BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan metode peramalan, metode deret berkala, tahapan metode yang dipakai, uji statistik yang digunakan serta ketepatan ramalan yang digunakan. 2.1 Arti dan Peranan Metode Peramalan Metode peramalan merupakan cara untuk memperkirakan secara kuantitatif apa yang akan terjadi pada masa yang akan datang dengan dasar data yang relevan pada masa lalu. Dengan kata lain metode peramalan ini digunakan dalam peramalan yang bersifat objektif. Keberhasilan dari suatu peramalan sangat ditentukan oleh: 1. Pengetahuan dan teknik tentang informasi yang lalu yang dibutuhkan 2. Teknik dan metode peramalannya Oleh karena keberhasilan tersebut, dapat dikatakan baik tidaknya suatu ramalan yang disusun ditentukan oleh metode yang digunakan juga baik tidaknya informasi kuantitatif yang digunakan. Selama informasi yang digunakan tidak dapat meyakinkan, maka hasil peramalan yang disusun akan sulit dipercaya ketepatan ramalannya. Metode peramalan merupakan cara memperkirakan apa yang akan terjadi pada masa yang akan datang secara sistematis, sehingga metode peramalan sangat berguna untuk dapat memperkirakan secara sistematis atas dasar data yang relevan pada masa yang lalu, dengan demikian metode peramalan diharapkan dapat memberikan objektivitas yang lebih besar. 2.2 Jenis-Jenis Metode Peramalan Berdasarkan sifatnya, peramalan dibedakan atas dua macam, yaitu: 1. Peramalan Kualitatif

2 Peramalan kualitatif adalah peramalan yang didasarkan atas data kualitatif pada masa lalu. Hasil peramalan yang dibuat sangat bergantung pada orang yang menyusunnya. Hal ini penting karena hasil peramalan tersebut ditentukan berdasarkan pemikiran yang bersifat intuisi, pendapat dan pengetahuan serta pengalaman dari orang yang menyusunnya. 2. Peramalan Kuantitatif Peramalan kuantitatif adalah peramalan yang didasarkan atas data kuantitatif pada masa lalu. Hasil peramalan yang dibuat sangat bergantung pada metode yang dipergunakan dalam peramalan tersebut. Dengan metode yang berbeda akan diperoleh hasil peramalan yang berbeda. Baik tidaknya metode yang dipergunakan ditentukan oleh perbedaan atau penyimpangan antara hasil ramalan dengan kenyataan yang terjadi. Semakin kecil penyimpangan antara hasil ramalan dengan kenyataan yang terjadi berarti metode yang dipergunakan semakin baik. Peramalan kuantitatif hanya dapat digunakan apabila terdapat tiga kondisi sebagai berikut (Assauri, Sofyan,1984) : 1. Adanya informasi tentang keadaan masa lalu 2. Informasi tersebut dapat dihitung dalam bentuk data 3. Dapat diasumsikan bahwa pola yang lalu akan berkelanjutan pada masa yang akan datang. Adapun jenis metode peramalan kuantitatif adalah sebagai berikut: 1. Metode peramalan yang didasarkan dari penggunaan analisa metode pola antara variabel yang akan diperkirakan dengan variabel waktu, yang merupakan deret waktu (time series) 2. Metode peramalan yang didasarkan dari penggunaan analisa pola hubungan antara variabel yang akan diperkirakan dengan variabel lain yang mempengaruhi yang disebut dengan metode korelasi atau sebab akibat (causal methods).(assauri,sofyan,1991) Dalam penelitian ini digunakan analisa pola hubungan antara variabel yang akan diperkirakan dengan variabel waktu atau analisa deret waktu atau deret berkala. Sehingga diperoleh peramalan yang tepat untuk digunakan.

3 2.3 Metode Deret Berkala Menurut Santoso (2009:13-14) dalam bukunya memberikan defenisi dari data deret berkala (time series) adalah data yang ditampilkan berdasarkan waktu, seperti data bulanan, data harian, data mingguan atau jenis waktu yang lain. Ciri data deret berkala adalah adanya rentang waktu tertentu, bukannya data pada satu waktu tertentu. Tujuan dari metode deret berkala adalah untuk menggolongkan data, memahami sistem serta melakukan peramalan berdasarkan sifatnya untuk masa depan. Persamaan dan kondisi awal dalam peramalan runtun waktu mungkin diketahui kedua-duanya atau mungkin saja hanya salah satunya. Sehingga dibutuhkan suatu aturan yang digunakan untuk menentukan perkembangan dan keakuratan sistem. Untuk memilih suatu metode yang tepat yang digunakan dalam mengolah data deret berkala adalah dengan mempertimbangkan jenis pola data, sehingga metode yang paling tepat dengan pola tersebut dapat diuji. Pola data deret berkala dapat dibagi menjadi empat bagian yaitu sebagai berikut (Assauri, Sofyan,1991): 1. Pola Data Horizontal Pola data ini terjadi bila fluktuasi disekitar nilai rata-rata yang konstan 2. Pola Data Musiman Pola yang menunjukkan perubahan yang berulang-ulang secara periodik dalam deret waktu. Pola ini terjadi bila suatu deret dipengaruhi oleh faktor musiman, misalnya kuartal tahun tertentu, bulanan atau hari-hari pada minggu tertentu. 3. Pola Data Siklis Pola data yang menunjukkan gerakan naik turun dalam jangka panjang dari suatu kurva trend. Terjadi bila datanya dipengaruhi oleh fluktuasi ekonomi jangka panjang seperti yang berhubungan dengan siklus bisnis. 4. Pola Data Trend Pola yang menunjukkan kenaikan atau penurunan jangka panjang dalam data. 2.4 Analisa Deret Berkala Analisa deret berkala merupakan metode yang mempelajari deret berkala, baik dari segi teori yang menaunginya maupun untuk membuat peramalan. Peramalan deret waktu adalah penggunaan model untuk memprediksi nilai di waktu mendatang berdasarkan peristiwa yang telah terjadi.

4 Makridakis (1999) menyatakan bahwa untuk menganalisa data deret berkala digunakan langkah-langkah sebagai berikut: 1. Plot Data Memplot data secara grafis adalah hal yang paling baik untuk menganalisis data deret berkala. Hal ini dilakukan untuk melihat apakah ada gejala trend (penyimpangan nilai tengah) atau pengaruh musiman pada suatu data. 2. Koefisien Autokorelasi Koefisien autokorelasi adalah korelasi antara deret berkala dengan deret berkala itu sendiri dengan selisih waktu (lag) 0, 1, 2 periode atau lebih. Misalnya diketahui persamaan (2.1) adalah model AR atau ARIMA (2,0,0) yang menggambarkan Y t sebagai suatu kombinasi linier dengan dua nilai sebelumnya. Koefisien korelasi sederhana antara Y t dengan Y t-1 dapat dicari dengan menggunakan persamaan sebagai berikut: Karena rumus tersebut secara statistik akan menyulitkan, maka dibuat asumsi untuk menyederhanakannya. Data Y t diasumsikan stasioner (baik nilai tengah maupun variansinya) sehingga kedua nilai Y t dan Y t-1 dapat diasumsikan bernilai sama (dan kita dapat membuat subskrip dengan menggunakan ) dan dua deviasi standar dapat diukur satu kali saja yaitu dengan menggunakan seluruh data Y t yang diketahui. Dengan menggunakan asumsi-asumsi penyederhanaan ini, maka persamaan (2.2) menjadi sebagai berikut: Pada persamaan (2.3) diketahui bahwa pembilang kekurangan satu nilai suku dibanding penyebut, akan tetapi karena adanya asumsi stasioneritas maka persamaannya dapat berlaku umum dan dapat digunakan untuk seluruh time-lag dari satu periode untuk suatu deret berkala. Hal ini sebagai akibat adanya asumsi

5 stasioneritas. Autokorelasi untuk time-lag 1, 2, 3,..., k dapat dicari dan dinotasikan r k sebagai berikut: Untuk menentukan apakah secara statistik suatu koefisien autokorelasi nilainya berbeda secara signifikan dari nol atau tidak, maka perlu dihitung galat standar dari r k dengan rumus sebagai berikut: Koefisien autokorelasi dari data random mempunyai distribusi sampling yang mendekati kurva normal dengan nilai tengah nol dan kesalahan standar kesalahan standar. Dari nilai dan sebuah nilai interval kepercayaan dapat diperoleh sebuah rentang nilai. Suatu koefisien autokorelasi disimpulkan tidak berbeda secara signifikan apabila nilainya berada pada rentang nilai tersebut dan sebaliknya. 3. Koefisien Autokorelasi Parsial Dalam analisis regresi, jika variabel tidak bebas Y diregresikan kepada variabelvariabel bebas X 1 dan X 2 maka akan muncul pertanyaan bahwa sejauh mana variabel X mampu menerangkan keadaan Y apabila mula-mula X 2 dipisahkan. Ini berarti meregresikan Y kepada X 2 dan menghitung galat sisa (residual error) kemudian meregresikan lagi nilai sisa tersebut kepada X t. Di dalam analisis deret berkala juga berlaku konsep yang sama. Autokorelasi parsial digunakan untuk mengukur tingkat keeratan (association) antara X t dan X t-k apabila pengaruh dari time-lag 1,2,3,...,k-1 dianggap terpisah. Koefisien autokorelasi parsial berorde m didefenisikan sebagai koefisien autoregresif terakhir dari model AR(m). Berikut ini persamaan-persamaan yang masing-masing digunakan untuk menetapkan AR(1), AR(2),..., AR(m-1) dan proses AR(m). (2.6) (2.7) (2.8) (2.9)

6 Dari persamaan-persamaan diatas dapat dicari nilai-nilai taksiran. Perhitungan yang diperlukan akan memakan banyak waktu. Oleh karena itu, lebih memuaskan untuk memperoleh taksiran berdasarkan pada koefisien autokorelasi. Penaksiran ini dapat dilakukan dengan mengalikan ruas kiri dan kanan persamaan (2.6) dengan X t-1 menjadi sebagai berikut: (2.10) 2.5 Pengujian Data Sebelum melakukan analisa terhadap data, langkah awal yang harus dilakukan adalah pengujian terhadap anggota sampel. Pengujian ini dimaksudkan untuk mengetahui apakah data yang diperoleh dapat diterima sebagai sampel. Rumus yang digunakan untuk menentukan jumlah anggota sampel adalah: (2.11) Keterangan: N = Ukuran sampel yang dibutuhkan N = Ukuran sampel percobaan = Data yang akan diamati Y t Apabila N < N, maka sampel percobaan dapat diterima sebagai sampel. 2.6 Metode Pemulusan (smoothing) Metode pemulusan (Pangestu, S.1996) merupakan metode peramalan dengan mengadakan penghalusan terhadap masa lalu, yaitu dengan pengambilan rata-rata dari nilai beberapa tahun kedepan Klasifikasi dalam Metode Pemulusan Secara umum metode smoothing diklasifikasikan menjadi dua bagian, yaitu: 1. Metode rata-rata Metode rata-rata dibagi atas empat bagian, yaitu:

7 e. Nilai tengah kesalahan f. Rata-rata bergerak tunggal (Single Moving Average) g. Rata-rata bergerak ganda (Double Moving Average) h. Kombinasi rata-rata bergerak lainnya Tujuan dari metode rata-rata adalah untuk memanfaatkan data masa lalu dalam mengembangkan suatu sistem peramalan pada periode mendatang. 2. Metode Pemulusan (Smoothing) Eksponensial Metode pemulusan eksponensial merupakan pengembangan dari metode average, yaitu peramalan dilakukan dengan mengulangi perhitungan secara terus menerus dengan menggunakan data yang baru. Sekelompok metode yang menunjukkan pembobotan menurun secara eksponensial terhadap nilai observasi yang lebih tua atau dengan kata lain nilai observasi yang baru diberikan bobot yang relatif besar dibandingkan dengan nilai observasi yang lebih tua. Metode Smoothing Eksponensial terdiri atas: a. Smoothing Eksponensial Tunggal b. Smoothing Eksponensial Ganda 1. Metode Linier satu parameter dari Brown 2. Metode dua parameter dari Holt c. Smoothing Eksponensial Triple Tahapan Metode Pemulusan Berikut langkah-langkah yang perlu dilakukan dalam peramalan dengan menggunakan metode pemulusan (Makridakis, 1999): 1. Memilih suatu kelompok data untuk dianalisa 2. Memilih suatu metode pemulusan, dalam hal ini dipilih metode pemulusan eksponensial 3. Gunakan metode pemulusan untuk meramalkan data yang akan dianalisa 4. Melakukan uji statistik

8 5. Keputusan penilaian ramalan Metode Pemulusan yang Digunakan Untuk mendapatkan suatu hasil yang baik harus diketahui cara peramalan yang tepat. Data deret berkala yang digunakan setelah diplot dalam grafis tidak menunjukkan pola data trend linier dan dapat juga dilihat dari plot autokorelasi dan nilai-nilai korelasinya. Maka metode peramalan analisa time series yang digunakan untuk meramalkan data deret berkala yang digunakan adalah Metode Smoothing Eksponensial Tunggal Satu Parameter. adalah: Bentuk umum dari Metode Smoothing Eksponensial Tunggal Satu Parameter (2.12) Keterangan: F t+1 = ramalan satu periode kedepan Y t = data aktual pada periode t F t = ramalan pada periode t α = parameter pemulusan ( 0 < α < 1 ) Ketepatan Ramalan Ketepatan ramalan adalah suatu hal yang mendasar dalam peramalan, yaitu bagaimana mengukur kesesuaian suatu metode peramalan tertentu untuk suatu kumpulan data yang diberikan. Dalam pemodelan deret berkala (time series) dari data masa lalu yang diramalkan situasi yang akan terjadi di masa yang akan datang. Untuk menguji kebenaran ramalan ini digunakan ketepatan ramalan. Beberapa kriteria yang digunakan untuk menguji ketepatan ramalan antara lain : a. ME (Mean Error) / Nilai Tengah Kesalahan b. MAE (Mean Absolute Error) / Nilai Tengah Kesalahan Absolut

9 c. MSE (Mean Square Error) / Nilai Tengah Kesalahan Kuadrat d. MPE (Mean Percentage Error) / Nilai Tengah Kesalahan Persentase e. MAPE (Mean Absolute Percentage Error) / Nilai Tengah Kesalahan Persentase Error: Keterangan : X t F t N = X t F t = data aktual periode t = (100) ; kesalahan persentase periode t = nilai ramalan periode t = banyaknya periode Metode peramalan yang dipilih adalah metode peramalan yang memberikan Mean Square Error (MSE) yang terkecil. 2.7 Metode ARIMA (Box-Jenkins) Metode ARIMA (Box-Jenkins) adalah metode peramalan yang tidak menggunakan teori atau pengaruh antar variabel seperti pada model regresi. Sehingga metode ini tidak memerlukan penjelasan mengenai mana variabel bebas atau terikat. Metode ini juga tidak perlu melihat pola data seperti pada time series decomposition, artinya data yang akan diprediksi tidak perlu dibagi menjadi komponen trend, musiman, siklis atau irregular (acak). Metode ini secara murni melakukan prediksi hanya berdasarkan datadata historis yang ada (Santoso, 2009:152). ARIMA merupakan suatu metode yang menghasilkan ramalan berdasarkan sintesis dari pola data secara historis (Arsyad,1995). Variabel yang digunakan adalah nilai-nilai terdahulu bersama nilai kesalahannya. Metode Box-Jenkins hanya dapat diterapkan, menjelaskan, atau mewakili series yang stasioner atau telah dijadikan stasioner melalui proses differencing. Karena

10 series stasioner tidak punya unsur trend, maka yang ingin dijelaskan dengan metode ini adalah unsur sisanya, yaitu error. Kelompok model time series linier yang termasuk dalam metode ini antara lain: autoregressive, moving average, autoregressive-moving average, dan autoregressive integrated moving average. Makridakis (1999) menjelaskan bahwa model Autoregressive Integrated Moving Average (ARIMA) merupakan metode yang telah dikembangkan oleh George dan Gwilym Jenkins yang diterapkan untuk analisis deret berkala, peramalan dan pengendalian. Metode ini paling berbeda dari metode peramalan lain karena tidak mensyaratkan suatu pola data tertentu supaya model dapat bekerja dengan baik. Apabila metode ini digunakan untuk data deret berkala yang bersifat dependen (terikat) atau berhubungan satu sama lain secara statistik maka metode ini akan bekerja dengan baik. Metode ARIMA dinotasikan sebagai ARIMA (p,d,q) dengan, p = orde atau derajat autoregressive (AR) d = orde atau derajat differencing (pembedaan) dan q = orde atau derajat moving average (MA) dan untuk model ARIMA musiman dinotasikan sebagai berikut: ARIMA (p, d, q) (P, D, Q) s dengan, (P, D, Q) merupakan bagian yang musiman dari model P = orde atau derajat autoregressive (AR) D = orde atau derajat differencing (pembedaan) dan Q = orde atau derajat moving average (MA) Klasifikasi Model dalam Metode ARIMA (Box-Jenkins) Model Box-Jenkins (ARIMA) dibagi kedalam 3 kelompok, yaitu model autoregressive (AR), moving average (MA), dan model campuran ARIMA (autoregressive moving average) yang mempunyai karakteristik dari dua model pertama (Hendranata 2003). 1. Autoregressive Model (AR) Bentuk umum model autoregressive ordo p (AR(p)) atau model ARIMA (p,0,0) dinyatakan sebagai berikut: (2.13) Keterangan:

11 = suatu konstanta = parameter autoregressive ke-p = nilai kesalahan pada saat t 2. Moving Average Model (MA) Bentuk umum model moving average ordo q (MA(q)) atau ARIMA (0,0,q) dinyatakan sebagai berikut: (2.14) Keterangan: = suatu konstanta sampai adalah parameter-parameter moving average = nilai kesalahan pada saat t-k 3. Model Campuran a. Proses ARMA Model umum untuk campuran proses AR(1) murni dan MA(1) murni, misal ARIMA (1,0,1) dinyatakan sebagai berikut: (2.15) atau AR(1) b. Proses ARIMA MA(1) (2.16) Apabila nonstasioneritas ditambahkan pada campuran proses ARMA, maka model umum ARIMA (p,d,q) terpenuhi. Persamaan untuk kasus sederhana ARIMA (1,1,1) adalah sebagai berikut: (2.17) pembedaan AR(1) MA(1) pertama c. Model ARIMA dan Faktor Musiman Musiman didefinisikan sebagai suatu pola yang berulang-ulang dalam selang waktu yang tetap. Untuk data yang stasioner, faktor musiman dapat ditentukan dengan mengidentifikasi koefisien autokorelasi pada dua atau tiga time-lag yang berbeda nyata dari nol. Autokorelasi yang secara signifikan berbeda dari

12 nol menyatakan adanya suatu pola dalam data. Untuk mengenali adanya faktor musiman, seseorang harus melihat pada autokorelasi yang tinggi. Secara aljabar adalah sederhana tetapi dapat berkepanjangan. Oleh sebab itu, untuk tujuan ilustrasi diambil model umum ARIMA (1,1,1)(1,1,1) 4 sebagai berikut. (2.18) Tahapan Metode ARIMA Metode ARIMA diharapkan dapat menyelesaikan suatu data time series apakah dengan proses AR murni/ ARIMA (p,0,0) atau MA murni/ ARIMA (0,0,q) atau proses ARMA/ ARIMA (p,0,q) atau proses ARIMA (p,d,q). Langkah-langkah penerapan metode ARIMA secara berturut-turut adalah : 1. Identifikasi model 2. Penaksiran parameter 3. Pemeriksaan diagnostic 4. Peramalan Berikut flowchart tahapan metode ARIMA (Box-Jenkins): Menentukan tingkat stasionaritas data Identifikasi model ARIMA Estimasi parameter dari model yang dipilih Tidak Uji diagnostik (apakah model sudah tepat?) Ya Gunakan model untuk peramalan Gambar 2.1 Flowchart tahapan dalam model ARIMA (Box-Jenkins) Model Umum dan Uji Stasioner

13 Suatu data runtun waktu dikatakan stasioner jika nilai rata-ratanya tidak berubah. Langkah pertama yang dilakukan dengan menghitung nilai-nilai autokorelasi dari deret data asli. Apabila nilai tersebut turun dengan cepat ke atau mendekati nol sesudah nilai kedua atau ketiga menandakan bahwa data stasioner di dalam bentuk aslinya. Sebaliknya, apabila nilai autokorelasinya tidak turun ke nol dan tetap positif menandakan data tidak stasioner. Apabila data yang menggunakan model ARIMA tidak stasioner, perlu dilakukan modifikasi untuk menghasilkan data yang stasioner. Salah satu cara yang umum dipakai adalah metode pembedaan (differencing), yaitu mengurang nilai data pada suatu periode dengan nilai data periode sebelumnya. Metode Box-Jenkins hanya dapat diterapkan, menjelaskan, atau mewakili data yang stasioner atau telah dijadikan stasioner melalui proses differencing. Karena data stasioner tidak mempunyai unsur trend, maka yang ingin dijelaskan dengan metode ini adalah unsur sisanya, yaitu error. Apabila tetap tidak stasioner dilakukan pembedaan pertama lagi. Untuk kebanyakan tujuan praktis, suatu maksimum dari dua pembedaan akan mengubah data menjadi deret stasioner Identifikasi Model Langkah selanjutnya setelah data deret waktu stasioner adalah menetapkan model ARIMA (p,d,q) yang cocok (tentatif), yaitu menetapkan berapa p, d, dan q. Jika pada pengujian stasioneritas dilakukan tanpa proses pembedaan (differencing) d maka diberi nilai 0, dan jika melalui pembedaan pertama maka bernilai 1 dan seterusnya. Pada identifikasi model data times series yang stationer digunakan: 1. ACF atau Autocorrelation Function yaitu fungsi yang menunjukkan besarnya korelasi antara pengamatan pada waktu ke t dengan pengamatan pada waktuwaktu sebelumnya. 2. PACF atau Partial Autocorrelation Function yaitu fungsi yang menunjukkan besarnya korelasi parsial antara pengamatan pada waktu ke t dengan pengamatan-pengamatan pada waktu-waktu sebelumnya. Dalam memilih berapa p dan q dapat dibantu dengan mengamati pola fungsi autocorrelation dan partial autocorrelation (correlogram) dari series yang dipelajari, dengan acuan sebagai berikut :

14 Tabel 2.1 Pola Autokolerasi dan Autokorelasi Parsial Autocorrelation Partial autocorrelation ARIMA tentative Menuju nol setelah lag q Menurun secara bertahap/ ARIMA (0,d,q) Bergelombang Menurun secara Menuju nol setelah lag q ARIMA (p,d,0) bertahap/bergelombang Menurun secara bertahap/ bergelombang sampai lag q masih berbeda dari nol) Menurun secara bertahap/ bergelombang (sampai lag p masih berbeda dari nol) ARIMA (p,d,q) Pada umumnya, peneliti harus mengindentifikasi autokorelasi yang secara eksponensial menjadi nol. Jika autokorelasi secara eksponensial melemah menjadi nol berarti terjadi proses AR. Jika autokorelasi parsial melemah secara eksponensial berarti terjadi proses MA. Jika keduanya melemah berarti terjadi proses ARIMA (Arsyad, 1995) Penaksiran Parameter Model Setelah berhasil menetapkan identifikasi model sementara, selanjutnya parameterparameter AR dan MA, musiman dan tidak musiman harus ditetapkan dengan cara yang terbaik. Terdapat dua cara yang mendasar untuk mendapatkan parameterparameter terbaik dalam mencocokkan deret berkala yang sedang dimodelkan (Makridakis,1999) yaitu sebagai berikut : 1. Dengan cara mencoba-coba menguji beberapa nilai yang berbeda dan memilih satu nilai tersebut (sekumpulan nilai, apabila terdapat lebih dari satu parameter yang akan ditaksir) yang meminimumkan jumlah kuadrat nilai sisa (sum of squared residuals). 2. Perbaikan secara iteratif memilih taksiran awal dan kemudian membiarkan program komputer memperhalus penaksiran tersebut secara iteratif. Sebagai contoh untuk keperluan estimasi maka model ARIMA (2,1,0) diubah menjadi: (2.19)

15 Nilai estimasi parameter, diperoleh dengan menyelesaikan perhitungan berikut: (2,20) Uji Diagnostik Uji diagnostik yaitu memeriksa atau menguji apakah model telah dispesifikasi secara benar atau apakah telah dipilih p, d, dan q yang benar. Berikut beberapa cara yang digunakan untuk memeriksa model: 1. Jika model dispesifikasi dengan benar, maka kesalahannya harus random atau merupakan suatu proses antar error tidak berhubungan, sehingga fungsi autokolerasi dari kesalahan tidak berbeda dengan nol secara statistik. Jika tidak demikian, spesifikasi model yang lain perlu diduga dan diperiksa. Jika pemeriksaan ini menyimpulkan bahwa kesalahannya random, spesifikasi model yang lain bisa juga diduga dan diperiksa untuk dibandingkan dengan spesifikasi benar yang pertama. 2. Dengan menggunakan modified Box-Pierce (Ljung-Box) Q statistic untuk menguji apakah fungsi autokorelasi kesalahan semuanya tidak berbeda dari nol. Rumusan statistik itu adalah: dengan, Q = hasil perhitungan statistik Box-Pierce n = banyaknya data asli r k = nilai koefisien autokorelasi time lag k m = jumlah maksimum time lag yang diinginkan (2.21) Jika model cukup tepat, maka statistik Q akan berdistribusi χ 2. Jika nilai Q lebih besar dari nilai tabel Chi-Square dengan derajat kebebasan m-p-q dimana p dan q masing-masing menunjukkan orde AR dan MA, model dianggap memadai. Sebaliknya apabila nilai Q lebih kecil dari nilai pada tabel Chi-Square, model

16 belum dianggap memadai. Apabila hasil pengujian menunjukkan model belum memadai, analisis harus diulangi dengan mengikuti langkah-langkah yang ada selanjutnya dengan model yang baru. 3. Dengan menggunakan t statistik untuk menguji apakah koefisien model secara individu berbeda dari nol. Seperti halnya dalam regresi, ciri model yang baik adalah jika semua koefisien modelnya secara statistik berbeda dari nol. Jika tidak demikian, variabel yang ada pada koefisien tersebut seharusnya dilepas dan spesifikasi dengan model yang lain diduga dan diuji. Jika terdapat banyak spesifikasi model yang lolos dalam uji diagnostik, yang terbaik dari model itu adalah model dengan koefisien lebih sedikit (prinsip parsimony). 4. Mempelajari nilai sisa (residual) untuk melihat apakah masih terdapat beberapa pola yang belum diperhitungkan. Nilai sisa (galat) yang tertinggal sesudah dilakukan pencocokan model ARIMA diharapkan hanya merupakan gangguan acak. Oleh karena itu, apabila autokorelasi dan parsial dari nilai sisa diperoleh, diharapkan akan ditemukan model yang tidak ada autokorelasi yang nyata dan model yang tidak ada parsial yang nyata Peramalan dengan Model ARIMA Apabila model memadai maka model tersebut dapat digunakan untuk melakukan peramalan. Sebaliknya, apabila model belum memadai maka harus ditetapkan model yang lain yang lebih tepat.

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini, peneliti akan memberikan penjelasan tentang teori metode backpropagation jaringan syaraf tiruan dan metode deret berkala ARIMA(Boxjenkins) sehingga dapat mempermudah

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan meramalkan atau memprediksi apa yang akan terjadi dimasa yang akan datang dengan waktu tenggang (lead time) yang relative lama,

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Sedangkan ramalan adalah

Lebih terperinci

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan datang. Peramalan adalah proses untuk memperkirakan kebutuhan di masa datang

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto 18 BAB 2 TINJAUAN TEORITIS 2.1 Produk Domestik Regional Bruto Dalam menghitung pendapatan regional, dipakai konsep domestik. Berarti seluruh nilai tambah yang ditimbulkan oleh berbagai sektor atau lapangan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan (Forceasting) 2.1.1 Pengertian Peramalan Untuk memajukan suatu usaha harus memiliki pandangan ke depan yakni pada masa yang akan datang. Hal seperti ini yang harus dikaji

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah suatu situasi atau kondisi yang diperkirakan akan terjadi pada

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi merupakan suatu kegiatan yang dikerjakan untuk menambah nilai guna suatu benda baru sehingga lebih bermanfaat dalam memenuhi kebutuhan. Produksi jahe

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian terhadap populasi yang sangat besar, kita perlu melakukan suatu penarikan sampel. Hal ini dikarenakan tidak selamanya kita dapat

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Peramalan (forecasting) 2.1.1. Hubungan Forecast dengan Rencana Forecast adalah peramalan apa yang akan terjadi pada waktu yang akan datang, sedang rencana merupakan penentuan apa

Lebih terperinci

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) A-34 Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG Mey Lista Tauryawati

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 20 BAB 2 LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah pemikiran terhadap suatu besaran, misalnya permintaan terhadap satu atau beberapa produk pada periode yang akan datang.

Lebih terperinci

BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS

BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS II.1 Landasan Teori II.1.1 Indeks Harga Saham Gabungan (IHSG) IHSG di BEI meliputi pergerakan-pergerakan harga untuk saham biasa dan saham preferen. IHSG

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN Puji Rahayu 1), Rohmah Nur Istiqomah 2), Eminugroho Ratna Sari 3) 1)2)3) Matematika

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA Tanti Octavia 1), Yulia 2), Lydia 3) 1) Program Studi Teknik Industri, Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern

Lebih terperinci

BAB. 1 PENDAHULUAN Latar Belakang

BAB. 1 PENDAHULUAN Latar Belakang 1 BAB. 1 PENDAHULUAN 1.1. Latar Belakang Kain adalah bahan mentah yang dapat dikelola menjadi suatu pakaian yang mempunyai nilai financial dan konsumtif dalam kehidupan, seperti pembuatan baju. Contohnya

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013 BAB I PENDAHULUAN 1.1. Latar Belakang Tingkat pencemaran udara di beberapa kota besar cenderung meningkat dari tahun ke tahun. Hal ini disebabkan oleh beberapa faktor diantaranya jumlah transportasi terus

Lebih terperinci

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk BAB II LANDASAN TEORI 2.1 Sistem Definisi sistem dapat dibagi menjadi dua pendekatan, yaitu pendekatan secara prosedur dan pendekatan secara komponen. Berdasarkan pendekatan prosedur, sistem didefinisikan

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Teknologi informasi telah berkembang dengan relatif pesat. Di era

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Teknologi informasi telah berkembang dengan relatif pesat. Di era BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi informasi telah berkembang dengan relatif pesat. Di era informasi seperti sekarang ini kebutuhan akan informasi semakin meningkat, terutama dengan

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Definisi dan Tujuan Peramalan Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah sesuatu pada waktu yang akan datang berdasarkan data pada masa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 38 III. METODE PENELITIAN A. Konsep Dasar dan Batasan Operasional Konsep dasar dan definisi opresional mencakup pengertian yang dipergunakan untuk mendapatkan dan menganalisis data sesuai dengan tujuan

Lebih terperinci

BAB 2 LANDASAN TEORI. datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan

BAB 2 LANDASAN TEORI. datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan 18 BAB 2 LANDASAN TEORI 2.1 Pengertian Ramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Konsep Permintaan III KERANGKA PEMIKIRAN Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1. Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

Prediksi Harga Saham dengan ARIMA

Prediksi Harga Saham dengan ARIMA Prediksi Harga Saham dengan ARIMA Peramalan harga saham merupakan sesuatu yang ditunggu-tunggu oleh para investor. Munculnya model prediksi yang baru yang bisa meramalkan harga saham secara tepat merupakan

Lebih terperinci

PEMBANDINGAN METODE PENGHALUSAN EKSPONENSIAL GANDA DUA PARAMETER HOLT

PEMBANDINGAN METODE PENGHALUSAN EKSPONENSIAL GANDA DUA PARAMETER HOLT PEMBANDINGAN METODE PENGHALUSAN EKSPONENSIAL GANDA DUA PARAMETER HOLT DAN METODE BOX-JENKINS PADA PERAMALAN DATA DERET WAKTU TREND (Studi Kasus Data Penumpang Bandara Juanda 2008-2016) (Skripsi) Oleh RASYD

Lebih terperinci

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk.

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk. PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. Djoni Hatidja ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 955 email: dhatidja@yahoo.com ABSTRAK Penelitian ini

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

BAB 2 TINJAUAN TEORI. akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

BAB 2 TINJAUAN TEORI. akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan BAB 2 TINJAUAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

Peramalan Permintaan Paving Blok dengan Metode ARIMA

Peramalan Permintaan Paving Blok dengan Metode ARIMA Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Permintaan Paving Blok dengan Metode ARIMA Adin Nofiyanto 1,Radityo Adi Nugroho 2, Dwi Kartini 3 1,2,3 Program

Lebih terperinci

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Jurnal UJMC, Volume 2, Nomor 1, Hal. 28-35 pissn : 2460-3333 eissn: 2579-907X PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Novita Eka Chandra 1 dan Sarinem 2 1 Universitas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan adalah alat bantu yang penting dalam perencanaan yang efektif dan efisien (Makridakis,1991). Peramalan merupakan studi terhadap data historis untuk menemukan

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) M-11 2) PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) Naili Farkhatul Jannah 1), Muhammad Bahtiar Isna Fuady 2), Sefri

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

Metode Box - Jenkins (ARIMA)

Metode Box - Jenkins (ARIMA) Metode Box - Jenkins (ARIMA) Metode peramalan saat ini cukup banyak dengan berbagai kelebihan masing-masing. kelebihan ini bisa mencakup variabel yang digunakan dan jenis data time seriesnya. nah, dalam

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu indikator tingkat kesejahteraan rakyat dapat dilihat dari perkembangan angka kematian balita, dikarenakan kematian balita berkaitan erat dengan keadaan ekonomi,

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs.

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs. Analisis Peramalan Penerimaan Pajak Kendaraan Bermotor dengan Metode Autoregressive Integrated Moving Average (ARIMA) (Studi Kasus : Dinas Pendapatan dan Pengelolaan Aset Daerah Provinsi Jawa Tengah) Artikel

Lebih terperinci

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan SEMINAR PROPOSAL TUGAS AKHIR Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan OLEH: NAMA : MULAZIMATUS SYAFA AH NRP : 13.11.030.021 DOSEN PEmbimbing: Dr.

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 59 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA ANNISA UL UKHRA Program Studi Matematika,

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama ( assaury, 1991). Sedangkan ramalan

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT

ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT ANALISA BOX JENKINS PADA PEMBENTUKAN MODEL PRODUKSI PREMI ASURANSI KENDARAAN BERMOTOR RODA EMPAT Mei Taripar Pardamean S.,SKom Jl. Makmur No.1 Ciracas Jakarta Timur mtp95@yahoo.com ABSTRAK Tujuan dari

Lebih terperinci

PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika Vol. 1, No. 6 (2013), pp. 579 589. PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS Raisa Ruslan, Agus Salim Harahap, Pasukat Sembiring Abstrak. Dalam

Lebih terperinci

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim

PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA. Nur Hukim TE 091399 TUGAS AKHIR- 4 SKS PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PADA DATA REDAMAN HUJAN DI SURABAYA Oleh Nur Hukim Dosen Pembimbing Prof. Ir. Gamantyo Hendrantoro, M.Eng. Ph.D Ir. Achmad

Lebih terperinci

ARIMA and Forecasting

ARIMA and Forecasting ARIMA and Forecasting We have learned linear models and their characteristics, like: AR(p), MA(q), ARMA(p,q) and ARIMA (p,d,q). The important thing that we have to know in developing the models are determining

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

BAB II LANDASAN TEORI. saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan

BAB II LANDASAN TEORI. saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan BAB II LANDASAN TEORI 2.1 Pengertian Sistem Menurut Amsyah (2005), definisi sistem adalah elemen-elemen yang saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan kerja dari prosedur

Lebih terperinci

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran.

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. BAB III METODE PENELITIAN 3.1 Jenis / Pendekatan Penelitian Penelitian dan ilmu pengetahuan mempunyai kaitan yang erat keduanya merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. Penelitian

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Curah Hujan Curah hujan adalah jumlah air yang jatuh di permukaan tanah datar selama periode tertentu yang diukur dengan satuan tinggi milimeter (mm) di atas permukaan horizontal.

Lebih terperinci

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA Saintia Matematika ISSN: 2337-9197 Vol. 2, No. 1 (2014), pp. 55 69. PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA John Putra S Tampubolon, Normalina Napitupulu, Asima Manurung Abstrak.

Lebih terperinci

Sebelah Utara dengan Kabupaten Asahan dan Selat Malaka. Sebelah Timur dengan Provinsi Riau. Sebelah Selatan dengan Kabupaten Tapanuli Selatan.

Sebelah Utara dengan Kabupaten Asahan dan Selat Malaka. Sebelah Timur dengan Provinsi Riau. Sebelah Selatan dengan Kabupaten Tapanuli Selatan. 20 BAB 2 LANDASAN TEORI 2.1 Demografi Penduduk Demografi adalah uraian tentang penduduk, terutama tentang kelahiran, perkawinan, kematian dan migrasi. Demografi meliputi studi ilmiah tentang jumlah penduduk,

Lebih terperinci

BAB II LANDASAN TEORI. Sistem informasi terdiri dari input, proses, dan output, seperti yang terlihat pada

BAB II LANDASAN TEORI. Sistem informasi terdiri dari input, proses, dan output, seperti yang terlihat pada BAB II LANDASAN TEORI 2.1 Konsep Sistem Informasi Sebelum merancang sistem perlu dikaji konsep dan definisi dari sistem.. Sistem informasi terdiri dari input, proses, dan output, seperti yang terlihat

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci