BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik dalam dunia usaha, peramalan cuaca dan sebagainya. Dalam keefektifannya haruslah suatu peramalan tersebut adalah hasil dari proses perhitungan yang sistematis. Dalam statistika, peramalan sangat bergantung pada data histori. Secara ilmiah metode peramalan dapat diklasifikasikan dalam dua kelompok yaitu metode kualitatif dan metode kuantitatif. Metode peramalan kualitatif lebih mengandalkan intuisi manusia dari pada penggunaan data historis yang dimiliki. Metode ini banyak digunakan dalam banyak pengambilan keputusan sehari-hari. Dalam hal ini ramalan dikatakan baik atau tidak bergantung dari banyak hal antara lain pengalaman, perkiraan, dan pengetahuan yang didapat. Metode peramalan kuantitatif merupakan peramalan yang didasarkan pada data-data variabel yang bersangkutan di masa sebelumnya. Metode ini menggunakan analisis statistik dan tanpa intuisi atau penilaian subyektif orang yang melakukan peramalan. Menurut Makridakis dkk. (1992), peramalan dengan menggunakan metode kuantitatif dapat diterapkan apabila terdapat tiga kondisi berikut: 1. Tersedia informasi tentang masa lalu, 2. Informasi tersebut dapat dikuantitatifkan dalam bentuk data numerik, 3. Dapat diasumsikan bahwa beberapa aspek pola masa lalu akan terus berlanjut di masa mendatang.

2 2.2 Curah Hujan Curah hujan adalah banyaknya air yang jatuh ke permukaan bumi. Satuan yang digunakan adalah millimeter per jam (mm/jam). Dalam meteorologi butiran hujan dengan diameter lebih dari 0,5 mm disebut hujan dan diameter antara 0,1-0,5 mm disebut gerimis. Semakin besar butiran hujan maka akan semakin besar pula kecepatan jatuhnya. Ketelitian alat ukur curah hujan adalah 1/10 mm. Pembacaan dilakukan satu kali dalam sehari dan dicatat sebagai curah hujan hari terdahulu (Suyono,1985). Curah hujan di suatu daerah tidak sama dengan curah hujan di daerah lain. Ada suatu daerah yang pada akhir tahun hujannya mulai meningkat tinggi dan mencapai puncaknya dan pertengahan tahun mencapai titik terendahnya. Sebaliknya, di daerah lain pada akhir tahun hujannya mencapai titik terendah, sedangkan pada pertengahan tahun mencapai titik tertinggi (Suyono,1985). Rata-rata curah hujan di Indonesia untuk setiap tahunnya tidak sama. Namun masih tergolong cukup banyak, yaitu rata-rata mm/tahun. Curah hujan menurut BMKG dibagi menjadi empat kelompok, yaitu: 1. Curah hujan rendah: 0-20 mm, mm, mm. 2. Curah hujan menengah: mm, mm, mm. 3. Curah hujan tinggi: mm. 4. Curah hujan sangat tinggi: mm, >500 mm. 2.3 Metode Deret Berkala Data berkala (Time Series) adalah data yang dikumpulkan dari waktu ke waktu untuk memberikan gambaran tentang perkembangan suatu kegiatan dari waktu ke waktu. Metode (Time Series) merupakan metode peramalan kuantitatif yang didasarkan atas penggunaan analisis pola hubungan antara variabel yang akan diperkirakan dengan varibel waktu. Time Series ini mencakup penelitian pola data yang digunakan untuk meramalkan apakah data tersebut stasioner atau tidak dan ekstrapolasi ke masa yang akan datang.

3 Sedangkan data deret berkala adalah serangkaian nilai-nilai variabel yang disusun berdasarkan waktu. Pada analisis data deret berkala ada empat komponen salah satunya adalah variasi musim. Variasi musim merupakan gerakan suatu deret berkala yang diklasifikasikan kedalam periode kurang dari satu tahun seperti kwartalan, bulanan atau harian, atau gerakan periodik yang berulang (Kustituanto,1984). Data sebuah deret berkala dapat mempunyai atau tidak variasi musim, oleh karena itu perlu dilakukan identifikasi terlebih dahulu untuk mengetahui apakah deret tersebut mempunyai variasi musim atau tidak sebelum dilakukan perhitungan. Metode yang paling sederhana untuk mengetahui adanya variasi musim adalah dengan melihat pola yang ada pada plot time series. Pola variasi musim dapat diklasifikasikan dalam dua bentuk yakni spesifik dan tipical. Pola spesifik menunjukkan variasi musim dalam periode misalnya kwartalan. Sedangkan pola tipical menunjukkan rata-rata variasi musim dalam sejumlah periode seperti lima tahunan. 2.4 Metode Pemulusan (Smoothing) Metode pemulusan (smoothing) adalah suatu metode peramalan dengan melakukan penghalusan terhadap masa lalu, yaitu dengan mengambil rata-rata dari nilai beberapa tahun untuk menaksir nilai pada beberapa tahun ke depan Pemulusan (Smoothing) Eksonensial Tunggal Teknik eksponensial tunggal linier satu parameter digunakan dengan menetapkan bobot tertentu atas data yang tersedia dan berdasarkan bobot itu akan diketahui pula bobot atas hasil peramalan sebelumnya. Penentuan besarnya bobot yang digunakan dapat ditentukan dengan menghitung MSE untuk tiap alternatif bobot yang akan dipilih. Bobot yang menghasilkan MSE terkecil adalah yang lebih baik.

4 2.4.2 Pemulusan (Smoothing) Eksponensial Ganda (Linier Satu Parameter dari Brown) Metode ini merupakan metode linier yang dikemukakan oleh Brown. Dasar pemikiran dari metode pemulusan (smoothing) eksponensial ganda (linier satu parameter dari Brown) adalah sama dengan rata-rata bergerak linier karena dua nilai pemulusan tunggal dan ganda ketinggalan dari data sebenarnya. Persamaan yang dipakai dalam penggunaan smoothing eksponensial ganda (linier satu parameter dari Brown) adalah sebagai berikut: = + (1 ) 2.1 " = + (1 ) 2.2 = + ( " ) =2 " 2.3 = ( " ) 2.4 = + () 2.5 = Nilai pemulusan eksponensial tunggal " = Nilai pemulusan eksponensial ganda = Parameter pemulusan eksponensial yang besarnya 0 < α < 1, = Konstanta pemulusan = hasil peramalan untuk periode ke depan yang diramalkan Ketetapan Ramalan Beberapa Kriteria Digunakan Untuk Menguji 1. MSE (Mean Square Error) atau Rata-Rata Kesalahan Kuadrat = 2.6 MSE (Mean Square Error) adalah metode lain untuk mengevaluasi metode peramalan. Masing-masing kesalahan atau sisi dikuadratkan. Kemudian dijumlahkan dan dibagi dengan jumlah observasi. Pendekatan ini mengatur

5 kesalahan peramalan yang besar karena kesalahan-kesalahan itu dikuadratkan. 2. SSE (Sum of Square Error) atau Jumlah Kuadrat Kesalahan = 2.7 Sedangkan SSE menyatakan jumlah kuadrat penyimpangan, yang biasa disebut jumlah kuadrat kesalahan (sum of square for error). SSE diperoleh dengan cara mengkuadratkan kesalahan dan kemudian menjumlahkan seluruh kesalahan. Dimana semakin kecil nilai SSE, maka semakin baik hasil ramalan. = ( kesalahan pada periode ke t ) = data aktual pada periode ke t = nilai ramalan pada periode ke t = banyaknya periode waktu 2.5 Identifikasi Pola Data Salah satu langkah penting dalam melakukan suatu metode peramalan yang terbaik dengan mengidentifikasi pola data. Berapa komponen yang mungkin terkandung dalam suatu deret waktu adalah sebagai berikut: 1. Kompenan trend ditunjukkan dengan adanya peningkatan atau penurunan dalam satu periode. 2. Komponen musiman ditunjukkan dengan pola berulang dari waktu ke waktu. Variasi musiman biasanya timbul karena adanya pengaruh cuaca suatu musim tertentu.

6 2.6 Metodologi Untuk Menganalisis Data Deret Berkala 1. Plot Data Langkah pertama yang baik untuk menghasilkan data deret berkala adalah memplot data tersebut secara grafis yang bermanfaat untuk memplot berbagai versi data dan melihat plot data tersebut stasioner atau tidak dari data yang ingin diramalkan. 2. Stasioner dan Nonstasioner Model ARIMA yang perlu diperhatikan adalah bahwa kebanyakan deret berkala bersifat nonstasioner dan bahwa aspek-aspek Autoregressive (AR) dan Moving Average (MA) dari model ARIMA hanya berkenaan dengan deret berkala stasioner. Stasioneritas berarti tidak mengalami pertumbuhan atau penurunan pada data. Data secara kasarnya harus horizontal sepanjang sumbu waktu. Dengan kata lain, fluktuasi data berada pada suatu nilai ratarata yang konstan, tidak tergantung pada waktu, dan varians dari fluktuasi tersebut tetap konstan setiap waktu. Kestasioneritasan data dapat diperiksa dengan analisis autokorelasi dan autokorelasi parsial. Autokorelasi-autokorelasi dari data yang stasioner mengecil secara drastis membentuk garis lengkung kearah nol setelah periode kedua dan ketiga. Jadi apabila autokorelasi pada periode satu, dua ataupun ketiga tergolong signifikan sedangkan autokorelasi pada periode lainnya tidak signifikan maka data tersebut bersifat stasioner. Menurut Box-Jenkins data deret berkala yang tidak stasioner dapat ditransformasikan menjadi data yang stasioner dengan melakukan proses pembedaan (differencing) pada data aktual. Pembedaan orde pertama dari data aktual dapat dinyatakan sebagai berikut: = ; untuk t = 2,3,...,N 2.8 Secara umum pembedaan (differencing) orde ke-d dapat ditulis sebagai berikut: =(1 ) Operator Backward Shift

7 Notasi yang sangat bermanfaat dalam metode pembedaan adalah operator shift mundur (Backward Shift) yang disimbolkan dengan B dan penggunaannya adalah sebagai berikut: = 2.10 Notasi yang dipasangkan pada mempunyai pengaruh menggeser data satu periode ke belakang, dua penerapan untuk akan menggeser data tersebut dua periode ke belakang sebagai berikut: ( )= = 2.11 Apabila suatu deret berkala tidak stasioner maka data tersebut dapat dibuat lebih mendekati stasioner dengan melakukan pembedaan pertama dari deret data dan persamaannya adalah sebagai berikut: Pembedaan orde pertama = 2.12 = =(1 ) 2.13 Pembedaan pertama dinyatakan oleh (1 ). Sama halnya apabila pembedaanorde kedua (yaitu pembedaan pertama dari pembedaan pertama sebelumnya)harus dihitung, maka: Pembedaan orde kedua = =( ) ( ) = 2 + =(1 2+ ) =(1 ) Pembedaan orde ke dua diberi notasi (1 ). Pembedaan orde ke-d =(1 ) Identifikasi Model Identifikasi model berkaitan dengan penentuan orde pada ARIMA. Oleh karena itu, identifikasi model dilakukan setelah melakukan analisis deret berkala untuk mengetahui adanya autokorelasi dan kestasioneran data sehingga dapat diketahui perlu tidaknya dilakukan transformasi dan

8 pembedaan. Jika data tidak stasioner dalam hal varians maka dapat dilakukan transformasi dan jika data tidak stasioner dalam rata-rata maka dapat dilakukan pembedaan. Langkah pertama yang baik untuk menganalisis data deret berkala adalah dengan membuat plot data time series terlebih dahulu. Hal ini bermanfaat untuk mengetahui adanya trend dan pengaruh musiman pada data tersebut. Langkah selanjutnya adalah menganalisis koefisien autokorelasi dan koefisien autokorelasi parsialnya dengan tujuan mengetahui kestasioneran data dalam rata-rata dan dari plot ACF, PACF tersebut dapat diidentifikasi orde model ARMAnya. 5. Keofisien Autokorelasi Secara matematis rumus untuk koefisien autokorelasi dapat dituliskan dengan rumus seperti pada persamaan sebagai berikut: = keofisien autokorelasi = ( )( ) ( ) = nilai variabel Y pada periode t = nilai variabel Y pada periode t + k = nilai rata-rata variabel Y 2.15 Apabila merupakan fungsi atas waktu, maka hubungan autokorelasi dengan lagnya dinamakan fungsi autokorelasi (Autocorrelation Function) sering disebut ACF dan dinotasikan oleh: = ( )( ) ( ) 2.16 Konsepsi lain pada autokorelasi adalah autokorelasi parsial (Partial Autocorrelation Funcition) sering disebut PAFC. Seperti halnya autokorelasi yang merupakan fungsi atas lagnya, yang hubungannya dinamakan autokorelasi (ACF), autokorelasi parsial juga merupakan fungsi atas lagnya, dan disebut dengan fungsi autokorelasi parsial (PACF). Koefisien autokorelasi merupakan alat yang berharga untuk menyelidiki kestasioneran deret berkala. Caranya adalah dengan mempelajari nilai-nilai tertentu secara nyata berbeda dari nol. Rumus sederhana yang bisa digunakan adalah: = 2.17

9 Dengan n adalah banyaknya data. Ini berarti bahwa 95% dari seluruh koefisien korelasi berdasarkan sampel harus terletak didalam daerah nilai tengah ditambah atau dikurangi 1,96 kali kesalahan standar (Makridakis, 1992) (1/ ) (1/ ) Koefisien Autokorelasi Parsial Autokorelasi parsial digunakan untuk mengukur tingkat keeratan (association) antara dan pengaruh dari time-lag 1,2,3,... dan seterusnya sampai k-1 dianggap terpisah. Satu-satunya tujuan di dalam analisis deret berkala adalah untuk membantu menetapkan model ARIMA yang tepat untuk peramalan. 2.7 Metode ARIMA (Autoregressive Integrated Moving Average) Model ARIMA (Autoregresive Integrated Moving Average) merupakan metode yang secara intensif dikembangkan oleh Goerge Box Dan Jenkins. Metode ARIMA berbeda dengan metode peramalan lain karena tidak mensyaratkan suatu pola data tertentu supaya model dapat bekera dengan baik. Metode ARIMA akan bekerja dengan baik apabila data deret berkala yang dipergunaknan besifat dependent atau berhubungan satu sama lain secara statistik. Secara umum model arima dirumuskan dengan notasi sebagai berikut: ARIMA (p,d,q) P menunjukkan orde atau derajat autoregressive (AR) D menunjukkan orde atau derajat differencing Q menunjukkan orde atau derajat moving average (MA) Model box-jenkins dikelompokkan menjadi tiga kelompok: 1. Model autoregressive 2. Model moving average 3. Model campuran

10 2.7.1 Model Autoregressive (AR) Model AR menunjukkan nilai prediksi variabel dependen hanya merupakan fungsi linear dari sejumlah aktual sebelumnya. Misalnya nilai variabel dipenden hanya dipengaruhi oleh nilai variabel tersebut satu periode sebeumnya maka model ini disebut model Autoregressive tingkat pertama. Model ini dapat ditulis sebagai berikut : = dimana: = Suatu konstanta = Nilai pengamatan periode ke-p = Parameter Autoregressive ke-p = Nilai kesalahan pada saat t Persamaan umum model autoregressive (AR) dengan orde p juga dapat ditulis sebagai berikut: 1 = Dalam hal ini B menyatakan operator penggerak mundur. Model AR menunjukkan bahwa nilai prediksi variabel hanya merupakan fungsi linear dari sejumlah aktual sebelumnya (Makridakis, 1992) Model Moving Average (MA) Model MA mempunyai orde (), sehingga model tersebut biasanya dituliskan sebagai MA(). Model MA ini menyatakan bahwa nilai prediksi variabel dependen hanya dipengaruhi oleh nilai residual sebelumnya atau tiap-tiap observasi dibentuk dari rata-rata tertimbang deviasi (disturbance) periode sebelumnya atau model MA tingkat pertama atau disingkat MA(1). Model MA(1) dapat ditulis dalam persamaan sebagai berikut: =

11 dimana: = suatu konstanta, = parameter-parameter moving average = nilai kesalahan pada saat t-q Dengan menggunakan operator penggerak mundur model rataan bergerak dari persamaan (2.21) dapat ditulis sebagai berikut: = +(1 ) 2.22 Dalam hal ini B menyatakan operator penggerak mundur Model campuran Autoregressive Moving Average (ARMA) Apabila suatu deret waktu tanpa proses differencing (d=0) dinotasikan dengan model ARIMA (p,0,q). Model ini dinamakan dengan model autoregressive moving average berorde (p,q). Secara singkat bentuk umum model proses autoregressive orde p dan berorde (p,q) adalah sebagai berikut: = Dengan operator penggerak mundur proses ARMA (p,q) sebagai berikut: 1 = Model Autoregressive Integrated Moving Average (ARIMA) Apabila data deret waktu tidak stasioner, model box-jenkins ini disebut model Autoregressive Integrated Moving Average (ARIMA). Jika menyatakan banyaknya proses differencing, maka bentuk umum model ARIMA (p,d,q) yang mengkombinasikan model autoregressive berorde p dengan model moving average berorde q ditulis dengan ARIMA (p,d,q) adalah sebagai berikut: =

12 Atau dengan operator penggerak mundur model ARIMA (p,d,q) dapat ditulis sebagai berikut: 1 = Dalam hal ini menyatakan bahwa deret waktu sudah di differencing. Dengan menotasikan sebagai berikut: =(1 ) 2.27 Dengan adalah rata-rata dari data waktu yang sudah di differencing. 2.8 Model Arima dan Musiman Musiman didefinisikan sebagai suatu pola data yang berulang-ulang dalam selang waktu tetap. Untuk data stasioner faktor musiman dapat ditentukan dengan mengidentifikasikan koefisien autokorelasi pada dua atau tiga time-lag yang berbeda nyata dari nol. Autokorelasi secara signifikan berbeda dari nol menyatakan adanya satu pola dalam data. Untuk mengenali adanya faktor musiman, dapat dilihat dari autokorelasi yang tinggi. Secara umum notasi ARIMA faktor musiman adalah: ARIMA (p,d,q)(p,d,q) (p,d,q) = Bagian yang tidak musiman dari model (P,D,Q) = Bagian musiman dari model S = Jumlah periode per musim Model ARIMA (1,1,1)(1,1,1) yang mengandung faktor musiman adalah sebagai berikut: (1 )(1 )(1 )(1 ) (1 )(1 Ɵ ) 2.28 (1 ) = AR(1) tidak musiman (1 ) = AR(1) musiman (1 ) = perbedaan tidak musiman (1 ) = perbedaan musiman

13 (1 ) = MA(1) tidak musiman (1 Ɵ ) = MA(1) musiman 2.9 Estimasi Parameter Model Tahap selanjutnya dilakukan estimasi parameter model untuk mencari parameter estimasi yang paling efisien untuk model. Estimasi parameter dilakukan dengan menetapkan model awal parameter (koefisien model) denganbantuan analisis regresi linier untuk mencari nilai konstanta dan koefisien regresi dari model. Dalam mencari nilai etimasi model ARIMA ini sangat rumit sehingga digunakan bantuan program komputer software Minitab Verifikasi Parameter Model Langkah ini dilakukan untuk memeriksa apakah model ARIMA yang dipilih cukup cocok untuk data. Verifikasi dilakukan dengan menggunakan uji distribusi t. Adapun verifikasi yang dilakukan terhadap parameter-parameter model ARIMA sebagai berikut: = Dengan kriteria keputusan H 0 ditolak jika: 2.29 >, : =0 (nilai parameter tidak signifikan) : 0 (nilai parameter signifikan) Selanjutnya adalah menghitung nilai dengan rumus sebagai berikut: = ( ) 2.31 = Koefisien parameter ( ) = Standard Error koefisien parameter

14 Nilai parameter dikatakan signifikan apabila nilai >. Artinya, ditolak dan diterima. Sebaliknya, jika nilai < maka diterima dan ditolak. 2. : =0 (nilai parameter tidak signifikan) : 0 (nilai parameter signifikan) Selanjutnya adalah menghitung nilai dengan rumus sebagai berikut: = ( ) = Koefisien parameter ( ) = Standard Error koefisien parameter 2.32 Nilai parameter dikatakan signifikan apabila nilai >. Artinya, ditolak dan diterima. Sebaliknya, jika nilai < maka diterima dan ditolak. 3. : =0 (nilai parameter tidak signifikan) : 0 (nilai parameter signifikan) Selanjutnya adalah menghitung nilai dengan rumus sebagai berikut: = ( ) = Koefisien parameter 2.33 ( ) = Standard Error koefisien parameter Nilai parameter dikatakan signifikan apabila nilai >. Artinya, ditolak dan diterima. Sebaliknya, jika nilai < maka diterima dan ditolak. Setelah model ditemukan, maka parameter dari model harus diestimasi. Terdapat dua cara mendasarkan yang dapat digunakan untuk pendugaan terhadap parameter-parameter tersebut, yaitu: 1. Trial and error yaitu dengan menguji beberapa nilai yang berbeda dan memilih diantaranya dengan syarat yang meminimumkan jumlah kuadrat nilai galat (sum square of residuals)

15 2. Perbaikan secar iteratif yaitu dengan cara memilih taksiran awal dan kemudian membiarkan program komputer untuk memperhalus penaksiran tersebut secara iteratif.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah sesuatu kegiatan situasi atau kondisi yang diperkirakan akan

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan datang. Peramalan adalah proses untuk memperkirakan kebutuhan di masa datang

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan (Forceasting) 2.1.1 Pengertian Peramalan Untuk memajukan suatu usaha harus memiliki pandangan ke depan yakni pada masa yang akan datang. Hal seperti ini yang harus dikaji

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Sedangkan ramalan adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. PengertianPeramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Dalam usaha mengetahui atau melihat perkembangan di masa depan,

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan sering dipandang sebagai seni dan ilmu dalam memprediksikan kejadian yang mungkin dihadapi pada masa yang akan datang. Secara teoritis peramalan

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah suatu situasi atau kondisi yang diperkirakan akan terjadi pada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit tanaman pada lahan yang telah disediakan, pemupukan dan perawatan sehingga

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk.

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk. PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. Djoni Hatidja ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 955 email: dhatidja@yahoo.com ABSTRAK Penelitian ini

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan meramalkan atau memprediksi apa yang akan terjadi dimasa yang akan datang dengan waktu tenggang (lead time) yang relative lama,

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Vol. 9, No., 9-5, Januari 013 Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah Fitriani, Erna Tri Herdiani, M. Saleh AF 1 Abstrak Dalam analisis deret waktu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya kesenjaan waktu

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS BAB 2 LANDASAN TEORITIS 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksikan apa yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto 18 BAB 2 TINJAUAN TEORITIS 2.1 Produk Domestik Regional Bruto Dalam menghitung pendapatan regional, dipakai konsep domestik. Berarti seluruh nilai tambah yang ditimbulkan oleh berbagai sektor atau lapangan

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan BAB 2 LADASA TEORI 2.1 Pengertian Peramalan (Forecasting) Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan terjadi pada masa mendatang. Peramalan penjualan adalah peramalan

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk BAB II LANDASAN TEORI 2.1 Sistem Definisi sistem dapat dibagi menjadi dua pendekatan, yaitu pendekatan secara prosedur dan pendekatan secara komponen. Berdasarkan pendekatan prosedur, sistem didefinisikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG

A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG B. Latar Belakang Informasi tentang curah hujan merupakan perihal penting yang berpengaruh terhadap berbagai macam aktifitas

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi merupakan suatu kegiatan yang dikerjakan untuk menambah nilai guna suatu benda baru sehingga lebih bermanfaat dalam memenuhi kebutuhan. Produksi jahe

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs.

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs. Analisis Peramalan Penerimaan Pajak Kendaraan Bermotor dengan Metode Autoregressive Integrated Moving Average (ARIMA) (Studi Kasus : Dinas Pendapatan dan Pengelolaan Aset Daerah Provinsi Jawa Tengah) Artikel

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 38 III. METODE PENELITIAN A. Konsep Dasar dan Batasan Operasional Konsep dasar dan definisi opresional mencakup pengertian yang dipergunakan untuk mendapatkan dan menganalisis data sesuai dengan tujuan

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1. Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 20 BAB 2 LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah pemikiran terhadap suatu besaran, misalnya permintaan terhadap satu atau beberapa produk pada periode yang akan datang.

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa. situasi dan kondisi di masa yang akan datang.

BAB 2 LANDASAN TEORI. Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa. situasi dan kondisi di masa yang akan datang. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan ramalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, peneliti akan memberikan penjelasan tentang teori metode backpropagation jaringan syaraf tiruan dan metode deret berkala ARIMA(Boxjenkins) sehingga dapat mempermudah

Lebih terperinci

BAB 2 TINJAUAN TEORI. akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

BAB 2 TINJAUAN TEORI. akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan BAB 2 TINJAUAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

BAB. 1 PENDAHULUAN Latar Belakang

BAB. 1 PENDAHULUAN Latar Belakang 1 BAB. 1 PENDAHULUAN 1.1. Latar Belakang Kain adalah bahan mentah yang dapat dikelola menjadi suatu pakaian yang mempunyai nilai financial dan konsumtif dalam kehidupan, seperti pembuatan baju. Contohnya

Lebih terperinci

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA Tanti Octavia 1), Yulia 2), Lydia 3) 1) Program Studi Teknik Industri, Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI. datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan

BAB 2 LANDASAN TEORI. datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan 18 BAB 2 LANDASAN TEORI 2.1 Pengertian Ramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan

Lebih terperinci

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN Puji Rahayu 1), Rohmah Nur Istiqomah 2), Eminugroho Ratna Sari 3) 1)2)3) Matematika

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Curah Hujan Curah hujan adalah jumlah air yang jatuh di permukaan tanah datar selama periode tertentu yang diukur dengan satuan tinggi milimeter (mm) di atas permukaan horizontal.

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

Peramalan Permintaan Paving Blok dengan Metode ARIMA

Peramalan Permintaan Paving Blok dengan Metode ARIMA Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Permintaan Paving Blok dengan Metode ARIMA Adin Nofiyanto 1,Radityo Adi Nugroho 2, Dwi Kartini 3 1,2,3 Program

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian terhadap populasi yang sangat besar, kita perlu melakukan suatu penarikan sampel. Hal ini dikarenakan tidak selamanya kita dapat

Lebih terperinci

BAB I PENDAHULUAN. untuk mendapatkan sebuah hasil yang optimal, sementara terdapat selang

BAB I PENDAHULUAN. untuk mendapatkan sebuah hasil yang optimal, sementara terdapat selang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Masalah peramalan menjadi sangat penting karena adanya keinginan untuk mendapatkan sebuah hasil yang optimal, sementara terdapat selang waktu antara keinginan

Lebih terperinci

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES Rais 1 1 Jurusan Matematika FMIPA Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Makalah

Lebih terperinci

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA Gumgum Darmawan 1), Suhartono 2) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD 2) Staf Pengajar

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) M-11 2) PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) Naili Farkhatul Jannah 1), Muhammad Bahtiar Isna Fuady 2), Sefri

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Seperti diketahui PDRB adalah penjumlahan dari seluruh Nilai Tambah Bruto (NTB)

BAB 2 TINJAUAN TEORITIS. Seperti diketahui PDRB adalah penjumlahan dari seluruh Nilai Tambah Bruto (NTB) BAB 2 TINJAUAN TEORITIS 2.1 Produk Domestik Regional Bruto (PDRB) Seperti diketahui PDRB adalah penjumlahan dari seluruh Nilai Tambah Bruto (NTB) yang dihasilkan oleh setiap kegiatan/lapangan usaha. Dalam

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA Saintia Matematika ISSN: 2337-9197 Vol. 2, No. 1 (2014), pp. 55 69. PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA John Putra S Tampubolon, Normalina Napitupulu, Asima Manurung Abstrak.

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel ARIMA menggunakan variabel dependen harga saham LQ45 dan variabel independen harga saham LQ45 periode sebelumnya, sedangkan ARCH/GARCH menggunakan variabel dependen

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

Perkapalan Negeri Surabaya, Surabaya Program Studi Teknik Otomasi, Jurusan Teknik Kelistrikan Kapal, Politeknik Perkapalan Negeri

Perkapalan Negeri Surabaya, Surabaya Program Studi Teknik Otomasi, Jurusan Teknik Kelistrikan Kapal, Politeknik Perkapalan Negeri Perbandingan Metode Autoregressive Integrated Moving Average (ARIMA) dan Exponential Smoothing pada Peramalan Penjualan Klip (Studi Kasus PT. Indoprima Gemilang Engineering) Aditia Rizki Sudrajat 1, Renanda

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern

Lebih terperinci

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat BAB II KAJIAN PUSTAKA 2.1 Konsep Dasar Runtun Waktu Data runtun waktu (time series) merupakan data yang dikumpulkan, dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat berupa

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP.

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP. PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL Oleh: Niswatul Maghfiroh NRP. 1208100065 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu indikator tingkat kesejahteraan rakyat dapat dilihat dari perkembangan angka kematian balita, dikarenakan kematian balita berkaitan erat dengan keadaan ekonomi,

Lebih terperinci

PENERAPAN METODE BOX-JENKINS DALAM MERAMALKAN INDEKS HARGA KONSUMEN DI KOTA PEKANBARU

PENERAPAN METODE BOX-JENKINS DALAM MERAMALKAN INDEKS HARGA KONSUMEN DI KOTA PEKANBARU PENERAPAN METODE BOX-JENKINS DALAM MERAMALKAN INDEKS HARGA KONSUMEN DI KOTA PEKANBARU Ari Pani Desvina 1, Evi Desmita 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Teknologi informasi telah berkembang dengan relatif pesat. Di era

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Teknologi informasi telah berkembang dengan relatif pesat. Di era BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi informasi telah berkembang dengan relatif pesat. Di era informasi seperti sekarang ini kebutuhan akan informasi semakin meningkat, terutama dengan

Lebih terperinci