BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara"

Transkripsi

1 BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan secara sistematis. Seiring pesatnya kemajuan ilmu pengetahuan, kesadaran mengenai peristiwa mendatang semakin bertambah dan akibatnya kebutuhan akan peramalan semakin meningkat. Hujan adalah butiran-butiran air yang dicurahkan dari atmosfer dan jatuh ke permukaan bumi. Hujan merupakan fenomena alam yang dampaknya terasa langsung oleh manusia dalam beraktivitas. Prakiraan parameter atmosfer terutama hujan sudah menjadi kebutuhan nasional. Hal itu dikarenakan banyaknya masalah yang timbul akibat curah hujan yang turun di atas batas normal maupun di bawah batas normal. Semua itu dapat diantisipasi dengan informasi yang akurat tentang curah hujan yang akan turun di suatu tempat pada suatu saat (Juaeni, 2006). Untuk itu perlu adanya peramalan curah hujan. Peramalan yang dilakukan adalah peramalan berdasarkan deret waktu (time series). Data deret waktu adalah suatu rangkaian pengamatan berdasarkan urutan waktu dari karakteristik kuantitatif dari satu atau kumpulan kejadian yang diambil dalam periode waktu tertentu. Untuk memahami karakteristik-karakteristik yang dimiliki oleh data deret waktu, para peneliti telah mengadopsi metode-metode analisis data deret waktu yang salah satu tujuannya tidak lain adalah untuk menemukan suatu keteraturan atau pola yang dapat digunakan dalam peramalan kejadian mendatang. Untuk menentukan metode peramalan pada data deret waktu perlu diketahui pola dari data tersebut sehingga peramalan dengan metode yang sesuai dengan pola data dapat dilakukan. Pola data dapat dibedakan menjadi empat jenis, yaitu pola musiman, siklis, trend, dan irregular (Hanke dan Wichern, 2005:158). Pola musiman merupakan fluktuasi dari data yang terjadi secara periodik dalam kurun waktu satu tahun, seperti triwulan, kuartalan, bulanan, mingguan, atau

2 harian. Pola siklis merupakan fluktuasi dari data untuk waktu yang lebih dari satu tahun. Pola ini sulit dideteksi dan tidak dapat dipisahkan dari pola trend. Pola trend merupakan kecenderungan arah data dalam jangka panjang, dapat berupa kenaikan maupun penurunan. Pola irregular merupakan kejadian yang tidak terduga dan bersifat acak, tetapi kemunculannya dapat mempengaruhi fluktuasi data deret waktu. Permasalahan musiman sering dijumpai dalam fenomena kehidupan sehari-hari. Data curah hujan termasuk pola data musiman. Musiman berarti kecenderungan mengulangi pola tingkah gerak dalam periode musim, biasanya satu tahun untuk data bulanan. Oleh sebab itu, deret waktu musiman mempunyai karateristik yang ditunjukkan oleh adanya korelasi beruntun yang kuat pada jarak musiman. Untuk data model stokastik terdapat beberapa model yang dapat digunakan seperti AR, MA, ARMA, ARIMA, Seasonal ARIMA dan lainnya. Autoregressive Integrated Moving Average (ARIMA) sering juga disebut metode deret waktu Box-Jenkins. Namun metode ARIMA yang terbentuk belum menitikberatkan kejadian musiman (seasonal) yang merupakan sifat data curah hujan. Metode Seasonal ARIMA merupakan bentuk khusus untuk data musiman dari model ARIMA. Metode ini memiliki beberapa asumsi yang harus terpenuhi sehingga memiliki kekuatan dari pendekatan teori statistik. Metode Dekomposisi termasuk pendekatan peramalan tertua, yang awalnya digunakan para ahli ekonomi untuk mengenali dan mengendalikan siklus bisnis. Metode ini mencoba menguraikan pola-pola dasar deret berkala menjadi sub pola musim, siklus, trend, dan random. Beberapa sub pola kemudian dianalisis secara terpisah, diekstrapolasi ke depan dan kemudian digabung kembali untuk mendapatkan ramalan data asli. Metode ini mempunyai asumsi bahwa data tersusun dari pola dan kesalahan. Jadi, di samping komponen pola, terdapat pula unsur kesalahan atau kerandoman. Berdasarkan uraian tersebut, penulis mengambil judul Peramalan Curah Hujan di Kota Medan dengan Menggunakan Metode Seasonal ARIMA dan Metode Dekomposisi.

3 1.2 Perumusan Masalah Permasalahan yang akan dikaji dalam penelitian ini adalah bagaimana memodelkan data deret waktu curah hujan dengan menggunakan metode Seasonal ARIMA dan metode Dekomposisi, mengetahui besar tingkat keakuratan peramalan oleh kedua metode tersebut dan menggunakan metode yang terbaik untuk meramalkan curah hujan pada periode selanjutnya. 1.3 Batasan Masalah Dalam penelitian ini, penulis hanya membatasi pada penerapan metode Seasonal ARIMA dan metode Dekomposisi, serta perbandingan keduanya untuk meramalkan curah hujan bulanan di Kota Medan. Masalah yang diteliti dibatasi pada penghitungan nilai MAPE (Mean Absolute Percentage Error) pada hasil peramalan kedua metode tersebut. Data yang digunakan adalah data curah hujan bulanan Kota Medan selama periode Januari 2004 Desember 2015 dari Stasiun Klimatologi Klas I Sampali. Data digunakan hanya sebagai bahan untuk perhitungan dan variabel cuaca lainnya diasumsikan konstan dan tidak mempengaruhi variabel yang dimodelkan. 1.4 Tujuan Penelitian Tujuan dari penelitian ini adalah mencari model yang tepat untuk meramalkan curah hujan dengan menggunakan metode Seasonal ARIMA dan metode Dekomposisi serta meramalkan curah hujan di periode selanjutnya dengan metode yang tingkat keakuratannya lebih tinggi. 1.5 Manfaat Penelitian Penelitian ini diharapkan dapat bermanfaat memberikan suatu metode alternatif untuk peramalan curah hujan khususnya kepada Stasiun Klimatologi Klas I Sampali Medan dan dapat digunakan sebagai tambahan informasi dan referensi bacaan untuk mahasiswa Matematika, terlebih bagi mahasiswa yang akan melakukan penelitian serupa.

4 1.6 Tinjauan Pustaka 1. Metode Seasonal ARIMA Metode ARIMA merupakan integrasi dari beberapa metode runtun waktu terlebih dahulu ada (Vandaele, 1983). Dasar dari pendekatan metode ini terdiri dari tiga tahap yaitu identifikasi, penaksiran dan pengujian, serta penerapan. Jika data mempunyai pola musiman, maka metode yang lebih tepat adalah Seasonal ARIMA (Munawaroh, 2010). Metode ini digunakan untuk pola data musiman. Pola data musiman terjadi ketika data dipengaruhi faktor musiman yang signifikan sehingga data naik dan turun dengan pola yang berulang dari satu periode ke periode berikutnya. 2. Metode Dekomposisi mengidentifikasi komponen-komponen yang mempengaruhi tiap-tiap nilai pada sebuah data deret waktu (Makridakis, 1999). Setiap komponen diidentifikasi secara terpisah dan proyeksi dari setiap komponen ini kemudian digabung untuk menghasilkan ramalan nilainilai masa mendatang dari data deret waktu tersebut. Metode Dekomposisi juga dapat digunakan untuk meramalkan suatu peristiwa yang terjadi dengan pola musiman (Subekti, 2010). Metode Dekomposisi mencoba memisahkan tiga komponen yaitu trend, siklus, dan musiman dari pola dasar yang cenderung mencirikan pola data deret waktu. 1.7 Metodologi Penelitian Metodologi penelitian yang digunakan dalam penelitian ini adalah: 1. Studi literatur. Tahap ini dilakukan dengan mengidentifikasi permasalahan, mengkaji dan menganalisis metode peramalan Seasonal ARIMA dan metode Dekomposisi. Penelusuran referensi ini bersumber dari buku, jurnal maupun penelitian yang telah ada sebelumnya mengenai hal-hal yang berhubungan dengan metode Seasonal ARIMA dan metode Dekomposisi dalam peramalan. 2. Pengumpulan data. Pada tahap ini dilakukan pengambilan data curah hujan. Data yang digunakan adalah data sekunder yang diperoleh dari Stasiun Klimatologi Klas I Sampali

5 yaitu data bulanan curah hujan periode Januari Desember 2015 (Lampiran 9). 3. Membuat landasan teori. Setelah mendapatkan data yang dimaksud, selanjutnya dilakukan pembahasan secara teoritis mengenai metode yang digunakan dalam penelitian berdasarkan hasil studi literatur. Hal ini dilakukan untuk mengetahui bagaimana metode yang digunakan dalam kajian teorinya sebelum digunakan dalam penelitian. Pembahasan ini dituangkan dalam landasan teori. 4. Peramalan data curah hujan menggunakan metode Seasonal ARIMA dan metode Dekomposisi. Pada tahap ini dilakukan peramalan data curah hujan dengan metode Seasonal ARIMA dan metode Dekomposisi kemudian dihitung nilai MAPE dari masing-masing model. a. Langkah-langkah untuk melakukan peramalan dengan metode Seasonal ARIMA adalah sebagai berikut: 1. Pemeriksaan Kestasioneran Data Untuk menguji apakah data yang digunakan memiliki sifat stasioner atau tidak, dapat dilihat dari grafik ACF. Data yang tidak stasioner akan memiliki pola yang cenderung lambat menuju nol pada beberapa lag awal. Selain itu, karena data yang digunakan memiliki unsur musiman, maka akan terlihat beberapa korelasi yang lebih signifikan dan berulang sepanjang musiman data. Untuk mengujinya dapat dilakukan dengan uji Augmented Dicky-Fuller. Jika data menunjukkan ketidakstasioneran maka perlu diputuskan apakah data tidak stasioner secara rata-rata atau varians atau keduanya, selanjutnya dapat diatasi dengan pembedaan atau differencing. 2. Identifikasi Model Setelah data dinyatakan bersifat stasioner baik secara rata-rata maupun varians, maka dapat dilakukan pemilihan model yang tepat berdasarkan kriteria yang ada. Model yang tepat akan memberikan peramalan yang lebih akurat.

6 3. Estimasi Parameter dari Model Setelah beberapa model terpilih, langkah selanjutnya adalah mengestimasi parameter-parameter dari model itu sendiri. Pada penelitian ini, metode yang digunakan untuk mengestimasi parameter model adalah metode perbaikan secara iteratif. Taksiran awal dipilih lalu diperhalus secara iteratif hingga kesalahan menjadi sekecil mungkin. 4. Pengujian Model Setelah model-model terpilih diestimasi nilai parameternya, selanjutnya diuji apakah model tersebut sesuai dengan data. Pengujian yang dilakukan antara lain adalah uji keberartian koefisien dan memenuhi asumsi white noise. Dari beberapa model yang memenuhi asumsi keberartian koefisien dan asumsi white noise, akan dipilih satu model terbaik yang ditentukan dengan nilai MSE dari masing-masing model. 5. Peramalan Setelah model terbaik dari beberapa model dugaan sementara dipilih, selanjutnya dilakukan peramalan untuk periode selanjutnya menggunakan model tersebut. Hasil peramalan dari metode Seasonal ARIMA yang diperoleh akan dibandingkan dengan hasil peramalan dari metode Dekomposisi menggunakan data input 2 musim terakhir yaitu periode Januari 2014 Desember b. Langkah-langkah yang dilakukan dalam peramalan data curah hujan dengan metode Dekomposisi adalah sebagai berikut: 1. Menghitung Indeks Musiman Langkah-langkahnya adalah sebagai berikut: a. Menghitung rata-rata bergerak sepanjang ll musiman ( nn data berurutan). b. Menghitung rasio antara data aktual dengan rata-rata bergerak yang bersesuaian sehingga tersisa komponen musiman dan kesalahan. c. Komponen musiman dan kesalahan ini kemudian disusun sesuai dengan periodenya (pada bulan yang sama di tiap tahun) masing-

7 d. masing dan dihitung rata-rata medialnya (rata-rata dari data yang telah dikeluarkan nilai terbesar dan terkecil) untuk setiap periode yang bersesuaian. e. Rata-rata medial ini kemudian dikali dengan faktor penyesuaian agar jumlah rata-rata medial untuk semua periode menjadi nn (panjang musiman). Hasil akhir adalah indeks musimannya. 2. Pencocokan Trend Sebelum pencocokan trend, terlebih dahulu menghitung deseasonalized dari data asli yaitu membagi data asli dengan indeks musiman. Data ini yang akan menjadi data dasar melakukan proyeksi dengan regresi linier sederhana untuk menentukan persamaan garis trend linier. 3. Peramalan Setelah dilakukan pencocokan trend, maka dapat dilakukan peramalan untuk periode selanjutnya dengan menggunakan faktor-faktor yang telah diduga sebelumnya, yaitu faktor trend dan musiman. Hasil peramalan dari metode Dekomposisi yang diperoleh akan dibandingkan dengan hasil peramalan dari metode Seasonal ARIMA menggunakan data input 2 musim terakhir yaitu periode Januari 2014 Desember Membandingkan hasil peramalan. Pada tahap ini setelah dilakukan peramalan dengan metode Seasonal ARIMA kemudian hasil peramalan yang diperoleh dibandingkan dengan hasil peramalan dengan metode Dekomposisi dilihat dari nilai MAPE. Keakuratan peramalan dapat dilihat berdasarkan MAPE yang diperoleh dari masingmasing metode menggunakan data input 2 musim terakhir yaitu data curah hujan periode Januari 2014 sampai Desember Jika MAPE lebih kecil berarti metode tersebut lebih akurat. Model peramalan dikatakan baik jika nilai MAPE kurang dari 20%. Model peramalan dengan nilai MAPE yang lebih baik akan digunakan pada peramalan untuk periode selanjutnya yaitu untuk periode Januari 2017 Desember 2018.

8 6. Membuat kesimpulan. Pada tahap ini dibuat kesimpulan hasil analisis data sekaligus memberikan saran yang berkaitan dengan pengembangan penelitian di masa yang akan datang.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Defenisi Peramalan Peramalan adalah suatu kegiatan dalam memperkirakan atau kegiatan yang meliputi pembuatan perencanaan di masa yang akan datang dengan menggunakan data masa lalu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Curah Hujan Curah hujan adalah jumlah air yang jatuh di permukaan tanah datar selama periode tertentu yang diukur dengan satuan tinggi milimeter (mm) di atas permukaan horizontal.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah sesuatu kegiatan situasi atau kondisi yang diperkirakan akan

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 59 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA ANNISA UL UKHRA Program Studi Matematika,

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013 BAB I PENDAHULUAN 1.1. Latar Belakang Tingkat pencemaran udara di beberapa kota besar cenderung meningkat dari tahun ke tahun. Hal ini disebabkan oleh beberapa faktor diantaranya jumlah transportasi terus

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

BAB I PENDAHULUAN. yang akan terjadi di masa yang akan datang menggunakan dan. mempertimbangkan data dari masa lampau. Ketepatan secara mutlak dalam

BAB I PENDAHULUAN. yang akan terjadi di masa yang akan datang menggunakan dan. mempertimbangkan data dari masa lampau. Ketepatan secara mutlak dalam BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan (forecasting) merupakan suatu kegiatan untuk mengetahui apa yang akan terjadi di masa yang akan datang menggunakan dan mempertimbangkan data dari

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto 18 BAB 2 TINJAUAN TEORITIS 2.1 Produk Domestik Regional Bruto Dalam menghitung pendapatan regional, dipakai konsep domestik. Berarti seluruh nilai tambah yang ditimbulkan oleh berbagai sektor atau lapangan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Pajak merupakan sumber kas negara yang digunakan untuk pembangunan. Undang- Undang Republik Indonesia Nomor 16 Tahun 2000 tentang Ketentuan Umum Dan Tata Cara Perpajakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB III METODE DEKOMPOSISI X-11-ARIMA. Metode Census II telah dikembangkan oleh Biro Sensus Amerika Serikat.

BAB III METODE DEKOMPOSISI X-11-ARIMA. Metode Census II telah dikembangkan oleh Biro Sensus Amerika Serikat. BAB III METODE DEKOMPOSISI X-11-ARIMA 3.1 Pendahuluan Metode Census II telah dikembangkan oleh Biro Sensus Amerika Serikat. Metode Cencus II memiliki beberapa jenis metode dan perbaikan sejak metode pertama

Lebih terperinci

ANALISIS PERAMALAN PENDAFTARAN SISWA BARU MENGGUNAKAN METODE SEASONAL ARIMA DAN METODE DEKOMPOSISI

ANALISIS PERAMALAN PENDAFTARAN SISWA BARU MENGGUNAKAN METODE SEASONAL ARIMA DAN METODE DEKOMPOSISI ANALISIS PERAMALAN PENDAFTARAN SISWA BARU MENGGUNAKAN METODE SEASONAL ARIMA DAN METODE DEKOMPOSISI (Studi kasus: Lembaga Bimbingan Belajar SSC Bintaro) Nizar Muhammad Al Kharis PROGRAM STUDI MATEMATIKA

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Sedangkan ramalan adalah

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

BAB 1 PENDAHULUAN. meteorologi dan geofisika yang salah satu bidangnya adalah iklim.

BAB 1 PENDAHULUAN. meteorologi dan geofisika yang salah satu bidangnya adalah iklim. BAB 1 PENDAHULUAN 1.1. Latar Belakang Di Indonesia meteorologi diasuh dalam Badan Meteorologi dan Geofisika di Jakarta yang sejak tahun enam puluhan telah diterapkan menjadi suatu direktorat perhubungan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Adanya waktu tenggang (lead time) merupakan alasan utama bagi perencanaan dan

BAB 2 TINJAUAN TEORITIS. Adanya waktu tenggang (lead time) merupakan alasan utama bagi perencanaan dan BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Adanya waktu tenggang (lead time) merupakan alasan utama bagi perencanaan dan peramalan. Jika waktu tenggang ini nol atau sangat kecil, maka perencanaan

Lebih terperinci

BAB I PENDAHULUAN. Dugaan atau perkiraan mengenai kejadian atau peristiwa pada waktu yang

BAB I PENDAHULUAN. Dugaan atau perkiraan mengenai kejadian atau peristiwa pada waktu yang BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dugaan atau perkiraan mengenai kejadian atau peristiwa pada waktu yang akan datang disebut ramalan dan tindakan dalam membuat dugaan atau perkiraan tersebut

Lebih terperinci

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Time Series atau runtun waktu adalah serangkaian data pengamatan yang berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara berurutan

Lebih terperinci

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia Oleh : Pomi Kartin Yunus 1306030040 Latar Belakang Industri manufaktur yang berkembang pesat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan (Forceasting) 2.1.1 Pengertian Peramalan Untuk memajukan suatu usaha harus memiliki pandangan ke depan yakni pada masa yang akan datang. Hal seperti ini yang harus dikaji

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Konsep Permintaan III KERANGKA PEMIKIRAN Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan meramalkan atau memprediksi apa yang akan terjadi dimasa yang akan datang dengan waktu tenggang (lead time) yang relative lama,

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Definisi dan Tujuan Peramalan Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah sesuatu pada waktu yang akan datang berdasarkan data pada masa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan sering dipandang sebagai seni dan ilmu dalam memprediksikan kejadian yang mungkin dihadapi pada masa yang akan datang. Secara teoritis peramalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

Metode Variasi Kalender untuk Meramalkan Banyaknya Penumpang Kereta Api

Metode Variasi Kalender untuk Meramalkan Banyaknya Penumpang Kereta Api Metode Variasi Kalender untuk Meramalkan Banyaknya Penumpang Kereta Api Efek Variasi Kalender dengan Pendekatan Regresi Time Series Nur Ajizah 1, Resa Septiani Pontoh 2, Toni Toharudin 3 Mahasiswa Program

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER I Ketut Putra Adnyana 1, I Wayan Sumarjaya 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas FMIPA

Lebih terperinci

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk BAB II LANDASAN TEORI 2.1 Sistem Definisi sistem dapat dibagi menjadi dua pendekatan, yaitu pendekatan secara prosedur dan pendekatan secara komponen. Berdasarkan pendekatan prosedur, sistem didefinisikan

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

BAB I PENDAHULUAN. Pasar modal adalah tempat kegiatan perusahaan untuk mencari dana yang

BAB I PENDAHULUAN. Pasar modal adalah tempat kegiatan perusahaan untuk mencari dana yang BAB I PENDAHULUAN 1.1 Latar Belakang Pasar modal adalah tempat kegiatan perusahaan untuk mencari dana yang digunakan untuk membiayai kegiatan usahanya. Selain itu, pasar modal merupakan suatu usaha penghimpunan

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran.

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. BAB III METODE PENELITIAN 3.1 Jenis / Pendekatan Penelitian Penelitian dan ilmu pengetahuan mempunyai kaitan yang erat keduanya merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. Penelitian

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Teknologi informasi telah berkembang dengan relatif pesat. Di era

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Teknologi informasi telah berkembang dengan relatif pesat. Di era BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi informasi telah berkembang dengan relatif pesat. Di era informasi seperti sekarang ini kebutuhan akan informasi semakin meningkat, terutama dengan

Lebih terperinci

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan.

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan. BAB III PEMBAHARUAN PERAMALAN Pada bab ini akan dibahas tentang proses pembaharuan peramalan. Sebelum dilakukan proses pembaharuan peramalan, terlebih dahulu dilakukan proses peramalan dan uji kestabilitasan

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang BAB I PENDAHULUAN 1.1 Latar Belakang Time Series atau deret waktu merupakan barisan suatu nilai pengamatan yang diukur dalam rentang waktu tertentu dalam interval waktu yang sama. Analisis data deret waktu

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA. Salatiga, Jawa Tengah, Indonesia

MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA. Salatiga, Jawa Tengah, Indonesia MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA Adi Nugroho 1, Bistok Hasiholan Simanjuntak 2 1 Staf pengajar di Fakultas Teknologi Informasi

Lebih terperinci

BAB I PENDAHULUAN. Peramalan merupakan suatu kegiatan memprediksi nilai dari suatu

BAB I PENDAHULUAN. Peramalan merupakan suatu kegiatan memprediksi nilai dari suatu BAB I PENDAHULUAN A. LATAR BELAKANG Peramalan merupakan suatu kegiatan memprediksi nilai dari suatu variabel berdasarkan nilai yang diketahui dari variabel tersebut pada masa lalu atau variabel yang berhubungan.

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah suatu situasi atau kondisi yang diperkirakan akan terjadi pada

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini, dibahas mengenai model Vector Error Correction (VEC),

BAB III PEMBAHASAN. Pada bab ini, dibahas mengenai model Vector Error Correction (VEC), BAB III PEMBAHASAN Pada bab ini, dibahas mengenai model Vector Error Correction (VEC), prosedur pembentukan model Vector Error Correction (VEC), dan aplikasi model Vector Error Correction (VEC) pada penutupan

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

BAB I PENDAHULUAN. Dewasa ini banyak permasalahan yang muncul baik di bidang ekonomi,

BAB I PENDAHULUAN. Dewasa ini banyak permasalahan yang muncul baik di bidang ekonomi, BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini banyak permasalahan yang muncul baik di bidang ekonomi, manajemen, pendidikan, maupun kesehatan. Pada bidang ekonomi, permasalahan itu kian kompleks seiring

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),

Lebih terperinci

BAB I PENDAHULUAN. untuk membuat prediksi tersebut disebut peramalan (Bowerman, 1993).

BAB I PENDAHULUAN. untuk membuat prediksi tersebut disebut peramalan (Bowerman, 1993). BAB I PENDAHULUAN 1.1 Latar Belakang Prediksi terhadap kejadian di masa depan disebut ramalan, dan tindakan untuk membuat prediksi tersebut disebut peramalan (Bowerman, 1993). Peramalan diperlukan untuk

Lebih terperinci

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Jurnal UJMC, Volume 2, Nomor 1, Hal. 28-35 pissn : 2460-3333 eissn: 2579-907X PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Novita Eka Chandra 1 dan Sarinem 2 1 Universitas

Lebih terperinci

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Vol. 9, No., 9-5, Januari 013 Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Fitriani, Erna Tri Herdiani, M. Saleh AF 1 Abstrak Dalam analisis deret waktu

Lebih terperinci

BABI PENDAHULUAN. 1.1 Latar Belakang

BABI PENDAHULUAN. 1.1 Latar Belakang BABI PENDAHULUAN 1.1 Latar Belakang Peramalan yang tepat dari suatu data penjualan produk di waktu-waktu yang akan dating merupakan salah satu dasar utama perencanaan produksi, inventori, dan distribusi

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 18 HASIL DAN PEMBAHASAN Eksplorasi data Tahap pertama dalam pembentukan model VAR adalah melakukan eksplorasi data untuk melihat perilaku data dari semua peubah yang akan dimasukkan dalam model. Eksplorasi

Lebih terperinci

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN Puji Rahayu 1), Rohmah Nur Istiqomah 2), Eminugroho Ratna Sari 3) 1)2)3) Matematika

Lebih terperinci

BAB 1 PENDAHULUAN. meteorolgi dan Geofisika yang salah satu bidangnya ialah iklim.

BAB 1 PENDAHULUAN. meteorolgi dan Geofisika yang salah satu bidangnya ialah iklim. BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia meteorologi di asuh dalam Badan Meteorologi dan Geofisika di Jakarta yang sejak enam puluhan telah di terapkan menjadi suatu direktorat perhubungan udara.

Lebih terperinci

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE Data yang digunakan adalah data M2Trend.wf1 (buku rujukan pertama, bab-8). Model analisisnya adalah Xt = M2 diregresikan dengan t = waktu. Model yang akan

Lebih terperinci

PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN

PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN Danica Dwi Prahesti, Entit Puspita, Fitriani Agustina Departemen Pendidikan Matematika FPMIPA

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA Tanti Octavia 1), Yulia 2), Lydia 3) 1) Program Studi Teknik Industri, Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam melakukan kegiatan usaha, haruslah diperkirakan apa yang akan terjadi pada masa akan datang, perkiraan ini dapat dilakukan dengan mengkaji situasi dan kondisi

Lebih terperinci

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan datang. Peramalan adalah proses untuk memperkirakan kebutuhan di masa datang

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

Peramalan (Forecasting)

Peramalan (Forecasting) Peramalan (Forecasting) Peramalan (forecasting) merupakan suatu proses perkiraan keadaan pada masa yang akan datang dengan menggunakan data di masa lalu (Adam dan Ebert, 1982). Awat (1990) menjelaskan

Lebih terperinci

BAB I PENDAHULUAN. Melihat fenomena masyarakat pada saat ini yang menggunakan

BAB I PENDAHULUAN. Melihat fenomena masyarakat pada saat ini yang menggunakan BAB I PENDAHULUAN 1.1 Latar Belakang Melihat fenomena masyarakat pada saat ini yang menggunakan kendaraan pribadi bertambah banyak, terutama kendaraan roda dua atau motor, menjadikan banyak perusahaan

Lebih terperinci

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 La Pimpi //Paradigma, Vol. 17 No. 2, Oktober 2013, hlm. 35-46 PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 1) La Pimpi 1 Staf Pengajar Jurusan Matematika, FMIPA,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia statistika terdapat serangkaian pengamatan data yang dapat dijadikan sebagai model time series (runtun waktu) untuk meramalkan kejadian pada periode berikutnya.

Lebih terperinci

KAJIAN TEORI. atau yang mewakili suatu himpunan data. Menurut Supranoto (2001:14) Rata rata (μ) dari distribusi probabilitas

KAJIAN TEORI. atau yang mewakili suatu himpunan data. Menurut Supranoto (2001:14) Rata rata (μ) dari distribusi probabilitas 6 BAB II KAJIAN TEORI A. Statistik Dasar 1. Average (Rata-rata) Menurut Spiegel,dkk (1996:45) rata-rata yaitu sebuah nilai yang khas atau yang mewakili suatu himpunan data. Menurut Supranoto (2001:14)

Lebih terperinci

LECTURE 12 Analisis Dekomposisi dan Model Runtut Waktu

LECTURE 12 Analisis Dekomposisi dan Model Runtut Waktu LECTURE 12 Analisis Dekomposisi dan Model Runtut Waktu DR. MUDRAJAD KUNCORO, M.Soc.Sc Fakultas Ekonomi & Pascasarjana UGM Outline: Akar Unit Exponential Smoothing Moving Average Trend Proyeksi Apa Arti

Lebih terperinci

BAB 2 TINJAUAN TEORI. akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

BAB 2 TINJAUAN TEORI. akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan BAB 2 TINJAUAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG

A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG B. Latar Belakang Informasi tentang curah hujan merupakan perihal penting yang berpengaruh terhadap berbagai macam aktifitas

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci