BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Investasi Menurut Fahmi dan Hadi (2009) investasi merupakan suatu bentuk pengelolaan dana guna memberikan keuntungan dengan cara menempatkan dana tersebut pada alokasi yang diperkirakan sehingga memberikan tambahan keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa investasi merupakan penanaman modal untuk mendapatkan suatu pendapatan yang diharapkan di masa yang akan datang. 2.2 Pengertian Return Menurut Jogiyanto (2010) menyatakan bahwa return merupakan hasil yang diperoleh dari investasi. Return dapat berupa return linier dan logreturn. Return linier dapat dihitung menggunakan rumus (Husnan, 2003) Agar return pada analisis statistik tidak bias maka digunakan logreturn dengan rumus (Husnan, 2003) ( ) dengan menyatakan return (tingkat pengembalian) saham i pada periode, menyatakan indeks harga saham i pada periode, menyatakan indeks harga saham i pada periode. 5

2 6 Untuk nilai return portofolio secara umum sama dengan perhitungan return saham, hanya saja portofolio merupakan sekumpulan investasi, sehingga return portofolio berhubungan dengan proporsi dana yang ditanamkan pada masing-masing saham dalam portofolio. Return portofolio dapat ditulis sebagai (Husnan, 2003) dengan menyatakan return portofolio saham pada periode t, menyatakan suatu portofolio saham, menyatakan return saham i pada periode t dan menyatakan proporsi dana saham i dan n menyatakan banyaknya data saham. 2.3 Pengertian Portofolio Portofolio dinyatakan sebagai sekumpulan aset yang dimiliki untuk tujuan ekonomis tertentu. Konsep dasar yang dinyatakan dalam portofolio adalah bagaimana mengalokasikan sejumlah dana tertentu pada berbagai jenis investasi yang akan menghasilkan keuntungan yang optimal (Harold, 1998). Hal yang dipertimbangkan bagi investor dalam mengoptimalkan keputusan investasi adalah memaksimumkan tingkat imbal hasil investasi (return) pada risiko (risk) investasi tertentu (Saragih, 2006). Pembuatan kerangka keputusan investasi sangat menentukan keberhasilan seorang investor mengoptimalkan tingkat imbal hasil investasi dan mengurangi sekecil mungkin risiko yang dihadapi (Markowitz, 1952).

3 7 2.4 Varians Risiko dapat diartikan sebagai kemungkinan tingkat keuntungan yang diperoleh menyimpang dari tingkat keuntungan yang diharapkan. Ukuran penyimpangan dalam teori statistika disebut standar deviasi atau dalam bentuk kuadrat dinyatakan sebagai varians. Varians saham dapat ditentukan sebagai berikut (Husnan, 2003): 1. Membentuk expected return saham yang diformulasikan sebagai dengan merupakan expected return atau nilai harapan tingkat pengembalian saham i, merupakan tingkat pengembalian saham pada periode, merupakan peluang relatif untuk tiap keuntungan saham pada periode dan merupakan banyaknya data saham. Berdasarkan persamaan dapat dikatakan bahwa nilai harapan merupakan rataan dari, selanjutnya dapat dinotasikan dengan. Untuk mengetahui expected return dari portofolio saham diformulasikan sebagai (Husnan, 2003) dengan menyatakan proporsi dana yang diinvestasikan pada saham i, menyatakan expected return portofolio saham dan merupakan banyaknya data saham.

4 8 2. Jika peluang nilai harapan berdistribusi seragam, varians saham dapat dihitung dengan rumus [( ) ] ( ) Pemilihan portofolio didekati dengan cara memilih portofolio yang memberikan keuntungan maksimum dengan risiko tertentu. Untuk menghitung risiko portofolio digunakan persamaan dengan menyatakan proporsi dana yang diinvestasikan pada saham i, menyatakan variansi portofolio, menyatakan variansi saham i, menyatakan kovarian saham i dengan saham j dan merupakan banyaknya data saham (Husnan, 2003). 3. Menghitung nilai volatilitas pada saham dengan menggunakan rumus ( ) dimana, menyatakan variansi saham i, menyatakan tingkat pengembalian saham pada periode, menyatakan peluang relatif untuk tiap keuntungan saham pada periode, menyatakan expected return saham i dan merupakan banyaknya data saham.

5 9 Meramalkan volatilitas dipengaruhi oleh hubungan data saham yang dimiliki dimana saat penutupan harga saham akan mencerminkan banyak sinyal tentang peramalan volatilitas dibandingkan data lama atau sebelumnya Matriks Varian Kovarian Komponen varian dan kovarian portofolio saham dapat disusun dalam bentuk matriks untuk memudahkan perhitungan varian portofolio yang terdiri dari banyak saham (Jones, 1996). Berikut adalah matriks varian kovarian dari suatu portofolio (Jones, 1996): [ ] Pada matriks tampak perkalian varian yang sama dan perkalian varian yang lainnya beserta proporsi dana dari masing-masing saham yang dinotasikan dengan. Sel matriks pada kolom dan baris pertama berisi perkalian antara (pada baris pertama) dengan (pada kolom pertama) begitu seterusnya dan juga pada kolom ketiga, baris pertama, berisi perkalian antara dengan, dan seterusnya. Perkalian deviasi standar suatu saham dengan deviasi standarnya sendiri adalah varian dari saham yang bersangkutan, sedangkan perkalian deviasi standar suatu saham dengan deviasi standar saham lain, biasa diartikan sebagai kovarian. Varian terletak pada sel-sel diagonal matriks, sedangkan kovarian terletak pada bagian atas dan bawah sel-sel diagonal. Jika diperhatikan, tampak bahwa kovarian pada sel-sel bagian atas diagonal sama

6 10 dengan kovarian pada bagian bawah diagonal. Oleh karena itu, dalam formula varian portofolio akan ada dua kovarian yang sama untuk setiap dua saham dalam portofolio tersebut Standar Deviasi Standar deviasi merupakan ukuran untuk mengetahui risiko dari suatu portofolio. Ini didapat dari korelasi antar deviasi return saham yang dapat menimbulkan kovarian. Bila deviasi return saham positif digabungkan dengan deviasi return saham yang negatif, maka akan menghasilkan kovarian negatif. Kovarian yang negatif akan memberikan varian yang jauh lebih rendah daripada varian dari masing masing saham dalam portofolio tersebut (Jones, 1996). Secara umum standar deviasi dapat dirumuskan sebagai (Jones, 1996): dengan menyatakan standar deviasi saham ke-, menyatakan return saham, menyatakan expected return saham Koefisien Korelasi Koefisien korelasi merupakan hasil pembagian antara kovarian dengan perkalian standar deviasi dari dua buah saham. Untuk koefesien korelasi dirumuskan secara umum sebagai (Jones, 1996)

7 11 dengan menyatakan koefisien korelasi antara saham ke- dan saham ke-, menyatakan kovarian saham ke- dan saham ke-, menyatakan deviasi standar saham ke-, menyatakan deviasi standar saham ke Model Autoregressive (AR) Model Autoregressive adalah model yang menggambarkan bahwa variabel dependent dipengaruhi oleh variabel dependent itu sendiri pada periode-periode dan waktu-waktu sebelumnya (Sugiarto, 2000). Secara umum model autoregressive (AR) mempunyai bentuk (Sugiarto, 2000) dengan menyatakan return saham pada periode t, menyatakan konstanta, menyatakan koefisien atau parameter dari model autoregressive, menyatakan nilai return saham pada periode, dan menyatakan residual pada periode t. Orde dari model AR (yang diberi notasi p) ditentukan oleh banyaknya periode variabel dependent yang masuk dalam model. Sebagai contoh: adalah model AR orde 1 dengan notasi AR (1) adalah model AR orde 2 dengan notasi AR (2) Model di atas disebut sebagai model autoregressive (regresi diri sendiri) karena model tersebut mirip dengan persamaan regresi pada umumnya, hanya saja yang menjadi variabel independen bukan variabel yang berbeda dengan variabel dependen melainkan nilai sebelumnya (lag) dari variabel dependen ( ) itu sendiri.

8 12 Banyaknya nilai lampau yang digunakan oleh model, yaitu sebanyak p, menentukan tingkat model ini. Apabila hanya digunakan satu lag dependent, maka model ini dinamakan model autoregressive tingkat satu (first-order autoregressive) atau AR(1). Apabila nilai yang digunakan sebanyak p lag dependen, maka model ini dinamakan model autoregressive tingkat p (p-th order autoregressive) atau AR(p). 2.6 Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model Generalized Autoregressive Conditional Heteroskedasticity (GARCH) digunakan dalam mengestimasi volatilitas pada saham karena volatilitas tidak konstan dan data finansial berupa fat tail atau ekor gemuk. Pada tahun 1986, Bollerslev mengembangkan model Autoregressive Conditional Heteroskedasticity (ARCH) setelah Engle yang kemudian berkembang menjadi model GARCH. Model ARCH dan GARCH merupakan suatu model dalam data runtun waktu yang dapat digunakan untuk memodelkan data return pada bidang finansial, khususnya kondisi di mana data runtun waktu bidang finansial tersebut memiliki dua sifat penting, yaitu: 1. Distribusi probabilitas dari return bersifat fat tails, memiliki kecendrungan terjadinya kejadian ekstrim lebih besar dibandingkan dengan model distribusi normal (Gaussian). 2. Adanya volatility clustering, yaitu terjadi variabilitas data relatif tinggi pada waktu akan terjadi kecendrungan yang sama dalam kurun waktu selanjutnya.

9 13 Model ARCH diperkenalkan oleh Engle pada tahun 1982, model ini digunakan untuk memperkirakan volatilitas dengan nilai residual ( ) tidak saling berautokorelasi. Residual mengikuti model ARCH yang dimodelkan sebagai (Bollerslev,1986) dengan adalah parameter dari model ARCH dan merupakan parameter konstan. Walaupun model ARCH cukup sederhana, namun dalam keadaan khusus dibutuhkan ordo yang cukup tinggi untuk menggambarkan suatu volatilitas. Untuk mengatasi masalah ini, Bollerslev mengembangkan model ARCH menjadi model GARCH di mana residual ( ) mengikuti model GARCH dengan merupakan orde ARCH dan merupakan orde dari GARCH yang dapat dimodelkan sebagai (Bollerslev, 1986) dengan adalah nilai parameter GARCH ke dimana sedangkan adalah nilai varians pada periode. Masalah yang dihadapi dalam memodelkan data acak melalui model GARCH adalah menentukan koefisien

10 14 berdasarkan data acak yang sudah ada. Jika koefisien ini telah diperoleh, maka nilai bisa diramalkan dengan tingkat kesalahan tertentu. Langkah-langkah pengujian dalam menyusun model GARCH (Surya, Hokky, Yun, & Rendra, 2004): 1. Hal pertama yang dilakukan adalah melakukan tahap estimasi pada koefisien-koefisien model GARCH. Sebelum melakukan estimasi terlebih dahulu menghadirkan model GARCH yang mampu menggambarkan kondisi data yang akan dimodelkan, model GARCH tersebut bisa linear maupun nonlinear. Sebagai contoh model sederhana GARCH 2. Tahap selanjutnya disebut tahap pra-estimasi. Pada tahap ini dilakukan uji autokorelasi. Uji autokorelasi dilakukan untuk mengetahui apakah model GARCH baik diterapkan, karena asumsi yang digunakan mengharuskan adanya autokorelasi antar data. Autokorelasi dikembangkan untuk melihat apakah suatu data memiliki perilaku yang benar-benar acak atau tidak. a. Fungsi Autokorelasi (ACF) Fungsi autokorelasi digunakan untuk mengukur ketergantungan bersama (mutual dependen) antara nilai-nilai suatu runtun waktu yang sama pada periode waktu yang berlainan. ACF sebagai perbandingan antara kovarians pada lag dengan variannya. Sehingga ACF pada lag dapat ditulis sebagai (Wei, 2006)

11 15 dengan nilai berkisar antara -1 sampai 1. Persamaan (2.15) merupakan ACF untuk data populasi, sehingga diperlukan estimasi ACF melalui Fungsi Autokorelasi Parsial (PACF). b. Fungsi Autokorelasi Parsial (PACF) Fungsi autokorelasi parsial digunakan untuk menunjukkan besarnya hubungan nilai suatu peubah saat ini dengan nilai sebelumnya dari peubah yang sama dengan menganggap pengaruh dari lag waktu lainnya adalah konstan. Fungsi autokorelasi parsial menyatakan korelasi antara dan setelah ketergantungan linear dengan peubah dihilangkan (Wei, 2006). Untuk runtun waktu stasioner dan jika adalah runtun waktu berdistribusi normal, maka ( ) dengan adalah koefisien autokorelasi parsial pada lag Untuk lag yang diberikan, memenuhi persamaan Yulle-Walker (Wei, 2006) dengan Nilai estimasi dari adalah persamaan (Wei, 2006)

12 16 dengan untuk Secara formal berautokorelasi atau tidaknya suatu data dapat dilakukan dengan uji statistika berdasarkan standar errornya. Selain uji secara individual terhadap nilai koefisien k dapat dilakukan uji secara serentak terhadap semua koefisien ACF sampai pada lag tertentu. c. Uji Ljung-Box Pada uji Ljung-Box, akan dilakukan pengujian terhadap data apakah mempunyai unsur autokorelasi atau tidak. Tahapan-tahapan yang dilakukan adalah a. Menetapkan hipotesis : data tidak berautokorelasi : data memiliki autokorelasi b. Menghitung uji statistik Ljung-Box (Wei, 2006) ( ) dengan LB menyatakan statistik Ljung Box, menyatakan banyaknya data pengamatan, merupakan taksiran autokorelasi, dan adalah panjang lag. c. Daerah penolakan Kriteria uji dilakukan ditolak jika LB > atau. Apabila ditolak maka akan dipilih yang berarti data berautokorelasi.

13 17 Uji statistika Ljung-Box ini sebagaimana uji statistik mengikuti distribusi chi square. Jika nilai statistik LB lebih kecil dari nilai kritis statistik dari tabel distribusi chi square maka data tidak memiliki autokorelasi. Sebaliknya jika nilai satistik LB lebih besar dari nilai kritis statistik dari tabel distribusi chi square maka data memiliki autokorelasi. Kemudian pada tahap ini pula dilakukan uji terhadap kehadiran unsur heteroscedasticity atau efek GARCH. Uji ini biasa dikenal sabagai Uji ARCH LM. a. Menetapkan hipotesis Hipotesis dari uji ARCH LM adalah : homoscedasticity, tidak ada efek ARCH-GARCH : heteroscedasticity, terdapat efek ARCH-GARCH b. Menghitung nilai statistik uji ARCH LM (Danielson, 20011) merupakan koefisien determinasi, banyaknya data dan panjang lag. c. Daerah penolakan Kriteria uji dilakukan apabila tolak jika > atau -value <, maka akan dipilih yang berarti ada efek ARCH-GARCH pada data. Uji statistika ARCH LM ini sebagaimana uji statistik mengikuti distribusi chi square. Jika nilai statistik ARCH LM lebih kecil dari nilai kritis statistik dari tabel distribusi chi square maka residual

14 18 data tidak terdapat efek ARCH-GARCH. Sebaliknya jika nilai statistik ARCH LM lebih besar dari nilai kritis statistik dari tabel distribusi chi square maka residual terdapat efek ARCH-GARCH 3. Tahap estimasi model GARCH menggunakan MLE. Metode ini dapat digunakan karena residual tidak mengikuti distribusi normal. Diberikan model regresi linier sederhana yaitu: variabel dependen mempunyai distribusi normal dengan mean dan varian. Distribusi peluang menggunakan mean dan varian dapat ditulis sebagai [ ] Fungsi likelihood adalah perkalian dari probabilitas setiap kejadian individual pada semua observasi. Dengan demikian fungsi likelihood dapat dituliskan sebagai berikut: [ ] Tahapan estimasi parameter dengan model GARCH: 1. Mengubah persamaan fungsi likelihood ke dalam bentuk logaritma natural

15 19 2. Memaksimumkan fungsi likelihood dengan mencari turunan pertama terhadap masing-masing parameter adalah variabel dependen dari data pengamatan, adalah variabel dependen data pengamatan, dan adalah nilai parameter estimasi dan adalah varians. 4. Pemilihan model terbaik dapat dilakukan dengan beberapa kriteria yaitu sebagai a. Akaike s Information Criterion (AIC) Model terbaik di mana parameternya menyatakan pencocokan suatu model terhadap suatu data harus seminimalnya. Persamaan untuk menghitung nilai AIC dapat dinyatakan sebagai (Wei, 2006) merupakan banyaknya observasi, adalah estimasi maksimum likelihood dari, merupakan banyaknya parameter dalam model dan merupakan jumlah data. Jika nilai AIC semakin kecil maka model semakin baik digunakan. b. Bayesian Information Criterion (BIC) Selain menggunakan AIC, penentuan model terbaik juga dapat dilihat dari nilai BIC terkecil. Persamaan untuk menghitung BIC dapat dinyatakan sebagai (Wei, 2006) ( )

16 20 dengan merupakan Sum Square Error, adalah banyaknya parameter, adalah banyaknya residual dan = 3,14.

MODEL NON LINIER GARCH (NGARCH) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG

MODEL NON LINIER GARCH (NGARCH) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG E-Jurnal Matematika Vol. 4 (2), Mei 215, pp. 59-66 ISSN: 233-1751 MODEL NON LINIER (N) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG I Komang Try Bayu Mahendra 1, Komang Dharmawan 2, Ni Ketut

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian dilakukan di Pasar Bunga Rawabelong, Jakarta Barat yang merupakan Unit Pelaksana Teknis (UPT) Pusat Promosi dan Pemasaran Holtikultura

Lebih terperinci

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK. Jurnal Matematika UNAND Vol. VI No. 1 Hal. 25 32 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

Lebih terperinci

MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE

MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE E-Jurnal Matematika Vol. 5 (3), Agustus 2016, pp. 82-89 ISSN: 2303-1751 MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE I Gede Ery Niscahyana 1, Komang Dharmawan 2, I Nyoman Widana

Lebih terperinci

BAB I PENDAHULUAN. Perilaku dari harga suatu aset finansial dapat dilihat dari dua parameter,

BAB I PENDAHULUAN. Perilaku dari harga suatu aset finansial dapat dilihat dari dua parameter, BAB I PENDAHULUAN 1.1 Latar belakang Perilaku dari harga suatu aset finansial dapat dilihat dari dua parameter, yaitu mean dan standar deviasi harga aset tersebut. Dalam bahasa keuangan, standar deviasi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Saham adalah surat berharga yang menjadi bukti seseorang berinvestasi pada suatu perusahaan. Harga saham selalu mengalami perubahan harga atau biasa disebut

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 Boy A Lumban Gaol 1, Tumpal Parulian Nababan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 33 BAB III METODE PENELITIAN 3.1 Jenis dan Sumber Data Penelitian ini dilakukan berdasarkan data series bulan yang dipublikasikan oleh Bank Indonesia (BI) dan Badan Pusat Statistik (BPS), diantaranya adalah

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

BAB III NONLINEAR GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (N-GARCH)

BAB III NONLINEAR GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (N-GARCH) BAB III NONLINEAR GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (N-GARCH) 3.1 Proses Nonlinear Autoregressive Conditional Heteroskedasticity (N-ARCH) Model Nonlinear Autoregressive Conditional

Lebih terperinci

BAB I PENDAHULUAN. untuk menjual, menahan, atau membeli saham dengan menggunakan indeks

BAB I PENDAHULUAN. untuk menjual, menahan, atau membeli saham dengan menggunakan indeks BAB I PENDAHULUAN A. LATAR BELAKANG MASALAH Pasar modal merupakan pasar abstrak, dimana yang diperjualbelikan adalah dana jangka panjang, yaitu dana yang keterikatannya dalam investasi lebih dari satu

Lebih terperinci

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 21 BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 3.1 Model Variasi Kalender Liu (Kamil 2010: 10) menjelaskan bahwa untuk data runtun waktu yang mengandung efek variasi kalender, dituliskan pada persamaan

Lebih terperinci

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: Nurkhoiriyah 1205100050 Dosen pembimbing: Dra. Nuri Wahyuningsih, M. Kes. Jurusan

Lebih terperinci

PERAMALAN VOLATILITAS MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY IN MEAN (GARCH-M)

PERAMALAN VOLATILITAS MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY IN MEAN (GARCH-M) PERAMALAN VOLATILITAS MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY IN MEAN (GARCH-M) (Studi Kasus pada Return Harga Saham PT. Wijaya Karya) SKRIPSI Disusun Oleh : Dwi Hasti

Lebih terperinci

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH Universitas Negeri Malang E-mail: abiyaniprisca@ymail.com Abstrak: Penelitian ini bertujuan untuk mengetahui model peramalan terbaik dari data

Lebih terperinci

PERHITUNGAN NILAI BETA DARI BEBERAPA SAHAM UNGGULAN DI INDONESIA DENGAN MENGGUNAKAN METODE GARCH

PERHITUNGAN NILAI BETA DARI BEBERAPA SAHAM UNGGULAN DI INDONESIA DENGAN MENGGUNAKAN METODE GARCH E-Jurnal Matematika Vol. 5 (2), Mei 216, pp. 67-75 ISSN: 233-1751 PERHITUNGAN NILAI BETA DARI BEBERAPA SAHAM UNGGULAN DI INDONESIA DENGAN MENGGUNAKAN METODE Ni Kadek Puspitayanti 1, Komang Dharmawan 2,

Lebih terperinci

MENAKSIR VALUE AT RISK (VAR) PORTOFOLIO PADA INDEKS SAHAM DENGAN METODE PENDUGA VOLATILITAS GARCH

MENAKSIR VALUE AT RISK (VAR) PORTOFOLIO PADA INDEKS SAHAM DENGAN METODE PENDUGA VOLATILITAS GARCH MENAKSIR VALUE AT RISK (VAR) PORTOFOLIO PADA INDEKS SAHAM DENGAN METODE PENDUGA VOLATILITAS GARCH INTAN AWYA WAHARIKA 1, KOMANG DHARMAWAN 2, NI MADE ASIH 3 1, 2, 3 Jurusan Matematika FMIPA Universitas

Lebih terperinci

PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH

PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH, Universitas Negeri Malang E-mail: die_gazeboy24@yahoo.com Abstrak: Penelitian ini bertujuan untuk mengetahui model

Lebih terperinci

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS S-9 PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Retno Hestiningtyas dan Winita Sulandari, M.Si Jurusan Matematika FMIPA UNS ABSTRAK. Pada data finansial sering terjadi keadaan leverage effect,

Lebih terperinci

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH)

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 80 88 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE

Lebih terperinci

BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) Proses TARCH merupakan modifikasi dari model ARCH dan GARCH.

BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) Proses TARCH merupakan modifikasi dari model ARCH dan GARCH. BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) 3.1. Model TARCH Proses TARCH merupakan modifikasi dari model ARCH dan GARCH. Pada proses ini nilai residu yang lebih kecil dari nol

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Desain Penelitian Desain penelitian mempunyai peranan yang sangat penting, karena keberhasilan suatu penelitian sangat dipengaruhi oleh pilihan desain atau model penelitian.

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH

PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH BUNGA LETY MARVILLIA Matematika, Fakultas Ilmu Pengetahuan Alam, UNESA Jl. Ketintang villy_cute_7@yahoo.com 1, raywhite_vbm@gmail.com

Lebih terperinci

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk)

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk) Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 71 78. TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi Penelitian 4.2. Data dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi Penelitian 4.2. Data dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi Penelitian Penelitian mengenai risiko harga dan perilaku penawaran apel dilakukan di PT Kusuma Satria Dinasasri Wisatajaya yang beralamat di Jalan Abdul Gani Atas, Kelurahan

Lebih terperinci

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: NURKHOIRIYAH 1205100050 Dosen Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. 1 Latar

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

BAB I PENDAHULUAN. diantaranya surat utang (obligasi), ekuiti (saham), reksa dana, dan instrumen

BAB I PENDAHULUAN. diantaranya surat utang (obligasi), ekuiti (saham), reksa dana, dan instrumen BAB I PENDAHULUAN 1.1 Latar Belakang Instrumen keuangan yang dapat diperjualbelikan di pasar modal diantaranya surat utang (obligasi), ekuiti (saham), reksa dana, dan instrumen lainnya. Saham merupakan

Lebih terperinci

III. METODOLOGI PENELITIAN. kuantitatif. Menurut Silalahi dalam Eliyawati (2012) penelitian kuantitatif yaitu

III. METODOLOGI PENELITIAN. kuantitatif. Menurut Silalahi dalam Eliyawati (2012) penelitian kuantitatif yaitu III. METODOLOGI PENELITIAN 3.1 Jenis Penelitian Penelitian ini merupakan jenis penelitian yang menggunakan pendekatan kuantitatif. Menurut Silalahi dalam Eliyawati (2012) penelitian kuantitatif yaitu penelitian

Lebih terperinci

Pemodelan dan Peramalan Penutupan Harga Saham Harian Jakarta Islamic Index Model Garch

Pemodelan dan Peramalan Penutupan Harga Saham Harian Jakarta Islamic Index Model Garch EKBISI, Vol. IX, No. 1, Desember 2014, hal. 57-66 ISSN:1907-9109 Pemodelan dan Peramalan Penutupan Harga Saham Harian Jakarta Islamic Index Model Garch Ahmad Syarif 1 Fakultas Syariah dan Hukum UIN Sunan

Lebih terperinci

Wenty Yolanda Eliyawati R. Rustam Hidayat Devi Farah Azizah Fakultas Ilmu Administrasi Universitas Brawijaya Malang

Wenty Yolanda Eliyawati R. Rustam Hidayat Devi Farah Azizah Fakultas Ilmu Administrasi Universitas Brawijaya Malang PENERAPAN MODEL GARCH (GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY) UNTUK MENGUJI PASAR MODAL EFISIEN DI INDONESIA (Studi pada Harga Penutupan (Closing Price) Indeks Saham LQ 45 Periode 2009-2011)

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Stasioneritas Stasioneritas berarti bahwa tidak terdapat perubahan yang drastis pada data. Fluktuasi data berada di sekitar suatu nilai rata-rata yang konstan, tidak tergantung

Lebih terperinci

BAB III PEMODELAN DATA IHSG DAN LAJU INFLASI INDONESIA MENGGUNAKAN VECTOR AUTOREGRESSIVE WITH EXOGENOUS VARIABLE (VARX)

BAB III PEMODELAN DATA IHSG DAN LAJU INFLASI INDONESIA MENGGUNAKAN VECTOR AUTOREGRESSIVE WITH EXOGENOUS VARIABLE (VARX) BAB III PEMODELAN DATA IHSG DAN LAJU INFLASI INDONESIA MENGGUNAKAN VECTOR AUTOREGRESSIVE WITH EXOGENOUS VARIABLE (VARX) 3.1 Model Vector Autoregressive (VAR) Model Vector Autoregressive (VAR) adalah model

Lebih terperinci

PENENTUAN VALUE AT RISK SAHAM KIMIA FARMA PUSAT MELALUI PENDEKATAN DISTRIBUSI PARETO TERAMPAT

PENENTUAN VALUE AT RISK SAHAM KIMIA FARMA PUSAT MELALUI PENDEKATAN DISTRIBUSI PARETO TERAMPAT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 453-462 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENENTUAN VALUE AT RISK SAHAM KIMIA FARMA PUSAT MELALUI PENDEKATAN

Lebih terperinci

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE 3.1 Indeks Gini Model GSTAR adalah salah satu model yang banyak digunakan untuk memodelkan dan meramalkan data deret waktu dan lokasi. Model ini merupakan

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Lokasi penelitian tentang risiko harga sayuran di Indonesia mencakup komoditas kentang, kubis, dan tomat dilakukan di Pasar Induk Kramat Jati, yang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Esti Pertiwi, 2013

BAB I PENDAHULUAN 1.1 Latar Belakang Esti Pertiwi, 2013 BAB I PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan salah satu kebutuhan yang sangat penting bagi kehidupan manusia, terutama sebagai salah satu faktor dalam pengambilan keputusan. Peramalan biasanya

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan kajian mengenai Faktor-Faktor Yang Mempengaruhi

III. METODE PENELITIAN. Penelitian ini merupakan kajian mengenai Faktor-Faktor Yang Mempengaruhi III. METODE PENELITIAN A. Ruang Lingkup Penelitian Penelitian ini merupakan kajian mengenai Faktor-Faktor Yang Mempengaruhi Produk Domestik Bruto Usaha Mikro Kecil dan Menengah (UMKM) di Indonesia Tahun

Lebih terperinci

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya PEMODELAN RETURN IHSG PERIODE 15 SEPTEMBER 1998 13 SEPTEMBER 2013 MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (TGARCH(1,1)) DENGAN DUA THRESHOLD Suma Suci Sholihah,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Risiko adalah besarnya penyimpangan antara tingkat pengembalian yang diharapkan (expected return) dengan tingkat pengembalian aktual (actual return). Pengukuran

Lebih terperinci

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR)

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) Oleh: Julianto (1) Entit Puspita (2) Fitriani Agustina (2) ABSTRAK Dalam melakukan investasi dalam saham, investor

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Populasi Populasi dari penelitian ini adalah perbankan yang go public di Bursa Efek Indonesia (BEI) dan menerbitkan laporan keuangan yang lengkap (Annual Report) pada periode

Lebih terperinci

Penggunaan Metode VaR (Value at Risk) dalam Analisis Risiko Investasi Saham dengan Pendekatan Generalized Pareto Distribution (GPD)

Penggunaan Metode VaR (Value at Risk) dalam Analisis Risiko Investasi Saham dengan Pendekatan Generalized Pareto Distribution (GPD) JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 212) ISSN: 231-928X D-56 Penggunaan Metode VaR (Value at Risk) dalam Analisis Risiko Investasi Saham dengan Pendekatan Generalized Pareto Distribution (GPD)

Lebih terperinci

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH)

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 3, Tahun 2016, Halaman 465-474 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

Analisis Harga Saham Properti di Indonesia menggunakan metode GARCH

Analisis Harga Saham Properti di Indonesia menggunakan metode GARCH Analisis Harga Saham Properti di Indonesia menggunakan metode GARCH Dhafinta Widyasaraswati1,a), Acep Purqon1,b) 1 Laboratorium Fisika Bumi, Kelompok Keilmuan Fisika Bumi dan Sistem Kompleks, Fakultas

Lebih terperinci

INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (IGARCH) (Studi Kasus pada Return Kurs Rupiah terhadap Dollar Australia)

INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (IGARCH) (Studi Kasus pada Return Kurs Rupiah terhadap Dollar Australia) PERHITUNGAN VALUE AT RISK MENGGUNAKAN MODEL INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (IGARCH) (Studi Kasus pada Return Kurs Rupiah terhadap Dollar Australia) SKRIPSI Disusun

Lebih terperinci

Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series

Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series Theresia Desy M ), Haryono ) ) Mahasiswa Jurusan Statistika FMIPA

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB 3 SMOOTH TRANSITON AUTOREGRESSIVE. waktu nonlinear yang merupakan perluasan dari model Autoregressive (AR).

BAB 3 SMOOTH TRANSITON AUTOREGRESSIVE. waktu nonlinear yang merupakan perluasan dari model Autoregressive (AR). BAB 3 SMOOTH TRANSITON AUTOREGRESSIVE 3.1. Model Smooth Transition Autoregressive Model Smooth Transition Autoregressive adalah salah satu model runtun waktu nonlinear yang merupakan perluasan dari model

Lebih terperinci

METODE PENELITIAN. Data yang dipakai untuk penelitian ini adalah data sekunder (time series)

METODE PENELITIAN. Data yang dipakai untuk penelitian ini adalah data sekunder (time series) 48 III. METODE PENELITIAN A. Jenis dan Sumber Data Data yang dipakai untuk penelitian ini adalah data sekunder (time series) yang didapat dari Statistik Ekonomi Keuangan Indonesia (SEKI) Bank Indonesia

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. deskripsi suatu data yang dilihat dari nilai rata-rata (mean), standar deviasi,

BAB IV HASIL DAN PEMBAHASAN. deskripsi suatu data yang dilihat dari nilai rata-rata (mean), standar deviasi, BAB IV HASIL DAN PEMBAHASAN A. Hasil Analisis 1. Analisis Statistik Deskriptif Statistik deskriptif berfungsi untuk memberikan gambaran atau deskripsi suatu data yang dilihat dari nilai rata-rata (mean),

Lebih terperinci

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat BAB II KAJIAN PUSTAKA 2.1 Konsep Dasar Runtun Waktu Data runtun waktu (time series) merupakan data yang dikumpulkan, dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat berupa

Lebih terperinci

BAB III MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR)

BAB III MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR) BAB III MIXED GEOGRAPHICALLY WEIGHTED REGRESSION 3.1 Mixed Geographically Weighted Regression Model Mixed Geographically Weighted Regression merupakan model kombinasi atau gabungan antara regresi global

Lebih terperinci

BAB III INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICITY (IGARCH)

BAB III INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICITY (IGARCH) BAB III INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICITY (IGARCH) 3.1 Proses IGARCH Saat mengestimasi model GARCH, sering ditemukan bahwa jumlah koefisien parameter selalu sama dengan

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

3 Kesimpulan. 4 Daftar Pustaka

3 Kesimpulan. 4 Daftar Pustaka Litterman-2. Keuntungan aktual maksimal kedua kinerja Black Litterman ternyata terjadi pada waktu yang sama yaitu tanggal 19 Februari 2013. Secara umum dapat dinyatakan bahwa pembentukan portofolio dengan

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 635-643 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERHITUNGAN VALUE AT RISK MENGGUNAKAN MODEL INTEGRATED GENERALIZED

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Regresi adalah analisis statistik yang mempelajari bagaimana memodelkan sebuah model fungsional dari data untuk dapat menjelaskan ataupun meramalkan suatu

Lebih terperinci

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data time series merupakan serangkaian data pengamatan yang berasal dari satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan interval

Lebih terperinci

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti SEMINAR TUGAS AKHIR Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik Rina Wijayanti 1306100044 Pembimbing Drs. Haryono, MSIE Dedi Dwi Prastyo, S.Si., M.Si.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 1, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 1, Tahun 2015, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 1, Tahun 2015, Halaman 151-160 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian IDENTIFIKASI CURAH HUJAN EKSTREM DI KOTA SEMARANG MENGGUNAKAN

Lebih terperinci

METODE PENELITIAN. A. Variabel Penelitian dan Definisi Operasional. Dalam penelitian ini variabel terikat (dependent variabel) yang digunakan adalah

METODE PENELITIAN. A. Variabel Penelitian dan Definisi Operasional. Dalam penelitian ini variabel terikat (dependent variabel) yang digunakan adalah III. METODE PENELITIAN A. Variabel Penelitian dan Definisi Operasional 1. Variabel Penelitian Dalam penelitian ini variabel terikat (dependent variabel) yang digunakan adalah nilai tukar rupiah, sedangkan

Lebih terperinci

Analisis Deret Waktu Keuangan

Analisis Deret Waktu Keuangan Khreshna Syuhada 1 Catatan Kuliah Analisis Deret Waktu Keuangan Khreshna Syuhada 2 Bab 1: Return dan Sifat-sifat Return Misalkan PP tt menyatakan harga aset pada waktu tt. Return atau imbal hasil didefinisikan

Lebih terperinci

III. METODE PENELITIAN. Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data time series

III. METODE PENELITIAN. Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data time series 51 III. METODE PENELITIAN A. Jenis dan Sumber Data Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data time series yang didapat dari Bank Indonesia dan Badan Pusat Statistik dan melalui

Lebih terperinci

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Oleh RETNO HESTININGTYAS M0106061 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

ANALISIS VOLATILITY FORECASTING SEMBILAN BAHAN POKOK MENGGUNAKAN METODE GARCH DENGAN PROGRAM R

ANALISIS VOLATILITY FORECASTING SEMBILAN BAHAN POKOK MENGGUNAKAN METODE GARCH DENGAN PROGRAM R ANALISIS VOLATILITY FORECASTING SEMBILAN BAHAN POKOK MENGGUNAKAN METODE GARCH DENGAN PROGRAM R Skripsi Disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Berbicara tentang kegiatan pasar modal saat ini tidak terlepas dari apa yang disebut sebagai indeks harga saham. Untuk mengetahui bagaimana kegiatan ekonomi

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 31 BAB 3 METODOLOGI PENELITIAN Pada bab ini akan dibahas mengenai tahapan-tahapan serta metode pengolahan data yang akan digunakan dalam penelitian. Penelitian tahap pertama mencoba untuk keberadaan fenomena

Lebih terperinci

PORTFOLIO EFISIEN & OPTIMAL

PORTFOLIO EFISIEN & OPTIMAL Bahan ajar digunakan sebagai materi penunjang Mata Kuliah: Manajemen Investasi Dikompilasi oleh: Nila Firdausi Nuzula, PhD Portofolio Efisien PORTFOLIO EFISIEN & OPTIMAL Portofolio efisien diartikan sebagai

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

III. METODE PENELITIAN. Data yang digunakan pada penelitian ini adalah data sekunder yang diperoleh dari

III. METODE PENELITIAN. Data yang digunakan pada penelitian ini adalah data sekunder yang diperoleh dari III. METODE PENELITIAN Metode penelitian merupakan langkah dan prosedur yang akan dilakukan dalam pengumpulan data atau informasi empiris guna memecahkan permasalahan dan menguji hipotesis penelitian.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Heteroskedastis Masalah serius lainnya yang mungkin kita hadapi dalam analisis regresi adalah heteroskedastis.ini timbul pada saat bahwa varians dari faktor konstan untuk semua

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA Model fungsi : Y = f (X) LAHIR = F (WUS) LAHIR, yaitu data jumlah kelahiran setahun lalu di sejumlah Kecamatan di Jateng WUS, yaitu data jumlah wanita usia subur di sejumlah Kecamatan

Lebih terperinci

BAB III METODE FULL INFORMATION MAXIMUM LIKELIHOOD (FIML)

BAB III METODE FULL INFORMATION MAXIMUM LIKELIHOOD (FIML) BAB III METODE FULL INFORMATION MAXIMUM LIKELIHOOD (FIML) 3.1 Model Persamaan Simultan Model persamaan simultan adalah suatu model yang memiliki lebih dari satu persamaan yang saling terkait. Dalam model

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN Metodologi penelitian Efficient Market Hypothesis dan Fractal Market Hypothesis terhadap perilaku return harian indeks LQ45 dan saham-saham perbankan yang tergabung dalam LQ45

Lebih terperinci

BAB III PORTOFOLIO OPTIMAL. Capital assets pricing model dipelopori oleh Treynor, Sharpe, Lintner

BAB III PORTOFOLIO OPTIMAL. Capital assets pricing model dipelopori oleh Treynor, Sharpe, Lintner BAB III PORTOFOLIO OPTIMAL 3.1 Capital Asset Pricing Model Capital assets pricing model dipelopori oleh Treynor, Sharpe, Lintner dan Mossin pada tahun 1964 hingga 1966. Capital assets pricing model merupakan

Lebih terperinci

Estimasi Nilai AVaR Menggunakan Model GJR dan Model GARCH

Estimasi Nilai AVaR Menggunakan Model GJR dan Model GARCH Estimasi Nilai AVaR Menggunakan Model GJR dan Model GARCH Komang Dharmawan Jurusan Matematika, Fakultas MIPA, Universitas Udayana e-mail: k.dharmawan@unud.ac.id Abstrak: Dalam pemodelan harga saham, sering

Lebih terperinci

SKRIPSI. Disusun Oleh: Aditya Wisnu Broto J2E

SKRIPSI. Disusun Oleh: Aditya Wisnu Broto J2E vii PERBANDINGAN APLIKASI JARINGAN SYARAF TIRUAN BACKPROPAGATION DENGAN METODE OPTIMAL BRAIN DAMAGE DAN ARCH - GARCH UNTUK MEMPREDIKSI INDEKS HARGA SAHAM GABUNGAN (IHSG) SKRIPSI Disusun Oleh: Aditya Wisnu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Kerangka Pikir Harga saham dapat dipengaruhi oleh berbagai faktor, baik yang dapat dihitung (faktor fundamental) ataupun yang tidak dapat dihitung (contoh: gosip atau

Lebih terperinci

IV. ANALISIS DAN PEMBAHASAN. 1.1 Analisis Portofolio Pada Aktiva Berisiko (Saham dan Emas)

IV. ANALISIS DAN PEMBAHASAN. 1.1 Analisis Portofolio Pada Aktiva Berisiko (Saham dan Emas) IV. ANALISIS DAN PEMBAHASAN 1.1 Analisis Portofolio Pada Aktiva Berisiko (Saham dan Emas) Investor dalam membentuk portofolio diperlukan perhitungan return ekspektasi dari masing-masing aktiva untuk dimasukkan

Lebih terperinci

Pertemuan 4-5 ANALISIS REGRESI SEDERHANA

Pertemuan 4-5 ANALISIS REGRESI SEDERHANA Pertemuan 4-5 ANALISIS REGRESI SEDERHANA Metode Kuadrat Terkecil (OLS) Persoalan penting dalam membuat garis regresi sampel adalah bagaimana kita bisa mendapatkan garis regresi yang baik yaitu sedekat

Lebih terperinci

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan.

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan. BAB III PEMBAHARUAN PERAMALAN Pada bab ini akan dibahas tentang proses pembaharuan peramalan. Sebelum dilakukan proses pembaharuan peramalan, terlebih dahulu dilakukan proses peramalan dan uji kestabilitasan

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Desain Penelitian Metode yang diterapkan dalam penelitian ini yaitu desain kuantitatif, konklusif, eksperimental dan deskriptif. Metode deskriptif bertujuan untuk membuat

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

EXPONENTIALLY WEIGHTED MOVING AVERAGE (EWMA) DAN SEMI VARIANS (SV)

EXPONENTIALLY WEIGHTED MOVING AVERAGE (EWMA) DAN SEMI VARIANS (SV) EXPONENTIALLY WEIGHTED MOVING AVERAGE (EWMA) DAN SEMI VARIANS (SV) 3.1 Exponentially Weighted Moving Average Perhitungan standar deviasi yang dijelaskan pada bab sebelumnya mempunyai asumsi bahwa volatilitas

Lebih terperinci