Entity Relationship Diagram

Ukuran: px
Mulai penontonan dengan halaman:

Download "Entity Relationship Diagram"

Transkripsi

1 Tahap pembuata ER-Diagram Etity Relatioship Diagram Tahap pembuata ER-Diagram Awal (Prelimiary Desig) Meracag diagram basis data yag dapat megakomodasi kebutuha peyimpaa data terhadap sistem. Tahap Optimasi ER-Diagram (Fial Desig) Melakuka koreksi terhadap hasil tahap pertama, seperti melakuka dekomposisi etitas, peggabuga etitas, pegubaha derajat relasi, peambaha relasi baru, da perubaha atribut. Tujua Perkuliaha : Agar mahasiswa memahami tahap-tahap peracaga basis data Agar mahasiswa mampu meracag suatu basis data megguaka ER-Diagram Agar mahasiswa mampu megguaka salah satu tools peracaga basis data yaitu Power Desiger utuk meracag Coceptual Data Model da megubahya mejadi suatu Physical Data Model. Tahap pembuata Diagram ER awal (prelimiary desig) : Melakuka pegidetifikasia da meetapka seluruh himpua etitas yag aka terlibat. Meetuka atribut-atribut dari masig-masig etitas beserta primary-key ya. Megidetifikasi da meetapka seluruh himpua relasi di atara himpua etitas-himpua etitas yag ada. Meetuka derajat/kardialitas da modalitas relasi utuk setiap himpua relasi. Melegkapi himpua etitas da himpua relasi dega atribut foreig-key beserta atribut-atribut deskriptif (o key). Elemets Etity Relatioship Attribute Problem Sebuah perusahaa memiliki beberapa departeme.setiap departeme dikepalai oleh seorag maajer da setidakya memiliki satu atau lebih Satu pegawai bekerja haya di satu departeme. Setidakya satu pegawai medapat tugas utuk megerjaka proyek, kecuali pegawai yag sedag cuti.berarti ada kemugkia seorag pegawai tidak megerjaka satupu proyek,tetapi seorag pegawai bisa megerjaka beberapa proyek sesuai dega peugasa.

2 Beberapa data petig yag dibutuhka adalah ama departeme, proyek, maajer da Selai itu juga dibutuhka data uik utuk membedaka departeme, maajer, pegawai da proyek. Data-data pedukug laiya : Utuk maajer : tgl lahir, alamat Utuk pegawai : tgl lahir,alamat Utuk proyek : lokasi Atribut-atribut yag teridetifikasi Nama File Nama Field (Etitas) (Atribut) Keteraga Kd_Dep Kode Nm_Dep Nama Kode maajer Nama maajer Taggal lahir maajer Alamat maajer Kd_Peg Kode pegawai Nm_Peg Nama Tgl_Lhr_Peg Taggal lahir pegawai Alm_Peg Alamat pegawai Kode Jeis Barag Lokasi proyek Step - Melakuka idetifikasi etitas yag aka terlibat Etitas dalam sistem ii adalah :,, ad. Perusahaa tidak termasuk etity, karea haya memiliki satu istace dalam permasalaha ii. Etitas harus memiliki lebih dari satu istace. Step 2.a : Meetuka atribut-atribut key dari masig-masig etitas Atribut adalah karakteristik dari etity atau relatioship, yag meyediaka pejelasa detail tetag etity atau relatioship tersebut. Key Atribut yag diguaka utuk meetuka suatu etity secara uik. Step 2.b: Meetuka Primary Keys Primary Key Kumpula atribut miimal yag dapat membedaka setiap baris/record data dalam sebuah tabel secara uik Sebagai acua/pegeal. Primary keys yag bisa ditetuka : Etitas : Kode (Kd_Dep), Etitas : Kode (), Etitas : Kode (Kd_Peg), Etitas : Kode (). 2

3 Step 4.a : Meetuka kardialitas Kardialitas relasi adalah sebuah bilaga yag meujukka jumlah maksimum eleme dari sebuah etitas yag dapat berelasi dega eleme dari etitas lai. Agka yag meujukka bayakya kemucula suatu obyek terkait dega kemucula obyek lai pada suatu relasi Kombiasi yag mugki : (:, :N, M:N) Step 3.a : Melakuka idetifikasi Relasi ER matrix Departmet Departmet Dikepalai Milik Megerjaka Megepalai Dikerjaka Dari permasalaha, bisa diperoleh beberapa iformasi diataraya: Setiap departeme dikepalai satu maajer, tidak lebih da tidak kurag. Satu megepalai satu departeme da haya satu. Setiap departeme palig sedikit memiliki satu Satu pegawai haya bekerja utuk satu departeme. Pada setiap proyek palig sedikit terdapat satu pegawai yag megerjakaya. bisa bekerja di 0 atau lebih proyek. Step 3.b : Meggambar ERD dega relasiya Kd_dep Nm_dep Kepalai Meetapka Kardialitas : Satu departeme dikepalai oleh satu maajer Satu departeme setidakya memiliki satu atau lebih Satu pegawai bisa mengerjaka satu atau lebih proyek kepala Memiiliki 3

4 Selajutya kalimat yag dibalik : Satu maajer megepalai satu departeme Satu pegawai haya dimiliki oleh satu departeme Satu proyek bisa dikerjaka oleh satu atau lebih Hasil Akhir peetua kardialitas : Dikepalai Kepala kerja m Step 4.b : Meetuka modalitas Selajutya pilih yag terbesar dari masigmasig sisi : dikepalai m Defiisi : Partisipasi sebuah etitas pada suatu relasi. 0 jika partisipasi bersifat optioal / parsial jika partisipasi bersifat wajib / total Cotoh : Partisipasi total Setiap aak memiliki ibu Partisipasi parsial Tidak setiap perempua memiliki aak Kii kita dapatka M (may) di kedua sisiya yag berarti derajat kardialitas relasi tersebut adalah may to may. Namu, karea dalam matematika, ilai M aka selalu sama dega M, sedagka belum tetu kalimat (jika ilai M di atas = 5),atau Lima PEGAWAI aka selalu megerjaka Lima PROYEK, maka peulisa M di salah satu sisiya digati dega N, tetapi pembacaaya tetap may. Jadi, ilai M da N bisa jadi sama, da bisa jadi tidak sama (M = N atau M N). Dari permasalaha, bisa diperoleh beberapa iformasi diataraya: Setiap departeme dikepalai satu maajer, tidak lebih da tidak kurag. megepalai satu departeme da haya satu. Setiap departeme palig sedikit memiliki satu Satu pegawai haya bekerja utuk satu departeme. Pada setiap proyek palig sedikit terdapat satu pegawai yag megerjakaya. bisa bekerja di 0 atau lebih proyek. 4

5 Meetapka Modalitas : Setiap departeme dikepalai satu maajer, tidak lebih da tidak kurag. (mi =, max = ) Satu departeme setidakya memiliki satu atau lebih (mi =, max = ) Satu pegawai bisa bekerja di 0 atau lebih proyek. (mi = 0, max = ) (,) kepala Step 5 : Melegkapi etitas, relasi da atribut Meetuka Foreig-Key Foreig-Key adalah kuci utama dari file (master) lai yag diguaka di file (trasaksi). Kuci atribut tersebut diguaka sebagai jembata utuk megambil ilai data dari atribut-atribut lai atau dega kata lai sebagai kuci peghubug atara etitas child dega etitas paret. (,) (0,) Selajutya kalimat yag dibalik : Satu maajer megepalai satu departeme. (mi=, max = ) Satu pegawai haya dimiliki oleh satu departeme. (mi =, max = ) Satu proyek bisa dikerjaka oleh satu atau lebih (mi =, max = ) (,) (,) (,) Kepala (,) (,) (0,) Relasi oe-to-oe : Foreig-key ditetuka dega meambahka atribut primary-key dari etitas yag memiliki derajat relasi palig besar ke etitas yag memiliki derajat relasi palig kecil. Jika derajat relasiya sama, pilih tabel dega jumlah baris (row) palig sedikit. Cotoh : Terdapat etitas da dega ama relasi dikepalai, dimaa seorag maajer megepalai di satu departeme. Primary-key dari maajer yag aka dimasukka ke etitas Departme sebagai foreig-key. Hasil Akhir peetua modalitas : (,) (,) Dikepalai (,) memiliki (,) (,) (0,) kerja Relasi oe-to-may : Foreig-key ditetuka dega meambahka atribut primary-key dari etitas yag memiliki derajat relasi ke etitas yag memiliki derajat relasi N. Cotoh : Terdapat etitas da dega ama relasi memiliki, dimaa satu departeme memiliki beberapa Dega memperhatika bahwa setiap departeme memiliki beberapa pegawai tetapi tidak sebalikya, maka primary-key dari yag aka dimasukka ke etitas sebagai foreig-key. 5

6 Relasi may-to-may : Peetua foreig-key dilakuka dega membuat suatu etitas baru yag memiliki atribut (foreig-key) yag merupaka primary-key dari kedua etitas yag dihubugka. Cotoh : Terdapat etitas da dega ama relasi kerja. Dimaa satu dapat megerjaka beberapa proyek,begitu juga sebalikya. Relasi dijadika sebuah etitas baru yag terdiri dari dua atribut foreig-key yag merupaka primary-key dari etitas da, da dapat ditambah satu primary-key baru yaitu omor kerja. Hasil Akhir ER-Diagram (,) (,) Dikepalai (,) memiliki (,) (,) (0,) kerja Kd_kerja Foreig-keys yag bisa ditetuka : Etitas dega Etitas : Kode maajer (), Etitas dega Etitas : Kode (Kd_Dep), Etitas da : relasi kerja dijadika etitas dega atribut : Primary key : Kd_ (kode pekerjaa) Foreig key : Kd_Peg (kode pegawai) (kode proyek). Coceptual Data Model megguaka Power Desiger Pada gambar ERD yag dihasilka, terdapat relasi may-to-may yaitu, atara da. Relasi atara dega dapat dijadika satu etitas (associative etities), dega memakai primary key dari etitas da. Primary key utuk - bisa megguaka cocateated key yag merupaka gabuga dari Kode da Kode. Atau bisa membuat satu atribut baru yag dijadika sebagai primary-key. Atau bisa juga tidak megguaka primary key, tergatug kebutuha. Physical Data Model megguaka Power Desiger 6

7 Refereces Cotoh lai Relasi may-to-may : Terdapat etitas Mahasiswa dega primary-key NIM da etitas Kelas dega primary-key kode_kelas. Dimaa setiap mahasiswa dapat megambil lebih dari satu kelas, da setiap kelas dapat diambil oleh lebih dari satu mahasiswa kecuali tidak ada yag memilih (0). Data tersebut aka direkam dalam Kartu Studi Mahasiswa. Di dalam Kartu Studi Mahasiswa terdapat data tahu akademik da ilai dari kelas yag diambil mahasiswa. Didalam etitas kelas terdapat kode mata kuliah yag diambil dari etitas mata kuliah, dimaa atiya dapat ditampilka di dalam Kartu Studi Mahasiswa. 5/page.html ERD.htm Gambar ER-Diagram dari cotoh : Kd_MK Nm_MK SKS Mata Kuliah (,) dijadwalka (,) Mahasiswa (0,) Kartu Studi (,) Kelas NIM Nm_Mhs TTL Alm_Mhs Th_Akdm Nilai Kd_Kls Semester Nama_kls May to May ERD 7

Objective. Diagram Entity-Relationship. Pemodelan Data dalam Rekayasa Perangkat Lunak. Model Analisis Terstruktur. Pemodelan PL

Objective. Diagram Entity-Relationship. Pemodelan Data dalam Rekayasa Perangkat Lunak. Model Analisis Terstruktur. Pemodelan PL Diagram Etity-Relatioship Pemodela Data dalam Rekayasa Peragkat Luak SE6162 Dwi ji Mardiyato Objective Memahami petigya Pemodela dalam RPL Memahami peraerd dalam RPL Memahami kompoeerd Mampu meetuka etitas-etitas

Lebih terperinci

http://www.brigidaarie..com Pengguna Sistem Output Sistem Jumlah tipe entitas yang terlibat di dalamnya : Relasi Unary Relasi Binary Relasi Ternary Batasan jumlah instan dari satu entitas yang

Lebih terperinci

Cara Pengisian Pada File Excel

Cara Pengisian Pada File Excel Cara Pegisia Pada ile Excel Pada tabel realisasi da keuaga ias Pekerjaa Umum Bia Marga Propisi Jawa Timur ii terdiri dari beberapa kolom seperti dibawah ii: atker Tahu Bula Adapu cara pegisia dari masig-masig

Lebih terperinci

Tujuan Perkuliahan : Agar mahasiswa memahami tahap-tahap perancangan basis data Memahami tahapan Final Design dari ERD

Tujuan Perkuliahan : Agar mahasiswa memahami tahap-tahap perancangan basis data Memahami tahapan Final Design dari ERD Tujuan Perkuliahan : Agar mahasiswa memahami tahap-tahap perancangan basis data Memahami tahapan Final Design dari ERD Tahap pembuatan ER-Diagram Awal (Preliminary Design) Merancang diagram basis data

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya [email protected] Abstrak Jika suatu

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN [email protected] Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

Algoritma Branch and Bound pada Permasalahan 0-1 Knapsack

Algoritma Branch and Bound pada Permasalahan 0-1 Knapsack Algoritma Brach ad Boud pada Permasalaha 0-1 Kapsack Sady Socrates (13508044) Program Studi Tekik Iformatika 2008, Istitut Tekologi Badug Jl. Gaesha 10, 40116 Badug e-mail: [email protected]

Lebih terperinci

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and BAB III METODE PENELITIAN A. Jeis Peelitia Jeis peelitia ii adalah peelitia pegembaga (research ad developmet), yaitu suatu proses peelitia utuk megembagka suatu produk. Produk yag dikembagka dalam peelitia

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI DECISION SUPPORT SYSTEM (DSS) UNTUK PREDIKSI PERMINTAAN KEBUTUHAN BERAS SECARA MULTIUSER

PERANCANGAN DAN PEMBUATAN APLIKASI DECISION SUPPORT SYSTEM (DSS) UNTUK PREDIKSI PERMINTAAN KEBUTUHAN BERAS SECARA MULTIUSER ISSN : 2338-4018 PERANCANGAN DAN PEMBUATAN APLIKASI DECISION SUPPORT SYSTEM (DSS) UNTUK PREDIKSI PERMINTAAN KEBUTUHAN BERAS SECARA MULTIUSER Agik Damai Istato ([email protected]) Muhammad Hasbi ([email protected])

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa 54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat BAB IV HASIL DAN PEMBAHASAN 4.1 Kebutuha Sistem Sebelum melakuka deteksi da trackig obyek dibutuhka peragkat luak yag dapat meujag peelitia. Peragkat keras da luak yag diguaka dapat dilihat pada Tabel

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

Inflasi dan Indeks Harga I

Inflasi dan Indeks Harga I PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com Kombiatorial da Peluag Adri Priadaa ilkomadri.com Pedahulua Sebuah kata-sadi (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa bayak kemugkia kata-sadi yag dapat dibuat?

Lebih terperinci

BAB 2 TINJAUAN TEORI

BAB 2 TINJAUAN TEORI BAB 2 TINJAUAN TEORI 2.1 ISTILAH KEENDUDUKAN 2.1.1 eduduk eduduk ialah orag atatu idividu yag tiggal atau meetap pada suatu daerah tertetu dalam jagka waktu yag lama. 2.1.2 ertumbuha eduduk ertumbuha peduduk

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

BAB 1 PENDAHULUAN. Bagi Negara yang mempunyai wilayah terdiri dari pulau-pulau yang dikelilingi lautan,

BAB 1 PENDAHULUAN. Bagi Negara yang mempunyai wilayah terdiri dari pulau-pulau yang dikelilingi lautan, BAB 1 PENDAHULUAN 1.1 Latar Belakag Bagi Negara yag mempuyai wilayah terdiri dari pulau-pulau yag dikeliligi lauta, laut merupaka saraa trasportasi yag dimia, sehigga laut memiliki peraa yag petig bagi

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI Oleh : Ambar Mujiarti J2A 004 003 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan BAB III METODE PENELITIAN A. Jeis Peelitia Berdasarka pertayaa peelitia yag peeliti ajuka maka jeis peelitia ii adalah peelitia diskriptif kuatitatif. Dalam hal ii peeliti aka mediskripsika kemampua relatig,

Lebih terperinci

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT Oleh: Yuissa Rara Fahreza Akutasi Tekologi Sistem Iformasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT ILUSTRASI 1 Misal ada 3 buah kelereg yag berbeda wara : merah (m), kuig (k) da

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung Eksplorasi Algoritma Mass, Profit,, Profit / Mass, atau Profit / utuk Persoala Iteger Kapsack yag Bedaya Berupa Zat Kimia dega Jeisya Terdefiisi Abstrak Riyai Mardikaigrum 1, Nurshati 2, Vaia Karimah 3

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 31 Flowchart Metodologi Peelitia BAB III METODOLOGI PENELITIAN Gambar 31 Flowchart Metodologi Peelitia 18 311 Tahap Idetifikasi da Peelitia Awal Tahap ii merupaka tahap awal utuk melakuka peelitia yag

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 37 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii termasuk peelitia pegembaga, yaitu pegembaga buku teks matematika. Model pegembaga yag diguaka adalah model 4-D (four D models) dari Thigaraja

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM [email protected] Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP [email protected]

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

PERANCANGAN APLIKASI PEMBELAJARAN MUSEUM INTERAKTIF BERBASIS MOBILE DEVICE

PERANCANGAN APLIKASI PEMBELAJARAN MUSEUM INTERAKTIF BERBASIS MOBILE DEVICE Media Iformatika Vol. 0 No. 3 (20) PERANCANGAN APLIKASI PEMBELAJARAN MUSEUM INTERAKTIF BERBASIS MOBILE DEVICE Aa Hadiaa Sekolah Tiggi Maajeme Iformatika da Komputer LIKMI Jl. Ir. H. Djuada o.96 Badug 4032

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 22 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di tiga kator PT Djarum, yaitu di Kator HQ (Head Quarter) PT Djarum yag bertempat di Jala KS Tubu 2C/57 Jakarta Barat,

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Iformasi UNIKOM 2016 Nizar Rabbi Radliya [email protected] Nama Mahasiswa NIM Kelas Kompetesi Dasar Memahami tekik data miig klasifikasi da mampu meerapka

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *[email protected] Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH PROPOAL TUGA AKHIR DIMENI PARTII PADA GRAF KINCIR PARTITION DIMENION OF WINDMILL GRAPH Oleh: CHANDRA IRAWAN NRP : 100 109 04 JURUAN MATEMATIKA FAKULTA MATEMATIKA DAN ILMU PENGETAHUAN ALAM INTITUT TEKNOLOGI

Lebih terperinci

SOAL DAN PEMBAHASAN MULTISTAGE SAMPLING. Oleh: Adhi Kurniawan

SOAL DAN PEMBAHASAN MULTISTAGE SAMPLING. Oleh: Adhi Kurniawan SOA DAN PEMBAHASAN MUTISTAGE SAMPING Oleh: Adhi Kuriawa. Pada bula Mei 03, suatu survei keteagakerjaa dilakuka di suatu kecamata. Pada tahap pertama dilakuka pegambila sampel 4 blok sesus secara PPS WR

Lebih terperinci

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011 III. METODE PENELITIAN A. Latar Peelitia Peelitia ii merupaka peelitia yag megguaka total sampel yaitu seluruh siswa kelas VIII semester gajil SMP Sejahtera I Badar Lampug tahu pelajara 2010/2011 dega

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB IV ANALISIS HIDROLOGI DAN PERHITUNGANNYA

BAB IV ANALISIS HIDROLOGI DAN PERHITUNGANNYA BAB IV ANALII HIDROLOGI DAN PERHITUNGANNYA 4.1. TINJAUAN UMUM Dalam merecaaka ormalisasi sugai, aalisis yag petig perlu ditijau adalah aalisis hidrologi. Aalisis hidrologi diperluka utuk meetuka besarya

Lebih terperinci

HASIL DAN PEMBAHASAN Formulasi Perencanaan

HASIL DAN PEMBAHASAN Formulasi Perencanaan HASIL DAN PEMBAHASAN Formulasi Berdasarka hasil observasi da wawacara yag telah dilakuka, kebutuha iformasi terhadap kaleder akademik mejadi salah satu bagia yag petig pada Sistem Iformasi Maajeme Akademik,

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Objek Peelitia Dalam peelitia ii, pegambila da peroleha data dilakuka di UKM. Bakso Solo, Bakauhei, Lampug Selata. Utuk pegukura kualitas pelayaa, objek yag diteliti adalah

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci