PENGANTAR ANALISA RUNTUN WAKTU

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGANTAR ANALISA RUNTUN WAKTU"

Transkripsi

1 DIKTAT KULIAH PENGANTAR ANALISA RUNTUN WAKTU Dr.rer.nat. Dedi Rosadi, M.Sc.Eng.Math. Program Studi Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada Yogyakarta,

2 Contents Kata Pengantar v 1 Pendahuluan Jenis data menurut waktu Klasifikasi model runtun waktu Konsep-konsep dasar Proses Stokastik Stasioner (Strictly) dan (Wide-Sense) Stasioner Hubungan antara stricly stasioner dan W S stasioner Model Runtun Waktu Stasioner Proses White Noise Proses MA(1) Proses MA(q) Proses AR(1) (skema Markov) Proses MA( ) Proses AR(p) Proses ARMA(p, q) Kausalitas dan Invertibilitas Kausalitas dari proses ARMA (p, q) Invertibilitas Menentukan koefisien-koefisien dari penyelesaian Kausal Fungsi Autokovariansi Proses Linear Stasioner Fungsi Autokorelasi Parsial Menentukan Fungsi kovariansi proses ARMA-kausal Hubungan antara AR(p) dan MA(q) Algoritma Durbin Levinson untuk PACF Peramalan dengan model ARMA 33 i

3 ii CONTENTS 5 Estimasi Fungsi Mean dan Autokorelasi Estimasi Mean Mean Ergodic Estimator untuk γ( ) dan ρ(.) Sampel Autokovariansi Sampel ACF Sampel PACF Estimasi Model ARMA Estimasi model Autoregresive Estimasi model Autoregresive dengan metode Yule Walker Sifat-sifat Estimator Y-W Estimasi dengan metode Least Square Estimasi dengan Metode Maksimum Likelihood Estimasi Proses Moving Average Substitusi estimator fungsi kovariansi Estimator Nonlinear Least square Estimator Maksimum Likelihood Estimasi Parameter model ARMA Pendahuluan Estimator Least Square Estimator Maksimum Likelihood Metode Kesalahan Prediksi (Prediction Error Method) Model Trend dan Musiman Model nonstasioner dalam mean Model Trend Deterministik Model ARIMA Model Non Stasioner dalam variansi dan autokovariansi Model Musiman (Seasonal Mode) Model Heteroskedastik Asset Return Definisi Sifat tipikal return Volatility Model ARCH/GARCH Struktur dari model Model untuk mean Model untuk volatilitas: ARCH

4 CONTENTS iii Model untuk Volatilitas: GARCH Pengujian Adanya Efek ARCH/GARCH

5 iv CONTENTS

6 Kata Pengantar Assalamualaikum Wr. Wb., Alhamdulillah, Puji dan syukur kami panjatkan ke hadirat Allah SWT, yang telah melimpahkan rahmat dan karunianya sehingga penulis dapat menyusun handout kuliah Analisa Runtun Waktu ini. Handout perkuliahan ini merupakan printout dari materi perkuliahan yang diberikan dikelas. Versi online dari handout ini dapat diakses di alamat di mana di alamat web ini terdapat pula berbagai informasi tambahan berkaitan dengan perkuliahan analisa runtun waktu, seperti data-data dan keterangan-keterangan penting lainnya. Penyusun mengucapkan terimakasih kepada PHK A3 Jurusan Matematika yang telah memberi dana bagi penyusunan handout ini melalui hibah pengajaran. Terimakasih pula kepada berbagai pihak yang telah membantu baik langsung maupun tidak langsung untuk penyusunan handout ini. Besar harapan kami agar handout ini dapat bermanfaat bagi penggunanya. Saran dan kritik membangun sangat diharapkan untuk perbaikan perkuliahan ini, dan dapat dikirikan ke alamat penyusun dialamat Wassalamualaikum Wr. Wb. Yogyakarta, Juli 2006 Penyusun Dr. Dedi Rosadi, S.Si., M.Sc. v

7 Chapter 1 Pendahuluan 1.1 Jenis data menurut waktu Untuk dapat memahami pemodelan runtun waktu, perlu diketahui beberapa jenis data menurut waktu, yang dapat dibedakan sebagai berikut: Cross-section data, yakni jenis data yang dikumpulkan untuk/pada sejumlah individu/kategori untuk sejumlah variabel pada suatu titik waktu tertentu. Model yang digunakan untuk memodelkan data tipe ini seperti model regresi (cross-section) Time Series (Runtun waktu) data yakni jenis data yang dikumpulkan menurut urutan waktu dalam suatu rentang waktu tertentu. Jika waktu dipandang bersifat diskrit (waktu dapat dimodelkan bersifat kontinu), frekuensi pengumpulan selalu sama (equidistant). Dalam kasus diskrit, frekuensi dapat berupa misalnya detik, menit, jam, hari, minggu, bulan atau tahun. Model yang digunakan adalah model-model time series, yang menjadi fokus dari perkuliahan ini. Panel/Pooled data, yakni tipe data yang dikumpulkan menurut urutan waktu dalam suatu rentang waktu tertentu pada sejumlah individu/kategori. Model yang digunakan untuk pemodelan data tipe ini seperti model data panel, model runtun waktu multivariat. Secara ekuivalen, dikenal juga tipe data Longitudinal, dengan frekuensi data tidak harus equidistant, namun analisa fokusnya berbeda dengan model panel. Contoh Contoh data panel : Misalkan dimiliki data produksi gula bulanan dari 10 pabrik gula di Indonesia dalam 12 bulan terakhir Januari Februari. Desember PG1 PG2 PG3... PG Klasifikasi model runtun waktu Salah satu pengelompokan model-model runtun waktu dapat diberikan sebagai berikut: 1

8 2 CHAPTER 1. PENDAHULUAN 1. Model stasioner, yakni suatu model yang sedemikian hingga semua sifat statistiknya tidak berubah dengan pergeseran waktu (yakni bersifat time invariant). Dalam aplikasi, sifat statistik yang sering menjadi perhatian adalah rata-rata (expected value),variansi (variance) serta ukuran keeratan (dependence) yakni fungsi kovariansi (covariance function), yang mana suatu model yang memenuhi sifat ini disebut sebagai proses weakly-stasioner. Pada model stasioner, sifat-sifat statistiknya dimasa yang akan datang dapat diramalkan berdasarkan data historis yang telah terjadi dimasa yang lalu. Beberapa model runtun waktu stasioner (khususnya sering disebut model linear dan homoskedastik) yang akan dibahas pada kuliah ini adalah model i.i.d., white noise, moving average, Autoregressive Moving average (ARMA), dan model ARMA dengan variabel eksogen/prediktor (yakni model ARMAX). 2. Model non-stasioner, yakni model yang tidak memenuhi sifat model stasioner diatas Dalam kuliah ini, akan dibahas beberapa model non stasioner, yakni model trend, model Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), Model ARIMAX, model heteroskedastik ARCH/GARCH. Ada sangat banyak model lain yang dikenal didalam literatur, sebagai contoh model siklus, model dengan long memory Fractional ARIMA, dan modelmodel lain, baik model linear maupun non linear. Klasifikasi lain dari model runtun waktu dapat diberikan sebagai berikut: Model univariat : hanya mengamati satu variabel/individu runtun waktu Model multivariate (multivariabel): lebih dari satu variabel/individu runtun waktu Contoh model multivariat yang relatif populer: model Vector Autoregressive (VAR) model State-Space model Space-Time, banyak digunakan untuk pemodelan data-data geografi, data-data fisika/geofisika. Dalam pemodelan data tipe ini, dapat juga digunakan pendekatan VAR model multivariate Arch/GARCH, dan lain-lain Klasifikasi lain dalam pengelompokan model runtun waktu dapat digambarkan dengan tabel berikut: Linear dengan error Gaussian, misal: ARMA, ARIMA, ARIMAX + normal Linear dengan error non-gaussian, misal: ARMA + student t, ARMA+stable non-linear dengan error Gaussian misal: Threshold AR, STAR, SETAR + normal non-linear dengan error non-gaussian misal: TAR, STAR, SETAR+non normal Fokus perkuliahan ini adalah analisa model runtun waktu pada domain waktu dimana Waktu bersifat diskrit Model Univariate Model Linear dengan error normal Model stasioner dan beberapa model non stasioner Analisa time series dapat dilakukan dalam domain frekuensi, yang dikenal sebagai spectral analysis. Analisa tipe ini banyak digunakan pada aplikasi di bidang teknik. Buku Acuan Utama :

9 1.2. KLASIFIKASI MODEL RUNTUN WAKTU 3 1. Wei, W.S, 1994, Time Series Analysis: Univariate and Multivariate Methods, Addison Wesley. 2. Enders, W., Applied Econometrics Times Series, 2nd Eds., Wiley. 3. Brockwell, P.J. dan Davis, R.A., Introduction to Time Series and Forecasting, Brockwell, P.J. dan Davis, R.A., 1991, Time Series: Theory and methods, Springer Verlag. Buku penunjang, diantaranya 1. Hamilton, Time Series Analysis, Princeton. 2. Gouri éroux, C., 1997, ARCH Models and Financial Application, Springer. Diktat Kuliah 1. Rosadi, D., Pengantar Analisa Data Runtun Waktu dengan EViews 4, Lab Komputasi Matematika Statistika, FMIPA UGM 2. Rosadi, D., 2006, Pengantar Analisa Data Runtun Waktu, Program Studi Statistika FMIPA UGM. Selain itu akan digunakan sejumlah literature online di Internet, yang akan diinformasikan selama kuliah berlangsung

10 4 CHAPTER 1. PENDAHULUAN

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH)

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 80 88 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 59 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA ANNISA UL UKHRA Program Studi Matematika,

Lebih terperinci

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK. Jurnal Matematika UNAND Vol. VI No. 1 Hal. 25 32 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia statistika terdapat serangkaian pengamatan data yang dapat dijadikan sebagai model time series (runtun waktu) untuk meramalkan kejadian pada periode berikutnya.

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN

PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN Putu Ika Oktiyari Laksmi 1, Komang Dharmawan 2, Luh Putu Ida Harini 3 1 Jurusan Matematika,

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017 1 Ada tiga tahapan iteratif dalam pemodelan data deret waktu yang berbasis model ARIMA, yaitu: 1. Penentuan model

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya PEMODELAN RETURN IHSG PERIODE 15 SEPTEMBER 1998 13 SEPTEMBER 2013 MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (TGARCH(1,1)) DENGAN DUA THRESHOLD Suma Suci Sholihah,

Lebih terperinci

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Abstract

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Abstract Estimasi Parameter (Mika Asrini) ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Mika Asrini 1, Winita Sulandari 2, Santoso Budi Wiyono 3 1 Mahasiswa

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR)

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR) PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR) SKRIPSI Oleh : PRISKA RIALITA HARDANI 24010211120020 DEPARTEMEN STATISTIKA FAKULTAS

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

Ekonometrika Deret Waktu: Teori dan Aplikasi

Ekonometrika Deret Waktu: Teori dan Aplikasi Ekonometrika Deret Waktu: Teori dan Aplikasi Bambang Juanda, Junaidi Ekonometrika telah berkembang cukup pesat dalam 15 tahun terakhir,terutama dalam bidang analisis data deret waktu (time series ), termasuk

Lebih terperinci

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Jurnal UJMC, Volume 2, Nomor 1, Hal. 28-35 pissn : 2460-3333 eissn: 2579-907X PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Novita Eka Chandra 1 dan Sarinem 2 1 Universitas

Lebih terperinci

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS S-9 PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Retno Hestiningtyas dan Winita Sulandari, M.Si Jurusan Matematika FMIPA UNS ABSTRAK. Pada data finansial sering terjadi keadaan leverage effect,

Lebih terperinci

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran

Lebih terperinci

Model Time Series Auto Regressive untuk Menentukan Nilai Tukar mata Uang Rupiah terhadap Dollar Amerika

Model Time Series Auto Regressive untuk Menentukan Nilai Tukar mata Uang Rupiah terhadap Dollar Amerika Model Time Series Auto Regressive untuk Menentukan Nilai Tukar mata Uang Rupiah terhadap Dollar Amerika Adi Asriadi dan Taryo 12 Juni 2005 Abstraksi Tujuan utama dari makalah ini adalah untuk menentukan

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 Nanang WIdodo Penelid Staslun Pengamat Dlrgantara Watukosek, LAPAN ABSTRACT The time series of the monthly number

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

3.9 Fungsi Autokovariansi Proses Linear Stasioner

3.9 Fungsi Autokovariansi Proses Linear Stasioner 3.9. FUNGSI AUTOKOVARIANSI PROSES LINEAR STASIONER jika D(z) = a z kausal maka z = a > a < maka a j 0; j sehingga akan berhingga X t = h jε t j stasioner. 3.9 Fungsi Autokovariansi Proses Linear Stasioner

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Saham adalah surat berharga yang menjadi bukti seseorang berinvestasi pada suatu perusahaan. Harga saham selalu mengalami perubahan harga atau biasa disebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.. Konsep Dasar Analisis Runtun Waktu Pada bagian ini akan dikemukakan beberapa definisi yang menyangkut pengertian dan konsep dasar analisis runtun waktu. Definisi Runtun waktu

Lebih terperinci

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk)

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk) Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 71 78. TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari

Lebih terperinci

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER I Ketut Putra Adnyana 1, I Wayan Sumarjaya 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas FMIPA

Lebih terperinci

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang BAB I PENDAHULUAN 1.1 Latar Belakang Time Series atau deret waktu merupakan barisan suatu nilai pengamatan yang diukur dalam rentang waktu tertentu dalam interval waktu yang sama. Analisis data deret waktu

Lebih terperinci

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA)

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) Ni Putu Deviyanti 1, Ni Ketut Tari Tastrawati 2, I Wayan Sumarjaya 3 1 Jurusan

Lebih terperinci

Model Runtun Waktu Stasioner

Model Runtun Waktu Stasioner Chapter 3 Model Runtun Waktu Stasioner Proses-proses stasioner (W-S) yang penting adalah sebagai berikut: White Noise Moving Average: MA(), MA(q), MA( ) Autoregressive: AR(), AR(p), AR( ) Autoregressive

Lebih terperinci

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data time series merupakan serangkaian data pengamatan yang berasal dari satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan interval

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa BAB II TINJAUAN PUSTAKA 2.1 Pengertian Investasi Menurut Fahmi dan Hadi (2009) investasi merupakan suatu bentuk pengelolaan dana guna memberikan keuntungan dengan cara menempatkan dana tersebut pada alokasi

Lebih terperinci

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu dikarenakan peramalan dapat digunakan sebagai rujukan dalam menentukan tindakan yang akan

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 5 (1) (2016) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS PERBANDINGAN MENGGUNAKAN ARIMA DAN BOOTSTRAP PADA PERAMALAN NILAI EKSPOR INDONESIA Ari Cynthia, Sugiman,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura Hak cipta dilindungi Undang-Undang Cetakan I, Agustus Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura ISBN: ---- Deskripsi halaman sampul : Gambar yang ada pada cover

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS

PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS SKRIPSI Disusun Oleh : ULFAH SULISTYOWATI 24010210120052 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

Spesifikasi Model. a. ACF

Spesifikasi Model. a. ACF Dept. Statistika IPB, 0 Spesifikasi Model Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu:. Penentuan model tentatif (spesifikasi model) berdasarkan data contoh untuk mengidentifikasi

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG Fachrul Ulum Febriansyah dan Abadyo Universitas Negeri Malang E-mail: fachrul.febrian@gmail.com

Lebih terperinci

KONTRAK BELAJAR: ANALISIS RUNTUN WAKTU Arum Handini Primandari, M.Sc.

KONTRAK BELAJAR: ANALISIS RUNTUN WAKTU Arum Handini Primandari, M.Sc. KONTRAK BELAJAR: ANALISIS RUNTUN WAKTU Arum Handini Primandari, M.Sc. PETA KONSEP ANALISIS RUNTUN WAKTU (ARW) 2 TIMELINE PERKULIAHAN Pertemuan TOPIK/MATERI 1 Kontrak belajar, Pendahuluan: Data runtun waktu

Lebih terperinci

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 Boy A Lumban Gaol 1, Tumpal Parulian Nababan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1

Lebih terperinci

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk.

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk. PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. Djoni Hatidja ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 955 email: dhatidja@yahoo.com ABSTRAK Penelitian ini

Lebih terperinci

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA Gumgum Darmawan 1), Suhartono 2) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD 2) Staf Pengajar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS Rais 1 1 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Metode Box-Jenkins

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG SKRIPSI Disusun Oleh : NOVIA DIAN ARIYANI 24010211120016 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

3 Kesimpulan. 4 Daftar Pustaka

3 Kesimpulan. 4 Daftar Pustaka Litterman-2. Keuntungan aktual maksimal kedua kinerja Black Litterman ternyata terjadi pada waktu yang sama yaitu tanggal 19 Februari 2013. Secara umum dapat dinyatakan bahwa pembentukan portofolio dengan

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman.

Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Definisi Seasonal ARIMA adalah model ARIMA yang mengandung faktor musiman. Musiman berarti kecenderungan mengulangi pola tingkah gerak dalam periode musim, biasanya satu tahun untuk data bulanan. Karena

Lebih terperinci

Penerapan Analisa Time Series Terhadap Nilai Matematika di SMAS Alfa Centauri Bandung.

Penerapan Analisa Time Series Terhadap Nilai Matematika di SMAS Alfa Centauri Bandung. Penerapan Analisa Time Series Terhadap Nilai Matematika di SMAS Alfa Centauri Bandung. Imam Nulhakim, Utriweni Mukhaiyar Institut Teknologi Bandung, Jl.Tamansari no 64, Bandung; imamnul@gmail.com Jl.Tamansari

Lebih terperinci

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH)

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 3, Tahun 2016, Halaman 465-474 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA 1 Harnum Annisa Prafitia dan 2 Irhamah

Lebih terperinci

PEMODELAN MARKOV SWITCHING VECTOR AUTOREGRESSIVE (MSVAR) Hayuk Permatasari, Budi Warsito 2, Sugito 3

PEMODELAN MARKOV SWITCHING VECTOR AUTOREGRESSIVE (MSVAR) Hayuk Permatasari, Budi Warsito 2, Sugito 3 ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 3, Tahun 2014, Halaman 421-430 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN MARKOV SWITCHING VECTOR AUTOREGRESSIVE (MSVAR) Hayuk

Lebih terperinci

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria)

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 131-140 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN

Lebih terperinci

PEMODELAN MARKOV SWITCHING AUTOREGRESSIVE

PEMODELAN MARKOV SWITCHING AUTOREGRESSIVE PEMODELAN MARKOV SWITCHING AUTOREGRESSIVE asa M arga ro) C ng Semara SKRIPSI Oleh : FIQRIA DEVI ARIYANI 24010210120021 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO 2014 PEMODELAN

Lebih terperinci

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA (S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA Jimmy Ludin Mahasiswa Program Magister Jurusan Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN

PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN 1962 1975 Jantini Trianasari Natangku dan Fitria Puspitoningrum Mahasiswa Program Studi Matematika Fakultas Sains dan Matematika

Lebih terperinci

Metode Cochrane-Orcutt untuk Mengatasi Autokorelasi pada Regresi Ordinary Least Squares

Metode Cochrane-Orcutt untuk Mengatasi Autokorelasi pada Regresi Ordinary Least Squares Metode Cochrane-Orcutt untuk Mengatasi Autokorelasi pada Regresi Ordinary Least Squares The Cochrane-Orcutt Method for Solution of Autocorrelation in Ordinary Least Squares Regression M. Fathurahman Program

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 635-643 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERHITUNGAN VALUE AT RISK MENGGUNAKAN MODEL INTEGRATED GENERALIZED

Lebih terperinci

BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA. Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi

BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA. Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi atau getaran dari sebuah data pada frekuensi tertentu. Analisis spektral

Lebih terperinci

PREDIKSI INDEKS HARGA SAHAM GABUNGAN DENGAN MODEL AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY SKRIPSI. Oleh : INA YULIANA J2A

PREDIKSI INDEKS HARGA SAHAM GABUNGAN DENGAN MODEL AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY SKRIPSI. Oleh : INA YULIANA J2A PREDIKSI INDEKS HARGA SAHAM GABUNGAN DENGAN MODEL AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY SKRIPSI Oleh : INA YULIANA J2A 605 058 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Desain Penelitian Desain penelitian mempunyai peranan yang sangat penting, karena keberhasilan suatu penelitian sangat dipengaruhi oleh pilihan desain atau model penelitian.

Lebih terperinci

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL E-Jurnal Matematika Vol. 5 (4), November 2016, pp. 183-193 ISSN: 2303-1751 PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL Ni Putu Mirah Sri Wahyuni 1, I Wayan Sumarjaya 2, I Gusti Ayu Made

Lebih terperinci

BAB I PENDAHULUAN. untuk mendapatkan sebuah hasil yang optimal, sementara terdapat selang

BAB I PENDAHULUAN. untuk mendapatkan sebuah hasil yang optimal, sementara terdapat selang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Masalah peramalan menjadi sangat penting karena adanya keinginan untuk mendapatkan sebuah hasil yang optimal, sementara terdapat selang waktu antara keinginan

Lebih terperinci

PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Oleh LIANA KUSUMA NINGRUM M0105047 SKRIPSI ditulis dan diajukan

Lebih terperinci

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer 1 Faridah Yuliani dan 2 Dr. rer pol Heri Kuswanto 1,2 Jurusan Statistika

Lebih terperinci

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS Jurnal EKSPONENSIAL Volume 3, Nomor, Mei 2 ISSN 8-7829 Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2 Dengan Metode ARIMA BOX-JENKINS Forecasting The Number

Lebih terperinci

KETERKAITAN ANTARA NILAI RATA-RATA DAN NILAI KONSTAN DALAM PEMODELAN RUNTUN WAKTU BOX-JENKINS

KETERKAITAN ANTARA NILAI RATA-RATA DAN NILAI KONSTAN DALAM PEMODELAN RUNTUN WAKTU BOX-JENKINS KETERKAITAN ANTARA NILAI RATA-RATA DAN NILAI KONSTAN DALAM PEMODELAN RUNTUN WAKTU BOX-JENKINS Jamil 1, Raupong 2, Erna 3 ABSTRAK Pada awal perkembangannya, metode peramalan yang sering digunakan adalah

Lebih terperinci

MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA. Salatiga, Jawa Tengah, Indonesia

MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA. Salatiga, Jawa Tengah, Indonesia MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA Adi Nugroho 1, Bistok Hasiholan Simanjuntak 2 1 Staf pengajar di Fakultas Teknologi Informasi

Lebih terperinci

EKONOMETRI TIME SERIES SANJOYO

EKONOMETRI TIME SERIES SANJOYO EKONOMETRI TIME SERIES SANJOYO TOPIK - TOPIK 1. Pengertian Dasar 2. Pengujian Stasioneritas 3. ARMA & ARIMA 4. ARCH & GARCH 5. VAR 6. COINTEGRATION & ECM 7. SIMULTAN EQUATION ARMA & ARIMA(1) Metodologi

Lebih terperinci

AUTOREGRESSIVE (MSVAR) SKRIPSI

AUTOREGRESSIVE (MSVAR) SKRIPSI PEMODELAN MARKOV SWITCHING VECTOR AUTOREGRESSIVE (MSVAR) SKRIPSI Disusun Oleh: HAYUK PERMATASARI 24010210130066 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG 2014 PEMODELAN

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Esti Pertiwi, 2013

BAB I PENDAHULUAN 1.1 Latar Belakang Esti Pertiwi, 2013 BAB I PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan salah satu kebutuhan yang sangat penting bagi kehidupan manusia, terutama sebagai salah satu faktor dalam pengambilan keputusan. Peramalan biasanya

Lebih terperinci

Time series Linier Models

Time series Linier Models Time series Linier Models We have learned simple extrapolation techniques for deterministic and stochastic time series models. In addition, we also have learned stationery and non stationery time series

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 1, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 1, Tahun 2015, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 1, Tahun 2015, Halaman 151-160 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian IDENTIFIKASI CURAH HUJAN EKSTREM DI KOTA SEMARANG MENGGUNAKAN

Lebih terperinci

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 La Pimpi //Paradigma, Vol. 17 No. 2, Oktober 2013, hlm. 35-46 PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 1) La Pimpi 1 Staf Pengajar Jurusan Matematika, FMIPA,

Lebih terperinci

SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU

SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU Asep Saefuddin, Anang Kurnia dan Sutriyati Departemen Statistika FMIPA IPB Ringkasan Data deret waktu pada bidang keuangan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 38 III. METODE PENELITIAN A. Konsep Dasar dan Batasan Operasional Konsep dasar dan definisi opresional mencakup pengertian yang dipergunakan untuk mendapatkan dan menganalisis data sesuai dengan tujuan

Lebih terperinci

KOMBINASI PROSEDUR PEMODELAN SUBSET ARIMA DAN DETEKSI OUTLIER UNTUK PREDIKSI DATA RUNTUN WAKTU

KOMBINASI PROSEDUR PEMODELAN SUBSET ARIMA DAN DETEKSI OUTLIER UNTUK PREDIKSI DATA RUNTUN WAKTU UNIVERSITAS DIPONEGORO 013 ISBN: 978-60-14387-0-1 KOMBINASI PROSEDUR PEMODELAN SUBSET ARIMA DAN DETEKSI OUTLIER UNTUK PREDIKSI DATA RUNTUN WAKTU Tarno Program Studi Statistika FSM UNDIP e-mail: tarno@undip.ac.id

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER

PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER (Studi Kasus Indeks Harga Saham Gabungan dan Harga Minyak Mentah Dunia Tahun 2013 sampai 2015) SKRIPSI Oleh: DEBY FAKHRIYANA 24010212130041

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 705-715 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN DAN PERAMALAN VOLATILITAS PADA RETURN SAHAM BANK BUKOPIN

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH)

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH) PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH) SKRIPSI Disusun oleh: MAIDIAH DWI NARURI SAIDA 24010212120003 DEPARTEMEN

Lebih terperinci

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Oleh RETNO HESTININGTYAS M0106061 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci