PENGANTAR ANALISA RUNTUN WAKTU

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGANTAR ANALISA RUNTUN WAKTU"

Transkripsi

1 DIKTAT KULIAH PENGANTAR ANALISA RUNTUN WAKTU Dr.rer.nat. Dedi Rosadi, M.Sc.Eng.Math. Program Studi Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada Yogyakarta,

2 Contents Kata Pengantar v 1 Pendahuluan Jenis data menurut waktu Klasifikasi model runtun waktu Konsep-konsep dasar Proses Stokastik Stasioner (Strictly) dan (Wide-Sense) Stasioner Hubungan antara stricly stasioner dan W S stasioner Model Runtun Waktu Stasioner Proses White Noise Proses MA(1) Proses MA(q) Proses AR(1) (skema Markov) Proses MA( ) Proses AR(p) Proses ARMA(p, q) Kausalitas dan Invertibilitas Kausalitas dari proses ARMA (p, q) Invertibilitas Menentukan koefisien-koefisien dari penyelesaian Kausal Fungsi Autokovariansi Proses Linear Stasioner Fungsi Autokorelasi Parsial Menentukan Fungsi kovariansi proses ARMA-kausal Hubungan antara AR(p) dan MA(q) Algoritma Durbin Levinson untuk PACF Peramalan dengan model ARMA 33 i

3 ii CONTENTS 5 Estimasi Fungsi Mean dan Autokorelasi Estimasi Mean Mean Ergodic Estimator untuk γ( ) dan ρ(.) Sampel Autokovariansi Sampel ACF Sampel PACF Estimasi Model ARMA Estimasi model Autoregresive Estimasi model Autoregresive dengan metode Yule Walker Sifat-sifat Estimator Y-W Estimasi dengan metode Least Square Estimasi dengan Metode Maksimum Likelihood Estimasi Proses Moving Average Substitusi estimator fungsi kovariansi Estimator Nonlinear Least square Estimator Maksimum Likelihood Estimasi Parameter model ARMA Pendahuluan Estimator Least Square Estimator Maksimum Likelihood Metode Kesalahan Prediksi (Prediction Error Method) Model Trend dan Musiman Model nonstasioner dalam mean Model Trend Deterministik Model ARIMA Model Non Stasioner dalam variansi dan autokovariansi Model Musiman (Seasonal Mode) Model Heteroskedastik Asset Return Definisi Sifat tipikal return Volatility Model ARCH/GARCH Struktur dari model Model untuk mean Model untuk volatilitas: ARCH

4 CONTENTS iii Model untuk Volatilitas: GARCH Pengujian Adanya Efek ARCH/GARCH

5 iv CONTENTS

6 Kata Pengantar Assalamualaikum Wr. Wb., Alhamdulillah, Puji dan syukur kami panjatkan ke hadirat Allah SWT, yang telah melimpahkan rahmat dan karunianya sehingga penulis dapat menyusun handout kuliah Analisa Runtun Waktu ini. Handout perkuliahan ini merupakan printout dari materi perkuliahan yang diberikan dikelas. Versi online dari handout ini dapat diakses di alamat di mana di alamat web ini terdapat pula berbagai informasi tambahan berkaitan dengan perkuliahan analisa runtun waktu, seperti data-data dan keterangan-keterangan penting lainnya. Penyusun mengucapkan terimakasih kepada PHK A3 Jurusan Matematika yang telah memberi dana bagi penyusunan handout ini melalui hibah pengajaran. Terimakasih pula kepada berbagai pihak yang telah membantu baik langsung maupun tidak langsung untuk penyusunan handout ini. Besar harapan kami agar handout ini dapat bermanfaat bagi penggunanya. Saran dan kritik membangun sangat diharapkan untuk perbaikan perkuliahan ini, dan dapat dikirikan ke alamat penyusun dialamat Wassalamualaikum Wr. Wb. Yogyakarta, Juli 2006 Penyusun Dr. Dedi Rosadi, S.Si., M.Sc. v

7 Chapter 1 Pendahuluan 1.1 Jenis data menurut waktu Untuk dapat memahami pemodelan runtun waktu, perlu diketahui beberapa jenis data menurut waktu, yang dapat dibedakan sebagai berikut: Cross-section data, yakni jenis data yang dikumpulkan untuk/pada sejumlah individu/kategori untuk sejumlah variabel pada suatu titik waktu tertentu. Model yang digunakan untuk memodelkan data tipe ini seperti model regresi (cross-section) Time Series (Runtun waktu) data yakni jenis data yang dikumpulkan menurut urutan waktu dalam suatu rentang waktu tertentu. Jika waktu dipandang bersifat diskrit (waktu dapat dimodelkan bersifat kontinu), frekuensi pengumpulan selalu sama (equidistant). Dalam kasus diskrit, frekuensi dapat berupa misalnya detik, menit, jam, hari, minggu, bulan atau tahun. Model yang digunakan adalah model-model time series, yang menjadi fokus dari perkuliahan ini. Panel/Pooled data, yakni tipe data yang dikumpulkan menurut urutan waktu dalam suatu rentang waktu tertentu pada sejumlah individu/kategori. Model yang digunakan untuk pemodelan data tipe ini seperti model data panel, model runtun waktu multivariat. Secara ekuivalen, dikenal juga tipe data Longitudinal, dengan frekuensi data tidak harus equidistant, namun analisa fokusnya berbeda dengan model panel. Contoh Contoh data panel : Misalkan dimiliki data produksi gula bulanan dari 10 pabrik gula di Indonesia dalam 12 bulan terakhir Januari Februari. Desember PG1 PG2 PG3... PG Klasifikasi model runtun waktu Salah satu pengelompokan model-model runtun waktu dapat diberikan sebagai berikut: 1

8 2 CHAPTER 1. PENDAHULUAN 1. Model stasioner, yakni suatu model yang sedemikian hingga semua sifat statistiknya tidak berubah dengan pergeseran waktu (yakni bersifat time invariant). Dalam aplikasi, sifat statistik yang sering menjadi perhatian adalah rata-rata (expected value),variansi (variance) serta ukuran keeratan (dependence) yakni fungsi kovariansi (covariance function), yang mana suatu model yang memenuhi sifat ini disebut sebagai proses weakly-stasioner. Pada model stasioner, sifat-sifat statistiknya dimasa yang akan datang dapat diramalkan berdasarkan data historis yang telah terjadi dimasa yang lalu. Beberapa model runtun waktu stasioner (khususnya sering disebut model linear dan homoskedastik) yang akan dibahas pada kuliah ini adalah model i.i.d., white noise, moving average, Autoregressive Moving average (ARMA), dan model ARMA dengan variabel eksogen/prediktor (yakni model ARMAX). 2. Model non-stasioner, yakni model yang tidak memenuhi sifat model stasioner diatas Dalam kuliah ini, akan dibahas beberapa model non stasioner, yakni model trend, model Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), Model ARIMAX, model heteroskedastik ARCH/GARCH. Ada sangat banyak model lain yang dikenal didalam literatur, sebagai contoh model siklus, model dengan long memory Fractional ARIMA, dan modelmodel lain, baik model linear maupun non linear. Klasifikasi lain dari model runtun waktu dapat diberikan sebagai berikut: Model univariat : hanya mengamati satu variabel/individu runtun waktu Model multivariate (multivariabel): lebih dari satu variabel/individu runtun waktu Contoh model multivariat yang relatif populer: model Vector Autoregressive (VAR) model State-Space model Space-Time, banyak digunakan untuk pemodelan data-data geografi, data-data fisika/geofisika. Dalam pemodelan data tipe ini, dapat juga digunakan pendekatan VAR model multivariate Arch/GARCH, dan lain-lain Klasifikasi lain dalam pengelompokan model runtun waktu dapat digambarkan dengan tabel berikut: Linear dengan error Gaussian, misal: ARMA, ARIMA, ARIMAX + normal Linear dengan error non-gaussian, misal: ARMA + student t, ARMA+stable non-linear dengan error Gaussian misal: Threshold AR, STAR, SETAR + normal non-linear dengan error non-gaussian misal: TAR, STAR, SETAR+non normal Fokus perkuliahan ini adalah analisa model runtun waktu pada domain waktu dimana Waktu bersifat diskrit Model Univariate Model Linear dengan error normal Model stasioner dan beberapa model non stasioner Analisa time series dapat dilakukan dalam domain frekuensi, yang dikenal sebagai spectral analysis. Analisa tipe ini banyak digunakan pada aplikasi di bidang teknik. Buku Acuan Utama :

9 1.2. KLASIFIKASI MODEL RUNTUN WAKTU 3 1. Wei, W.S, 1994, Time Series Analysis: Univariate and Multivariate Methods, Addison Wesley. 2. Enders, W., Applied Econometrics Times Series, 2nd Eds., Wiley. 3. Brockwell, P.J. dan Davis, R.A., Introduction to Time Series and Forecasting, Brockwell, P.J. dan Davis, R.A., 1991, Time Series: Theory and methods, Springer Verlag. Buku penunjang, diantaranya 1. Hamilton, Time Series Analysis, Princeton. 2. Gouri éroux, C., 1997, ARCH Models and Financial Application, Springer. Diktat Kuliah 1. Rosadi, D., Pengantar Analisa Data Runtun Waktu dengan EViews 4, Lab Komputasi Matematika Statistika, FMIPA UGM 2. Rosadi, D., 2006, Pengantar Analisa Data Runtun Waktu, Program Studi Statistika FMIPA UGM. Selain itu akan digunakan sejumlah literature online di Internet, yang akan diinformasikan selama kuliah berlangsung

10 4 CHAPTER 1. PENDAHULUAN

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 110 117 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

BAB IV KESIMPULAN DAN SARAN. maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan data

BAB IV KESIMPULAN DAN SARAN. maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan data BAB IV KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan uraian dan pembahasan pada bab-bab sebelumnya, maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan

Lebih terperinci

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 1 8 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH)

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 80 88 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 59 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA ANNISA UL UKHRA Program Studi Matematika,

Lebih terperinci

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK. Jurnal Matematika UNAND Vol. VI No. 1 Hal. 25 32 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia statistika terdapat serangkaian pengamatan data yang dapat dijadikan sebagai model time series (runtun waktu) untuk meramalkan kejadian pada periode berikutnya.

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

BAB III MODEL STATE-SPACE. dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan dari

BAB III MODEL STATE-SPACE. dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan dari BAB III MODEL STATE-SPACE 3.1 Representasi Model State-Space Representasi state space dari suatu sistem merupakan suatu konsep dasar dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan

Lebih terperinci

PENDUGAAN PARAMETER MODEL AUTOREGRESSIVE PADA DERET WAKTU

PENDUGAAN PARAMETER MODEL AUTOREGRESSIVE PADA DERET WAKTU Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 28 37 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENDUGAAN PARAMETER MODEL AUTOREGRESSIVE PADA DERET WAKTU NELFA SARI Program Studi Matematika, Fakultas

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO

PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO Skripsi Diajukan Untuk Memenuhi Sebagian Syarat Mencapai Gelar Sarjana Strata Satu (S-1) Oleh : ROSIANA NOVITA

Lebih terperinci

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 27 PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data runtun waktu dari fenomena real seperti data finansial biasanya bersifat nonstasioner. Tipe data runtun waktu finansial biasanya dicirikan oleh pola-pola seperti

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN

PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN Putu Ika Oktiyari Laksmi 1, Komang Dharmawan 2, Luh Putu Ida Harini 3 1 Jurusan Matematika,

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017 1 Ada tiga tahapan iteratif dalam pemodelan data deret waktu yang berbasis model ARIMA, yaitu: 1. Penentuan model

Lebih terperinci

IMPLEMENTASI METODE BOX-JENKINS UNTUK MEMPREDIKSI HARGA MINYAK DUNIA DAN PENGARUHNYA TERHADAP HARGA MINYAK INDONESIA

IMPLEMENTASI METODE BOX-JENKINS UNTUK MEMPREDIKSI HARGA MINYAK DUNIA DAN PENGARUHNYA TERHADAP HARGA MINYAK INDONESIA Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol. 9 No. 2, Desember 2017, hal. 87-94 ISSN (Cetak) : 2085-1456; ISSN (Online) : 2550-0422; https://jmpunsoed.com/ IMPLEMENTASI METODE BOX-JENKINS

Lebih terperinci

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya PEMODELAN RETURN IHSG PERIODE 15 SEPTEMBER 1998 13 SEPTEMBER 2013 MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (TGARCH(1,1)) DENGAN DUA THRESHOLD Suma Suci Sholihah,

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Abstract

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Abstract Estimasi Parameter (Mika Asrini) ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Mika Asrini 1, Winita Sulandari 2, Santoso Budi Wiyono 3 1 Mahasiswa

Lebih terperinci

MENGGUNAKAN METODE GARCH ASIMETRIS

MENGGUNAKAN METODE GARCH ASIMETRIS PEMODELAN RETURN PORTOFOLIO SAHAM MENGGUNAKAN METODE GARCH ASIMETRIS SKRIPSI Disusun Oleh : MUHAMMAD ARIFIN 24010212140058 DEPARTEMEN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)

Lebih terperinci

Prediksi Curah Hujan dengan Model Deret Waktu dan Prakiraan Krigging pada 12 Stasiun di Bogor Periode Januari Desember 2014.

Prediksi Curah Hujan dengan Model Deret Waktu dan Prakiraan Krigging pada 12 Stasiun di Bogor Periode Januari Desember 2014. Jur. Ris. & Apl. Mat. Vol. 1 (2017), no. 1, 1-52 Jurnal Riset dan Aplikasi Matematika e-issn: 2581-0154 URL: journal.unesa.ac.id/index.php/jram Prediksi Curah Hujan dengan Model Deret Waktu dan Prakiraan

Lebih terperinci

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Jurnal UJMC, Volume 2, Nomor 1, Hal. 28-35 pissn : 2460-3333 eissn: 2579-907X PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Novita Eka Chandra 1 dan Sarinem 2 1 Universitas

Lebih terperinci

Ekonometrika Deret Waktu: Teori dan Aplikasi

Ekonometrika Deret Waktu: Teori dan Aplikasi Ekonometrika Deret Waktu: Teori dan Aplikasi Bambang Juanda, Junaidi Ekonometrika telah berkembang cukup pesat dalam 15 tahun terakhir,terutama dalam bidang analisis data deret waktu (time series ), termasuk

Lebih terperinci

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS S-9 PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Retno Hestiningtyas dan Winita Sulandari, M.Si Jurusan Matematika FMIPA UNS ABSTRAK. Pada data finansial sering terjadi keadaan leverage effect,

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran

Lebih terperinci

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR)

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR) PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR) SKRIPSI Oleh : PRISKA RIALITA HARDANI 24010211120020 DEPARTEMEN STATISTIKA FAKULTAS

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sering terdapat tenggang waktu (time lag) antara kesadaran akan peristiwa atau kebutuhan mendatang dengan peristiwa itu sendiri. Adanya waktu tenggang ini merupakan

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

Model Time Series Auto Regressive untuk Menentukan Nilai Tukar mata Uang Rupiah terhadap Dollar Amerika

Model Time Series Auto Regressive untuk Menentukan Nilai Tukar mata Uang Rupiah terhadap Dollar Amerika Model Time Series Auto Regressive untuk Menentukan Nilai Tukar mata Uang Rupiah terhadap Dollar Amerika Adi Asriadi dan Taryo 12 Juni 2005 Abstraksi Tujuan utama dari makalah ini adalah untuk menentukan

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam statistika dan pemrosesan sinyal, runtun waktu (time series) adalah rangkaian data berupa pengamatan yang diukur selama kurun waktu tertentu. Analisis

Lebih terperinci

Model Hibrida ARIMA dan Fuzzy Time Series Markov Chain

Model Hibrida ARIMA dan Fuzzy Time Series Markov Chain SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Model Hibrida ARIMA dan Fuzzy Time Series Markov Chain Dennis Frisca Ayudya, Dewi Retno Sari Saputro Program Studi Matematika Universitas Sebelas Maret

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 Nanang WIdodo Penelid Staslun Pengamat Dlrgantara Watukosek, LAPAN ABSTRACT The time series of the monthly number

Lebih terperinci

3.9 Fungsi Autokovariansi Proses Linear Stasioner

3.9 Fungsi Autokovariansi Proses Linear Stasioner 3.9. FUNGSI AUTOKOVARIANSI PROSES LINEAR STASIONER jika D(z) = a z kausal maka z = a > a < maka a j 0; j sehingga akan berhingga X t = h jε t j stasioner. 3.9 Fungsi Autokovariansi Proses Linear Stasioner

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Saham adalah surat berharga yang menjadi bukti seseorang berinvestasi pada suatu perusahaan. Harga saham selalu mengalami perubahan harga atau biasa disebut

Lebih terperinci

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk)

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk) Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 71 78. TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.. Konsep Dasar Analisis Runtun Waktu Pada bagian ini akan dikemukakan beberapa definisi yang menyangkut pengertian dan konsep dasar analisis runtun waktu. Definisi Runtun waktu

Lebih terperinci

Pemodelan Data Time Series Garch(1,1) Untuk Pasar Saham Indonesia. Time Series With GARCH(1,1) Model for Indonesian Stock Markets

Pemodelan Data Time Series Garch(1,1) Untuk Pasar Saham Indonesia. Time Series With GARCH(1,1) Model for Indonesian Stock Markets Pemodelan Data Time Series Garch(1,1) Untuk Pasar Saham Indonesia Time Series With GARCH(1,1) Model for Indonesian Stock Markets Elfa Rafulta 1), Roni Tri Putra 2) 1) Jurusan Pendidikan Matematika, STKIP

Lebih terperinci

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Vol. 9, No., 9-5, Januari 013 Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Fitriani, Erna Tri Herdiani, M. Saleh AF 1 Abstrak Dalam analisis deret waktu

Lebih terperinci

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER I Ketut Putra Adnyana 1, I Wayan Sumarjaya 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas FMIPA

Lebih terperinci

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang BAB I PENDAHULUAN 1.1 Latar Belakang Time Series atau deret waktu merupakan barisan suatu nilai pengamatan yang diukur dalam rentang waktu tertentu dalam interval waktu yang sama. Analisis data deret waktu

Lebih terperinci

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA)

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) Ni Putu Deviyanti 1, Ni Ketut Tari Tastrawati 2, I Wayan Sumarjaya 3 1 Jurusan

Lebih terperinci

Jurnal Dinamika, April 2015, halaman Vol. 06. No. 1 ISSN

Jurnal Dinamika, April 2015, halaman Vol. 06. No. 1 ISSN Jurnal Dinamika, April 2015, halaman 61-66 Vol. 06. No. 1 ISSN 2087-7889 SIMULASI PERBANDINGAN METODE PERAMALAN MODEL GENERALIZED SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (GSARIMA) DENGAN SEASONAL

Lebih terperinci

PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN

PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN Danica Dwi Prahesti, Entit Puspita, Fitriani Agustina Departemen Pendidikan Matematika FPMIPA

Lebih terperinci

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data time series merupakan serangkaian data pengamatan yang berasal dari satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan interval

Lebih terperinci

Model Runtun Waktu Stasioner

Model Runtun Waktu Stasioner Chapter 3 Model Runtun Waktu Stasioner Proses-proses stasioner (W-S) yang penting adalah sebagai berikut: White Noise Moving Average: MA(), MA(q), MA( ) Autoregressive: AR(), AR(p), AR( ) Autoregressive

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa BAB II TINJAUAN PUSTAKA 2.1 Pengertian Investasi Menurut Fahmi dan Hadi (2009) investasi merupakan suatu bentuk pengelolaan dana guna memberikan keuntungan dengan cara menempatkan dana tersebut pada alokasi

Lebih terperinci

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah sesuatu kegiatan situasi atau kondisi yang diperkirakan akan

Lebih terperinci

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu dikarenakan peramalan dapat digunakan sebagai rujukan dalam menentukan tindakan yang akan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI PERNYATAAN... i ABSTRAK... ii KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... ix DAFTAR GAMBAR... x DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN... 1 1.1 Latar Belakang...

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Time Series atau runtun waktu adalah serangkaian data pengamatan yang berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara berurutan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG Fachrul Ulum Febriansyah dan Abadyo Universitas Negeri Malang E-mail: fachrul.febrian@gmail.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

Spesifikasi Model. a. ACF

Spesifikasi Model. a. ACF Dept. Statistika IPB, 0 Spesifikasi Model Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu:. Penentuan model tentatif (spesifikasi model) berdasarkan data contoh untuk mengidentifikasi

Lebih terperinci

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 Boy A Lumban Gaol 1, Tumpal Parulian Nababan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1

Lebih terperinci

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk.

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk. PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. Djoni Hatidja ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 955 email: dhatidja@yahoo.com ABSTRAK Penelitian ini

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

KONTRAK BELAJAR: ANALISIS RUNTUN WAKTU Arum Handini Primandari, M.Sc.

KONTRAK BELAJAR: ANALISIS RUNTUN WAKTU Arum Handini Primandari, M.Sc. KONTRAK BELAJAR: ANALISIS RUNTUN WAKTU Arum Handini Primandari, M.Sc. PETA KONSEP ANALISIS RUNTUN WAKTU (ARW) 2 TIMELINE PERKULIAHAN Pertemuan TOPIK/MATERI 1 Kontrak belajar, Pendahuluan: Data runtun waktu

Lebih terperinci

Pemodelan Vector Autoregresive (VAR) pada Komoditas Harga Cabai di Jawa Tengah

Pemodelan Vector Autoregresive (VAR) pada Komoditas Harga Cabai di Jawa Tengah Pemodelan Vector Autoregresive (VAR) pada Komoditas Harga Cabai di Jawa Tengah Memi Nor Hayati 1, Alan Prahutama 2,*, Hasbi Yasin 2, Tiani Wahyu Utami 3 1 Program Studi Statistika, Universitas Mulawarman

Lebih terperinci

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS Rais 1 1 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Metode Box-Jenkins

Lebih terperinci

3 Kesimpulan. 4 Daftar Pustaka

3 Kesimpulan. 4 Daftar Pustaka Litterman-2. Keuntungan aktual maksimal kedua kinerja Black Litterman ternyata terjadi pada waktu yang sama yaitu tanggal 19 Februari 2013. Secara umum dapat dinyatakan bahwa pembentukan portofolio dengan

Lebih terperinci

PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS

PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS SKRIPSI Disusun Oleh : ULFAH SULISTYOWATI 24010210120052 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 5 (1) (2016) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS PERBANDINGAN MENGGUNAKAN ARIMA DAN BOOTSTRAP PADA PERAMALAN NILAI EKSPOR INDONESIA Ari Cynthia, Sugiman,

Lebih terperinci

DAFTAR ISI ABSTRAK... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

DAFTAR ISI ABSTRAK... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... DAFTAR ISI Halaman ABSTRAK... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... i ii iii v ix x xi BAB I PENDAHULUAN... 1 1.1 Latar Belakang Masalah...

Lebih terperinci

1. I Wayan Sumarjaya, S.Si, M.Stats. 2. I Gusti Ayu Made Srinadi, S.Si, M.Si. ABSTRAK

1. I Wayan Sumarjaya, S.Si, M.Stats. 2. I Gusti Ayu Made Srinadi, S.Si, M.Si. ABSTRAK Judul : Peramalan Curah Hujan Menggunakan Metode Analisis Spektral Nama : Ni Putu Mirah Sri Wahyuni NIM : 1208405018 Pembimbing : 1. I Wayan Sumarjaya, S.Si, M.Stats. 2. I Gusti Ayu Made Srinadi, S.Si,

Lebih terperinci

PENERAPAN METODE ARIMA UNTUK PERAMALAN SUPLAI SUKU CADANG KENDARAAN BERMOTOR

PENERAPAN METODE ARIMA UNTUK PERAMALAN SUPLAI SUKU CADANG KENDARAAN BERMOTOR PENERAPAN METODE ARIMA UNTUK PERAMALAN SUPLAI SUKU CADANG KENDARAAN BERMOTOR TUGAS AKHIR Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Antonius

Lebih terperinci

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura Hak cipta dilindungi Undang-Undang Cetakan I, Agustus Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura ISBN: ---- Deskripsi halaman sampul : Gambar yang ada pada cover

Lebih terperinci

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA Gumgum Darmawan 1), Suhartono 2) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD 2) Staf Pengajar

Lebih terperinci

Penerapan Analisa Time Series Terhadap Nilai Matematika di SMAS Alfa Centauri Bandung.

Penerapan Analisa Time Series Terhadap Nilai Matematika di SMAS Alfa Centauri Bandung. Penerapan Analisa Time Series Terhadap Nilai Matematika di SMAS Alfa Centauri Bandung. Imam Nulhakim, Utriweni Mukhaiyar Institut Teknologi Bandung, Jl.Tamansari no 64, Bandung; imamnul@gmail.com Jl.Tamansari

Lebih terperinci

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman.

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Definisi Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Musiman berarti kecenderungan mengulangi pola tingkah gerak dalam periode musim, biasanya satu tahun untuk data bulanan. Karena

Lebih terperinci

ESTIMASI PARAMETER BOOTSTRAP PADA PROSES ARMA DAN APLIKASINYA PADA HARGA SAHAM

ESTIMASI PARAMETER BOOTSTRAP PADA PROSES ARMA DAN APLIKASINYA PADA HARGA SAHAM UJM 3 (2) (2014) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ESTIMASI PARAMETER BOOTSTRAP PADA PROSES ARMA DAN APLIKASINYA PADA HARGA SAHAM Yuliyanti Karomah, Putriaji Hendikawati

Lebih terperinci

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG SKRIPSI Disusun Oleh : NOVIA DIAN ARIYANI 24010211120016 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX) DENGAN VARIASI KALENDER

PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX) DENGAN VARIASI KALENDER PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX) DENGAN VARIASI KALENDER Oleh SAHETI ULLY FATWA M0109058 SKRIPSI ditulis dan diajukan

Lebih terperinci

PENENTUAN VALUE AT RISK

PENENTUAN VALUE AT RISK PENENTUAN VALUE AT RISK SAHAM KIMIA FARMA PUSAT MELALUI PENDEKATAN DISTRIBUSI PARETO TERAMPAT (Studi Kasus : Harga Penutupan Saham Harian Kimia Farma Pusat Periode Oktober 2009 September 2014) SKRIPSI

Lebih terperinci

Penerapan Metode ARCH/GARCH Dalam Peramalan Indeks Harga Saham Sektoral

Penerapan Metode ARCH/GARCH Dalam Peramalan Indeks Harga Saham Sektoral Jurnal Sains Matematika dan Statistika, Vol 2, No I, Januari 206 Penerapan Metode ARCH/GARCH Dalam Peramalan Indeks Harga Saham Sektoral Ari Pani Desvina, Nadyatul Rahmah 2,2 Jurusan Matematika Fakultas

Lebih terperinci

PEMODELAN RETURN SAHAM PERBANKAN MENGGUNAKAN EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH)

PEMODELAN RETURN SAHAM PERBANKAN MENGGUNAKAN EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2016, Halaman 91-99 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN RETURN SAHAM PERBANKAN MENGGUNAKAN EXPONENTIAL GENERALIZED

Lebih terperinci

Program Studi Matematika, Institut Teknologi Kalimantan, Balikpapan

Program Studi Matematika, Institut Teknologi Kalimantan, Balikpapan J. Math. and Its Appl. E-ISSN: 2579-8936 P-ISSN: 1829-605X Vol. 14, No. 2, Desember 2017, 25-37 Perbandingan Metode ARIMA dan Double Exponential Smoothing pada Peramalan Harga Saham LQ45 Tiga Perusahaan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis runtun waktu banyak diterapkan hampir di semua bidang kegiatan, antara lain bidang ekonomi, kesehatan, ilmu pengetahuan alam, dan sebagainya. Ada

Lebih terperinci

PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA

PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 771-780 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci