi apa yang akan erjadi pada masa yang akan daang dengan waku yang relaif lama (Assauri,

Lebih terperinci

SEBARAN STASIONER PADA SISTEM BONUS-MALUS SWISS SERTA MODIFIKASINYA (Cherry Galatia Ballangan)

SEBARAN STASIONER PADA SISTEM BONUS-MALUS SWISS SERTA MODIFIKASINYA (Cherry Galatia Ballangan) SEBARAN STASIONER PADA SISTEM BONUS-MALUS SWISS SERTA MODIFIKASINYA (Cherry Galaia Ballangan) SEBARAN STASIONER PADA SISTEM BONUS-MALUS SWISS SERTA MODIFIKASINYA (Saionary Disribuion of Swiss Bonus-Malus

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Silabus : Aljabar Linear Elemener MA SKS Bab I Mariks dan Operasinya Bab II Deerminan Mariks Bab III Sisem Persamaan Linear Bab IV Vekor di Bidang dan di Ruang Bab V Ruang Vekor Bab VI Ruang Hasil Kali

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryano Sudirham Sudi Mandiri Inegral dan Persamaan Diferensial ii Darpublic 4.1. Pengerian BAB 4 Persamaan Diferensial (Orde Sau) Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih

Lebih terperinci

KOINTEGRASI DAN ESTIMASI ECM PADA DATA TIME SERIES. Abstrak

KOINTEGRASI DAN ESTIMASI ECM PADA DATA TIME SERIES. Abstrak KOINTEGRASI DAN ESTIMASI ECM PADA DATA TIME SERIES Universias Muhammadiyah Purwokero [email protected] Absrak Pada persamaan regresi linier sederhana dimana variabel dependen dan variabel independen

Lebih terperinci

KENDALI OPTIMAL PADA PENGADAAN BAHAN MENTAH DENGAN KEBIJAKAN PENGADAAN TEPAT WAKTU, PERGUDANGAN, DAN PENUNDAAN. Oleh: Darsih Idayani

KENDALI OPTIMAL PADA PENGADAAN BAHAN MENTAH DENGAN KEBIJAKAN PENGADAAN TEPAT WAKTU, PERGUDANGAN, DAN PENUNDAAN. Oleh: Darsih Idayani KENDALI OPTIMAL PADA PENGADAAN BAHAN MENTAH DENGAN KEBIJAKAN PENGADAAN TEPAT WAKTU, PERGUDANGAN, DAN PENUNDAAN Oleh: Darsih Idayani 126 1 4 Dosen Pembimbing: Subchan, Ph.D Jurusan Maemaika Fakulas Maemaika

Lebih terperinci

BAB KINEMATIKA DENGAN ANALISIS VEKTOR

BAB KINEMATIKA DENGAN ANALISIS VEKTOR BAB KINEMATIKA DENGAN ANALISIS VEKTOR Karakerisik gerak pada bidang melibakan analisis vekor dua dimensi, dimana vekor posisi, perpindahan, kecepaan, dan percepaan dinyaakan dalam suau vekor sauan i (sumbu

Lebih terperinci

BAB 2 KINEMATIKA. A. Posisi, Jarak, dan Perpindahan

BAB 2 KINEMATIKA. A. Posisi, Jarak, dan Perpindahan BAB 2 KINEMATIKA Tujuan Pembelajaran 1. Menjelaskan perbedaan jarak dengan perpindahan, dan kelajuan dengan kecepaan 2. Menyelidiki hubungan posisi, kecepaan, dan percepaan erhadap waku pada gerak lurus

Lebih terperinci

KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL. Sudarno Staf Pengajar Program Studi Statistika FMIPA UNDIP

KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL. Sudarno Staf Pengajar Program Studi Statistika FMIPA UNDIP Karakerisik Umur Produk (Sudarno) KARAKTERISTIK UMUR PRODUK PADA MODEL WEIBULL Sudarno Saf Pengajar Program Sudi Saisika FMIPA UNDIP Absrac Long life of produc can reflec is qualiy. Generally, good producs

Lebih terperinci

FIsika KTSP & K-13 KINEMATIKA. K e l a s A. VEKTOR POSISI

FIsika KTSP & K-13 KINEMATIKA. K e l a s A. VEKTOR POSISI KTSP & K-13 FIsika K e l a s XI KINEMATIKA Tujuan Pembelajaran Seelah mempelajari maeri ini, kamu diharapkan mampu menjelaskan hubungan anara vekor posisi, vekor kecepaan, dan vekor percepaan unuk gerak

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 8 VEKTOR DAN NILAI EIGEN /5/7 9.9 Beberapa Aplikasi Ruang Eigen Uji Kesabilan dalam sisem dinamik Opimasi dengan SVD pada pengolahan Cira Sisem Transmisi dan lain-lain.

Lebih terperinci

KAJIAN PEMODELAN DERET WAKTU: METODE VARIASI KALENDER YANG DIPENGARUHI OLEH EFEK VARIASI LIBURAN

KAJIAN PEMODELAN DERET WAKTU: METODE VARIASI KALENDER YANG DIPENGARUHI OLEH EFEK VARIASI LIBURAN JMP : Volume 4 omor, Juni 22, hal. 35-46 KAJIA PEMODELA DERET WAKTU: METODE VARIASI KALEDER YAG DIPEGARUHI OLEH EFEK VARIASI LIBURA Winda Triyani Universias Jenderal Soedirman [email protected] Rina

Lebih terperinci

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun Pemodelan Daa Runun Waku : Kasus Daa Tingka Pengangguran di Amerika Serika pada Tahun 948 978. Adi Seiawan Program Sudi Maemaika, Fakulas Sains dan Maemaika Universias Krisen Saya Wacana, Jl. Diponegoro

Lebih terperinci

BAB 7 NILAI EIGEN DAN VEKTOR EIGEN. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 7 NILAI EIGEN DAN VEKTOR EIGEN. Dr. Ir. Abdul Wahid Surhim, MT. BAB 7 NILAI EIGEN DAN VEKTOR EIGEN Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN. Nilai Eigen dan Vekor Eigen. Diagonalisasi. Diagonalisasi secara Orogonal 7. NILAI EIGEN DAN VEKTOR EIGEN Definisi

Lebih terperinci

Kontrol Optimal pada Model Economic Order Quantity dengan Inisiatif Tim Penjualan

Kontrol Optimal pada Model Economic Order Quantity dengan Inisiatif Tim Penjualan Jurnal Teknik Indusri, Vol. 19, No. 1, Juni 17, 1- ISSN 111-5 prin / ISSN 7-739 online DOI: 1.97/ji.19.1.1- Konrol Opimal pada Model Economic Order Quaniy Inisiaif Tim Penjualan Abdul Laif Al Fauzi 1*,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Laar Belakang Masalah Dalam sisem perekonomian suau perusahaan, ingka perumbuhan ekonomi sanga mempengaruhi kemajuan perusahaan pada masa yang akan daang. Pendapaan dan invesasi merupakan

Lebih terperinci

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan BAB 2 URAIAN EORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan memperkirakan aau memprediksi apa yang erjadi pada waku yang akan daang, sedangkan rencana merupakan penenuan apa yang akan dilakukan

Lebih terperinci

PENGENDALIAN CHAOS MENGGUNAKAN SLIDING MODE CONTROL (SMC) PADA SISTEM PERSAMAAN RӦSSLER YANG TERMODIFIKASI

PENGENDALIAN CHAOS MENGGUNAKAN SLIDING MODE CONTROL (SMC) PADA SISTEM PERSAMAAN RӦSSLER YANG TERMODIFIKASI PENGENDALIAN CHAOS MENGGUNAKAN SLIDING MODE CONTROL (SMC) PADA SISTEM PERSAMAAN RӦSSLER YANG TERMODIFIKASI Muhammad Hajarul Asad Moh. Isa Iraan Mardlijah 3 E-mail : [email protected] [email protected] [email protected]

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode Peramalan merupakan bagian dari ilmu Statistika. Salah satu metode

BAB 2 LANDASAN TEORI. Metode Peramalan merupakan bagian dari ilmu Statistika. Salah satu metode 20 BAB 2 LADASA TEORI 2.1. Pengerian Peramalan Meode Peramalan merupakan bagian dari ilmu Saisika. Salah sau meode peramalan adalah dere waku. Meode ini disebu sebagai meode peramalan dere waku karena

Lebih terperinci

1.4 Persamaan Schrodinger Bergantung Waktu

1.4 Persamaan Schrodinger Bergantung Waktu .4 Persamaan Schrodinger Berganung Waku Mekanika klasik aau mekanika Newon sanga sukses dalam mendeskripsi gerak makroskopis, eapi gagal dalam mendeskripsi gerak mikroskopis. Gerak mikroskopis membuuhkan

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan BAB 2 LANDASAN TEORI 2.1. Produksi Produksi padi merupakan suau hasil bercocok anam yang dilakukan dengan penanaman bibi padi dan perawaan sera pemupukan secara eraur sehingga menghasilkan suau produksi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Laar Belakang Pada dasarnya peramalan adalah merupakan suau dugaan aau perkiraan enang erjadinya suau keadaan di masa depan. Akan eapi dengan menggunakan meodemeode erenu peramalan

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN EMBAHASAN 4.1 Karakerisik dan Obyek eneliian Secara garis besar profil daa merupakan daa sekunder di peroleh dari pusa daa saisik bursa efek Indonesia yang elah di publikasi, daa di

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: ( Print) D-108

JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: ( Print) D-108 JURNAL TEKNIK POMITS Vol., No., (013) ISSN: 337-3539 (301-971 Prin) D-108 Simulasi Peredaman Gearan Mesin Roasi Menggunakan Dynamic Vibraion Absorber () Yudhkarisma Firi, dan Yerri Susaio Jurusan Teknik

Lebih terperinci

PENJADWALAN PEMBUATAN BOX ALUMININUM UNTUK MEMINIMUMKAN MAKESPAN (Studi Kasus di Perusahaan Karoseri ASN)

PENJADWALAN PEMBUATAN BOX ALUMININUM UNTUK MEMINIMUMKAN MAKESPAN (Studi Kasus di Perusahaan Karoseri ASN) B PENJADWALAN PEMBUATAN BOX ALUMININUM UNTUK MEMINIMUMKAN MAKESPAN (Sudi Kasus di Perusahaan Karoseri ASN) Firiya Gemala Dewi, Bobby O.P. Soepangka, Nurhadi Siswano Program Pasca Sarjana Magiser Manajemen

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengerian Peramalan Peramalan (forecasing) adalah suau kegiaan yang memperkirakan apa yang akan erjadi pada masa yang akan daang. Meode peramalan merupakan cara unuk memperkirakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jenis dan Pendekaan Peneliian Jenis peneliian yang digunakan dalam peneliian ini adalah peneliian evaluasi dan pendekaannya menggunakan pendekaan kualiaif non inerakif (non

Lebih terperinci

SIMULASI PERGERAKAN TINGKAT BUNGA BERDASARKAN MODEL VASICEK

SIMULASI PERGERAKAN TINGKAT BUNGA BERDASARKAN MODEL VASICEK Jurnal Maemaika Murni dan Terapan εpsilon Vol.9 No.2 (215) Hal. 15-24 SIMULASI PEGEAKAN TINGKAT BUNGA BEDASAKAN MODEL VASICEK Shanika Marha, Dadan Kusnandar, Naomi N. Debaaraja Fakulas MIPA Universias

Lebih terperinci

HUMAN CAPITAL. Minggu 16

HUMAN CAPITAL. Minggu 16 HUMAN CAPITAL Minggu 16 Pendahuluan Invesasi berujuan unuk meningkakan pendapaan di masa yang akan daang. Keika sebuah perusahaan melakukan invesasi barang-barang modal, perusahaan ini akan mengeluarkan

Lebih terperinci

MODEL OPTIMASI PENGGANTIAN MESIN PEMECAH KULIT BERAS MENGGUNAKAN PEMROGRAMAN DINAMIS (PABRIK BERAS DO A SEPUH)

MODEL OPTIMASI PENGGANTIAN MESIN PEMECAH KULIT BERAS MENGGUNAKAN PEMROGRAMAN DINAMIS (PABRIK BERAS DO A SEPUH) Journal Indusrial Servicess Vol. No. Okober 0 MODEL OPTIMASI PENGGANTIAN MESIN PEMECAH KULIT BERAS MENGGUNAKAN PEMROGRAMAN DINAMIS (PABRIK BERAS DO A SEPUH) Abdul Gopar ) Program Sudi Teknik Indusri Universias

Lebih terperinci

Distribusi Normal Multivariat

Distribusi Normal Multivariat Vol.4, No., 43-48, Januari 08 Disribusi Normal Mulivaria Husy Serviana Husain Absrak Pada engendalian roses univaria berdasarkan variabel, biasanya digunakan model disribusi normal unuk mengamai kualias

Lebih terperinci

BAB II PERTIDAKSAMAAN CHERNOFF

BAB II PERTIDAKSAMAAN CHERNOFF BAB II PERTIDAKSAMAAN CHERNOFF.1 Pendahuluan Di lapangan, yang menjadi perhaian umumnya adalah besar peluang dari peubah acak pada beberapa nilai aau suau selang, misalkan P(a

Lebih terperinci

Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Amalgamasi

Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Amalgamasi Bilangan Dominasi Jarak Dua Pada Graf Hasil Operasi Amalgamasi Ilham Saifudin ) ) Jurusan Teknik Informaika, Fakulas Teknik, Universias Muhammadiyah Jember Jl. Karimaa No. 49 Jember Kode Pos 68 Email :

Lebih terperinci

BAB 1 PENDAHULUAN. Dalam pelaksanaan pembangunan saat ini, ilmu statistik memegang peranan penting

BAB 1 PENDAHULUAN. Dalam pelaksanaan pembangunan saat ini, ilmu statistik memegang peranan penting BAB 1 PENDAHULUAN 1.1. Laar Belakang Dalam pelaksanaan pembangunan saa ini, ilmu saisik memegang peranan pening baik iu di dalam pekerjaan maupun pada kehidupan sehari-hari. Ilmu saisik sekarang elah melaju

Lebih terperinci

PELATIHAN STOCK ASSESSMENT

PELATIHAN STOCK ASSESSMENT PELATIHA STOCK ASSESSMET Modul 5 PERTUMBUHA Mennofaria Boer Kiagus Abdul Aziz Maeri Pelaihan Sock Assessmen Donggala, 1-14 Sepember 27 DIAS PERIKAA DA KELAUTA KABUPATE DOGGALA bekerjasama dengan PKSPL

Lebih terperinci

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV HAMILTON *

PENDUGAAN PARAMETER DERET WAKTU HIDDEN MARKOV HAMILTON * PENDUGAAN PARAMEER DERE WAKU HIDDEN MARKOV HAMILON * BERLIAN SEIAWAY, YANA ADHARINI DAN HIRASAWA Deparemen Maemaika Fakulas Maemaika dan Ilmu Pengeahuan Alam Insiu Peranian Bogor Jl Merani, Kampus IPB

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Laar Belakang Perumbuhan ekonomi merupakan salah sau ukuran dari hasil pembangunan yang dilaksanakan khususnya dalam bidang ekonomi. Perumbuhan ersebu merupakan rangkuman laju-laju

Lebih terperinci

BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Adapun bentuk yang sederhana dari suatu persamaan diferensial orde satu adalah: di dt

BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Adapun bentuk yang sederhana dari suatu persamaan diferensial orde satu adalah: di dt BAB ESPONS FUNGSI STEP PADA ANGKAIAN DAN C. Persamaan Diferensial Orde Sau Adapun benuk yang sederhana dari suau persamaan ferensial orde sau adalah: 0 a.i a 0 (.) mana a o dan a konsana. Persamaan (.)

Lebih terperinci

PEMODELAN PRODUKSI SEKTOR PERTANIAN

PEMODELAN PRODUKSI SEKTOR PERTANIAN Seminar Nasional Saisika IX Insiu Teknologi Sepuluh Nopember, 7 November 2009 PEMODELAN PRODUKSI SEKTOR PERTANIAN Brodjol Suijo Jurusan Saisika ITS Surabaya ABSTRAK Pada umumnya daa ekonomi bersifa ime

Lebih terperinci

PELABELAN TOTAL (a, d)-sisi ANTIAJAIB SUPER PADA K 1,m K 1,n untuk d = 1 atau d = 2

PELABELAN TOTAL (a, d)-sisi ANTIAJAIB SUPER PADA K 1,m K 1,n untuk d = 1 atau d = 2 Jurnal Maemaika UNAND Vol. No. 1 Hal. 3 36 ISSN : 303 910 c Jurusan Maemaika FMIPA UNAND PELABELAN TOTAL (a, d)-sisi ANTIAJAIB SUPER PADA K 1,m K 1,n unuk d = 1 aau d = DINA YELNI Program Sudi Maemaika,

Lebih terperinci

BAB I PENDAHULUAN. tepat rencana pembangunan itu dibuat. Untuk dapat memahami keadaan

BAB I PENDAHULUAN. tepat rencana pembangunan itu dibuat. Untuk dapat memahami keadaan BAB I PENDAHULUAN 1.1 Laar Belakang Dalam perencanaan pembangunan, daa kependudukan memegang peran yang pening. Makin lengkap dan akura daa kependudukan yang esedia makin mudah dan epa rencana pembangunan

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 2, 47-56, Agustus 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 2, 47-56, Agustus 2002, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 2, 47-56, Agusus 22, ISSN : 4-858 PENGEFEKTIFAN USAHA MEDIS DALAM MEMBATASI EPIDEMI DENGAN KONTROL BANG-BANG Heru Cahyadi dan Ponidi Jurusan Maemaika FMIPA UI

Lebih terperinci

MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA TERAPAN (2 sks)

MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA TERAPAN (2 sks) Polieknik Negeri Banjarmasin 4 MODUL PERTEMUAN KE 3 MATA KULIAH : ( sks) MATERI KULIAH: Jarak, Kecepaan dan Percepaan; Gerak Lurus Berauran, Percepaan; Gerak Lurus Berauran, Gerak Lurus Berubah Berauran

Lebih terperinci

Analisis Model dan Contoh Numerik

Analisis Model dan Contoh Numerik Bab V Analisis Model dan Conoh Numerik Bab V ini membahas analisis model dan conoh numerik. Sub bab V.1 menyajikan analisis model yang erdiri dari analisis model kerusakan produk dan model ongkos garansi.

Lebih terperinci

Penduga Data Hilang Pada Rancangan Bujur Sangkar Latin Dasar

Penduga Data Hilang Pada Rancangan Bujur Sangkar Latin Dasar Kumpulan Makalah Seminar Semiraa 013 Fakulas MIPA Universias Lampung Penduga Daa Pada Rancangan Bujur Sangkar Lain Dasar Idhia Sriliana Jurusan Maemaika FMIPA UNIB E-mail: [email protected] Absrak.

Lebih terperinci

ANALISIS ANTRIAN ANGKUTAN UMUM BUS ANTAR KOTA REGULER DI TERMINAL ARJOSARI

ANALISIS ANTRIAN ANGKUTAN UMUM BUS ANTAR KOTA REGULER DI TERMINAL ARJOSARI Achmadi, Analisis Anrian Angkuan Umum Bus Anar Koa Reguler di Terminal ANALISIS ANTRIAN ANGKUTAN UMUM BUS ANTAR KOTA REGULER DI TERMINAL ARJOSARI Seno Achmadi Absrak : Seiring dengan berkembangnya aku,

Lebih terperinci

PERHITUNGAN VALUE AT RISK (VaR) DENGAN SIMULASI MONTE CARLO (STUDI KASUS SAHAM PT. XL ACIATA.Tbk)

PERHITUNGAN VALUE AT RISK (VaR) DENGAN SIMULASI MONTE CARLO (STUDI KASUS SAHAM PT. XL ACIATA.Tbk) Jurnal UJMC, Volume 3, Nomor 1, Hal. 15-0 pissn : 460-3333 eissn : 579-907X ERHITUNGAN VAUE AT RISK (VaR) DENGAN SIMUASI MONTE CARO (STUDI KASUS SAHAM T. X ACIATA.Tbk) Sii Alfiaur Rohmaniah 1 1 Universias

Lebih terperinci

BAB 2 URAIAN TEORITIS

BAB 2 URAIAN TEORITIS BAB URAIAN EORIIS Paa bab ini akan ibaas enang masala opimisasi berpembaas persamaan. Sebelum membaas masala opimisasi berpembaas persamaan maka erlebi aulu iberikan pengerian an sia-sia eksrim ari suau

Lebih terperinci

PENENTUAN KONSTANTA PEMULUSAN YANG MEMINIMALKAN MAPE DAN MAD MENGGUNAKAN DATA SEKUNDER BEA DAN CUKAI KPPBC TMP C CILACAP

PENENTUAN KONSTANTA PEMULUSAN YANG MEMINIMALKAN MAPE DAN MAD MENGGUNAKAN DATA SEKUNDER BEA DAN CUKAI KPPBC TMP C CILACAP Prosiding Seminar Nasional Maemaika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 PENENTUAN KONSTANTA PEMULUSAN YANG MEMINIMALKAN MAPE DAN MAD MENGGUNAKAN DATA SEKUNDER BEA DAN CUKAI KPPBC

Lebih terperinci

PENGENDALIAN CHAOS MENGGUNAKAN SLIDING MODE CONTROL (SMC) PADA SISTEM PERSAMAAN RӦSSLER YANG TERMODIFIKASI

PENGENDALIAN CHAOS MENGGUNAKAN SLIDING MODE CONTROL (SMC) PADA SISTEM PERSAMAAN RӦSSLER YANG TERMODIFIKASI PENGENDALIAN CHAOS MENGGUNAKAN SLIDING MODE CONTROL (SMC) PADA SISTEM PERSAMAAN RӦSSLER YANG TERMODIFIKASI Muhammad Hajarul Aswad, Moh. Isa Irawan 2, Mardlijah 3 Saf Pengajar MAN Kendari, Jurusan Maemaika

Lebih terperinci

Analisis Gerak Osilator Harmonik Dengan Gaya pemaksa Bebas Menggunakan Metode Elemen Hingga Dewi Sartika junaid 1,*, Tasrief Surungan 1, Eko Juarlin 1

Analisis Gerak Osilator Harmonik Dengan Gaya pemaksa Bebas Menggunakan Metode Elemen Hingga Dewi Sartika junaid 1,*, Tasrief Surungan 1, Eko Juarlin 1 Analisis Gerak Osilaor Harmonik Dengan Gaya pemaksa Bebas Menggunakan Meode Elemen Hingga Dewi Sarika junaid 1,*, Tasrief Surungan 1, Eko Juarlin 1 1 Jurusan Fisika FMIPA Universias Hasanuddin, Makassar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 robabilias 2.1.1 Definisi robabilias adalah kemungkinan yang daa erjadi dalam suau erisiwa erenu. Definisi robabilias daa diliha dari iga macam endekaan, yaiu endekaan klasik,

Lebih terperinci

PERSAMAAN DIFFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI

PERSAMAAN DIFFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI ISSN: 3-989 Vol. V, No. II, April 6 ERSAMAAN DIFFERENSIAL ARSIAL DIFUSI NON HOMOGEN SATU DIMENSI Rukmono Budi Uomo endidikan Maemaika FKI UMT E-mail: [email protected] Absrak Dalam peneliian

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa

BAB 2 TINJAUAN TEORITIS. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa BAB 2 TINJAUAN TEORITI 2.1. Pengerian-pengerian Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. edangkan ramalan adalah suau siuasi aau kondisi yang diperkirakan

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. Sedangkan ramalan adalah suau aau kondisi yang diperkirakan akan erjadi

Lebih terperinci

ADOPSI REGRESI BEDA UNTUK MENGATASI BIAS VARIABEL TEROMISI DALAM REGRESI DERET WAKTU: MODEL KEHILANGAN AIR DISTRIBUSI DI PDAM SUKABUMI

ADOPSI REGRESI BEDA UNTUK MENGATASI BIAS VARIABEL TEROMISI DALAM REGRESI DERET WAKTU: MODEL KEHILANGAN AIR DISTRIBUSI DI PDAM SUKABUMI ADOPSI REGRESI BEDA UNTUK MENGATASI BIAS VARIABEL TEROMISI DALAM REGRESI DERET WAKTU: MODEL KEHILANGAN AIR DISTRIBUSI DI PDAM SUKABUMI Yusep Suparman Universias Padjadjaran [email protected] ABSTRAK.

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 9 TKE 35 ISYARAT DAN SISTEM B a b I s y a r a (bagian 2) Indah Susilawai, S.T., M.Eng. Program Sudi Teknik Elekro Fakulas Teknik dan Ilmu Kompuer Universias Mercu Buana Yogyakara 29 2.4. Isyara Periodik

Lebih terperinci

DESAIN DAN IMPLEMENTASI SELF TUNING LQR ADAPTIF UNTUK PENGATURAN GENERATOR SINKRON 3 FASA

DESAIN DAN IMPLEMENTASI SELF TUNING LQR ADAPTIF UNTUK PENGATURAN GENERATOR SINKRON 3 FASA DESAIN DAN IMPLEMENTASI SELF TUNING LQR ADAPTIF UNTUK PENGATURAN GENERATOR SINKRON 3 FASA Arif Hermawan Jurusan Teknik Elekro FTI, Insiu Teknologi Sepuluh Nopember Kampus ITS, Sukolilo, Surabaya 60111

Lebih terperinci

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks)

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks) MODUL PERTEMUAN KE 3 MATA KULIAH : (4 sks) MATERI KULIAH: Jarak, Kecepaan dan Percepaan; Gerak Lurus Berauran, Percepaan; Gerak Lurus Berauran, Gerak Lurus Berubah Berauran POKOK BAHASAN: GERAK LURUS 3-1

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Defenisi Persediaan Persediaan adalah barang yang disimpan unuk pemakaian lebih lanju aau dijual. Persediaan dapa berupa bahan baku, barang seengah jadi aau barang jadi maupun

Lebih terperinci

Suatu Catatan Matematika Model Ekonomi Diamond

Suatu Catatan Matematika Model Ekonomi Diamond Vol. 5, No.2, 58-65, Januari 2009 Suau aaan Maemaika Model Ekonomi Diamond Jeffry Kusuma Absrak Model maemaika diberikan unuk menjelaskan fenomena dalam dunia ekonomi makro seperi modal/kapial, enaga kerja,

Lebih terperinci

Matematika EBTANAS Tahun 1988

Matematika EBTANAS Tahun 1988 Maemaika EBTANAS Tahun 988 EBT-SMA-88- cos = EBT-SMA-88- Sisi sisi segiiga ABC : a = 6, b = dan c = 8 Nilai cos A 8 4 8 EBT-SMA-88- Layang-layang garis singgung OAPB, sudu APB = 6 dan panjang OP = cm.

Lebih terperinci

ANALISIS MODEL DINAMIKA VIRUS DALAM SEL TUBUH. Winarno 1 (M )

ANALISIS MODEL DINAMIKA VIRUS DALAM SEL TUBUH. Winarno 1 (M ) ANALISIS MODEL DINAMIKA VIRUS DALAM SEL TUBUH Winarno (M49) Virus merupakan salah sau conoh organisme yang sering mengganggu perumbuhan sel Akhirakhir ini keberadaan virus dirasa sanga mengganggu kehidupan

Lebih terperinci

Pekan #3. Osilasi. F = ma mẍ + kx = 0. (2)

Pekan #3. Osilasi. F = ma mẍ + kx = 0. (2) FI Mekanika B Sem. 7- Pekan #3 Osilasi Persamaan diferensial linear Misal kia memiliki sebuah fungsi berganung waku (. Persamaan diferensial linear dalam adalah persamaan yang mengandung variabel dan urunannya

Lebih terperinci

BAB III METODE DEKOMPOSISI CENSUS II. Data deret waktu adalah data yang dikumpulkan dari waktu ke waktu

BAB III METODE DEKOMPOSISI CENSUS II. Data deret waktu adalah data yang dikumpulkan dari waktu ke waktu BAB III METODE DEKOMPOSISI CENSUS II 3.1 Pendahuluan Daa dere waku adalah daa yang dikumpulkan dari waku ke waku unuk menggambarkan perkembangan suau kegiaan (perkembangan produksi, harga, hasil penjualan,

Lebih terperinci

PENERAPAN METODE TRIPLE EXPONENTIAL SMOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUSAHAAN MEBEL SINAR JEPARA TANJUNGANOM NGANJUK.

PENERAPAN METODE TRIPLE EXPONENTIAL SMOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUSAHAAN MEBEL SINAR JEPARA TANJUNGANOM NGANJUK. PENERAPAN METODE TRIPLE EXPONENTIAL MOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUAHAAN MEBEL INAR JEPARA TANJUNGANOM NGANJUK. ii Rukayah*), Achmad yaichu**) ABTRAK Peneliian ini berujuan unuk

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Peneliian Keinginan Kelompok Tani Duma Lori yang erdapa di Desa Konda Maloba dan masyaraka sekiar akan berdirinya penggilingan gabah di daerahnya, elah

Lebih terperinci

PERSAMAAN DIFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI

PERSAMAAN DIFERENSIAL PARSIAL DIFUSI NON HOMOGEN SATU DIMENSI rima: Jurnal endidikan Maemaika Vol., No., Juli 7, hal. 33-4 -ISSN: 579-987, E-ISSN: 58-6 ERSAMAAN DIFERENSIAL ARSIAL DIFUSI NON HOMOGEN SATU DIMENSI Rukmono Budi Uomo Universias Muhammadiyah Tangerang,

Lebih terperinci