Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan"

Transkripsi

1 Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode lainnya, terutama laju konvergensinya yang paling cepat. Namun demikian, kelemahan mendasar dari metode Newton-Raphson adalah dalam hal perhitungan turunan fungsi atau f ( ). Dalam modul ini akan dipelajari suatu metode komparatif yang sebanding dengan Metode Newton-Raphson untuk penyelesaian PANLT, namun memiliki keunggulan bahwa ia tidak melakukan perhitungan turunan fungsi. Metode Secant, memiliki kemiripan persamaan rekursif yang sangat dekat dengan Metode Newton-Raphson. Namun demikian, perbedaan yang paling mencolok dari keduanya adalah dalam hal cara mereka menghitung turunan fungsi y = f (), yaitu: metode Newton-Raphson menghitung turunan fungsi dengan cara analitis, sedangkan Metode Secant menghitung turunan fungsi dengan pendekatan numeris. Oleh sebab itulah, Metode Secant ini tidak ada pilihan lagi mengharuskan para penggunakan untuk menebak 2 buah (sembarang) harga -awal yang berbeda. Sesuai dengan namanya, Metode Secant bekerja berdasarkan GARIS SECANT (garis busur) yang menghubungkan 2 titik pada kurva y = f (), sedemikian rupa sehingga secara geometris akan terbentuk kesebangunan segitiga dan kemudian daripadanya dapat dihitung suatu titik pendekatan baru pada kurva y = f() yang mendekati akar atau jawaban eksaknya dan kemudian dari titik yang baru ini ditarik lagi suatu garis secant yang baru yang berhubungan dengan salah satu titik awal yang tempat kedududkannya lebih dekat ke arah akar eksaknya, demikian proses rekursif tersebut dilakukan secara berulang (iteratif) sehingga Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (1/1) '

2 diperoleh suatu akar yang paling mendekati akar eksaknya sesuai dengan kriteria yang ditentukan. B. Solusi Akar PANLT dengan Metode Secant Solusi akar (atau akar-akar) dengan menggunakan Metode Secant, secara sederhana, dapat diturunkan dari representasi grafis di bawah ini: Gambar 8.1. Representasi grafis untuk Metode Secant. Perhatikan Gb di atas, maka kesebangunan segitiga yang terbentuk adalah perbandingan berikut: f ( 1 1 ) f ( 2) 3 = 2 3 atau f ( 1 ) 3 f ( 1) = 1 f ( 2 ) 3 f ( 2 ) 2 dan, pindahkan faktor f ) di ruas kanan ke ruas kiri: 3 ( 3 3 f ( 2 ) 3 f ( 1) + 2 f ( 1) = 1 f ( 2 ) tambahkan masing-masing ruas dengan 2 f ( 2 ), sehingga diperoleh: Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (2/2)

3 f ( 2 ) 3 f ( 1) 2 f ( 2 ) + 2 f ( 1 ) = 1 f ( 2 ) 2 f ( 2 ) 3 kemudian, setelah penyusunan ulang diperoleh: ( )( f ) f ( )) = ( ) f ( ) 3 2 ( sehingga 3 dapat dihitung dari persamaan di atas setelah dilakukan penyusunan ulang persamaan, sebagai berikut: 3 = 2 f ( 2 ) 2 f ( ) 2 1 f ( 1 ) atau secara umum, dalam bentuk formula rekursif beturutan dari Metode Secant: n+ 1 = n f ( n ) n f ( ) n n1 f ( n1 ) Namun, seperti juga pada metode-metode solusi PANLT lainnya, metode ini dapat bekerja dengan baik jika dipenuhi beberapa persyaratan berikut: Diperlukan DUA HARGA AWAL (yaitu: n1 dan n, yang keduanya merupakan tebakan yang nilainya hampir berdekatan), Kedua tebakan harga awal diatas, tidak boleh mengakibatkan kedua harga fungsi denominator (masing-masing f ( n ) dan f ( 1) ) menjadi saling meniadakan ataupun 0 (nol), n Selama proses iterasi, harga-harga f ( n ) dan f ( n 1) tidak boleh tepat sama, Kriteria penghentian iterasi dilakukan bilamana SALAH SATU syarat berikut telah dipenuhi: (a). Selisih harga n+ 1 (harga akar terbaru) dengan n (harga akar pada iterasi sebelumnya) lebih kecil atau sama dengan Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (3/3)

4 harga ε, atau dapat dituliskan sebagai: 1 ε, atau n+ n (b). Harga fungsi f( n+ 1) (dengan menggunakan harga pada iterasi terbaru) sudah sangat kecil dan menuju nol atau dapat dikatakan juga lebih kecil atau sama dengan harga ε, yang dapat dituliskan sebagai: f ( n + 1) ε C. Perbandingan Metode Secant dan Metode Newton-Raphson Karena kemiripan formulanya, mungkin disini perlu ditinjau secara ringkas beberpa aspek penggunaan dari kedua metode ini. Secara sekilas, mungkin dapat disimpulkan bahwa Metode Newton- Raphson tampaknya bekerja dengan lebih cepat. Namun, perlu dicatat pula disini, bahwa Metode Secant hanya memerlukan sekali evaluasi fungsi per-langkah, nilai fungsi yang sudah ada sebelumnya tidak perlu lagi dievaluasi; sedangkan Metode Newton- Raphson selalu memerlukan 2 kali evaluasi fungsi per-langkahnya. Jadi secara umum, Metode Newton akan memerlukan lebih sedikit iterasi untuk mendapatkan akurasi yang diinginkan, namun, ia akan memerlukan lebih banyak komputasi per-langkah iterasi yang dilakukan. Atkinson (1978) menganalisis keduanya, bahwa bila waktu yang ' dibutuhkan oleh program untuk mengevaluasi f ( ) lebih besar dari 44 % dari waktu yang diperlukan untuk mengevaluasi f (), maka sudah dapat dipastikan bahwa Metode Secant akan lebih efisien untuk digunakan. D. Algoritma Metode Secant Serupa dengan metode-metode sebelumnya, selain Metode Newton-Raphson yang akan dibahas pada Modul 7, Metode Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (4/4)

5 Secant ini juga membutuhkan tebakan 2 buah harga awal yang semuanya harus berada di sekitar DOMAIN JAWAB dari akar α (secara intuitif), sedemikian rupa sehingga formula tersebut konvergen (menuju ke titik jawab). Hal lain yang harus diperhatikan adalah meskipun Metode Secant ini membutuhkan 2 buah nilai awal, namun ia dapat meringankan beban tambahan kepada penggunanya dalam hal perhitungan fungsi n, di setiap iterasi (titik n ). Hal ini merupakan salah satu keuntungan dari penggunaan metode ini dibandingkan Metode Newton-Raphson, mengingat tidak semua fungsi dapat diturunkan atau mempunyai turunan pada suatu interval yang kontinyu. Di samping itu juga, jaminan konvergensi dan bahkan laju konvergensinya masih jauh lebih baik dari Metode Regula-Falsi seperti yang telah dibahas pada Modul 6. turunan f ' ( ) Secara ringkas, algoritma Metode Secant ini dapat disajikan sebagai berikut: Algoritma SECANT(f,,0,1,ε,iter,itma,flag) 1. Set harga variabel-variabel: iter = 0, flag = 0; 2. = 1 - f(1)[1 0]/[f(1) f(0)]; 3. Jika abs( 1) ε maka flag = 1 atau jika iter > itma maka flag = 2 atau jika tidak maka set iter = iter + 1; 0 = 1; 1 = ; 4. Jika flag = 0 ulangi ke nomor 2; 5. Selesai. Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (5/5)

6 Perhatikan dengan baik-baik: bahwa algoritma di atas tidak memperhitungkan adanya kemungkinan kedua fungsi denominator (f(1) dan f(0)) berharga nol atau berharga sama. Cobalah analisis atau beri komentar saudara tentang masalah tersebut! Jika saudara berpendapat harus ada peringatan tentang bahaya fungsi turunan yang berharga nol, bagaimanakah bentuk algoritmanya menurut saudara? Adapun ringkasan umum tentang sifat dan karakteristik metode ini adalah sebagai berikut: Memerlukan 2 harga awal ( 0 dan 1 ), Konvergensi superlinier, namun mendekati Kuadratis (mendekati metode Newton-Raphson), Sesuai untuk fungsi yang turunannya tak terdefinisi dengan jelas atau sulit dilakukan ( diskontinyu); sehingga kendala perhitungan turunan fungsi dapat dihindari, Divergen (RTE, run time error) bila selama proses iterasi diperoleh harga n = n-1 ( = 0 tepat), Kriteria penghentian iterasi : f ε. ( n + 1) 1 ε dan atau n+ n Adapun tabel kerja dari metode ini (sesuai dengan algoritmanya), dapat disajikan secara sistematis sebagai berikut: Tabel 8.1. Tabel Kerja Metode Secant n n-1 n f(n-1) f(n) 0 1 Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (6/6)

7 E. Listing Program Metode Secant Sama seperti pada modul-modul sebelumnya, problem yang diberikan adalah perhitungan untuk akar (akar-akar) persamaan berikut: f ( ) e 1 = 0 Listing program sederhana (non-subroutine) dan program dengan subroutine untuk Metode Secant disertakan dalam gambar-gambar 8.2. dan 8.3. di bawah ini, yang ditulis dalam Bahasa FORTRAN 77 (kompatibel dengan Bahasa FORTRAN 90/95): C Program: Solusi Persamaan Aljabar Non-Linier Tunggal (PANLT) C dengan Metode 'SECANT' C VARIAN: Program sederhana/non-subroutine C Kondisi proses dinyatakan dalam variabel 'flag' C flag = 0; berarti sistem masih dalam proses iterasi C flag = 1; berarti proses telah mencapai konvergensi C flag = 2; berarti jumlah iterasi maksimum telah terlampaui C implicit none REAL*8 eps,f,,0,1 INTEGER flag,iter,maiter WRITE(*,'(A,$)') 'Harga-harga awal 0, 1 : ' READ(*,*) 0,1 WRITE(*,'(A,$)') 'Jumlah iterasi maksimum : ' READ(*,*) maiter WRITE(*,'(A,$)') 'Epsilon/kriteria proses : ' READ(*,*) eps iter = 0 flag = 0 DO WHILE(flag.EQ. 0) = 1 - f(1)*(1-0)/(f(1) - f(0)) IF (ABS( - 1).LE. eps) THEN flag = 1 ELSEIF (iter.gt. maiter) THEN flag = 2 ELSE iter = iter = 1 1 = ENDIF ENDDO WRITE(*,*) '0 = ',0 Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (7/7)

8 WRITE(*,*) '1 = ',1 WRITE(*,*) ' = ', WRITE(*,*) 'f() = ',f() WRITE(*,*) 'Flag = ',flag WRITE(*,*) 'Jumlah iterasi = ',iter STOP END FUNCTION f() REAL*8 f, f = - ep(1.0d0/) RETURN END Gambar 8.2. Listing program Metode Secant sederhana (tanpa subroutine). C Program: Solusi Persamaan Aljabar Non-Linier Tunggal (PANLT) C dengan Metode 'SECANT' C VARIAN: Program dengan Subroutine C Kondisi proses dinyatakan dalam variabel 'flag' C flag = 0; berarti sistem masih dalam proses iterasi C flag = 1; berarti proses telah mencapai konvergensi C flag = 2; berarti jumlah iterasi maksimum telah terlampaui C implicit none eternal f REAL*8 eps,f,,0,1 INTEGER flag,iter,maiter WRITE(*,'(A,$)') 'Harga-harga awal 0, 1 : ' READ(*,*) 0,1 WRITE(*,'(A,$)') 'Jumlah iterasi maksimum : ' READ(*,*) maiter WRITE(*,'(A,$)') 'Epsilon/kriteria proses : ' READ(*,*) eps iter = 0 flag = 0 CALL SECANT(f,0,1,,eps,iter,maiter,flag) WRITE(*,*) '0 = ',0 WRITE(*,*) '1 = ',1 WRITE(*,*) ' = ', WRITE(*,*) 'f() = ',f() WRITE(*,*) 'Flag = ',flag WRITE(*,*) 'Jumlah iterasi = ',iter STOP END Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (8/8)

9 FUNCTION f() REAL*8 f, f = - ep(1.0d0/) RETURN END SUBROUTINE SECANT(ff,0,1,,eps,itnum,itma,prflag) C C Sub-program: Solusi PANLT dengan metode SECANT C sebagai varian dari metode BISECTION C ff : fungsi f() = 0 yang akan dicari akarnya C 0 : nilai -awal, identik dengan (n-1) C 1 : nilai -awal, identik dengan (n) C : nilai -baru, identik dengan (n+1) C eps : kriteria atau ketelitian penghitungan C itnum : jumlah iterasi yang dilakukan proses C itma : jumlah pembatas iterasi untuk proses C prflag : identifikasi untuk konvergensi, yaitu: C 0 = proses sedang/akan berlangsung C 1 = proses mencapai konvergensinya C 2 = jumlah iterasi maksimum (itma) telah C terlampaui C REAL*8 eps,ff,,old,0,1 INTEGER prflag,itnum,itma itnum = 0 prflag = 0 DO WHILE(prflag.EQ. 0) = 1 - ff(1)*(1-0)/(ff(1) - ff(0)) IF (ABS( - 1).LE. eps) THEN prflag = 1 ELSEIF (itnum.gt. itma) THEN prflag = 2 ELSE itnum = itnum = 1 1 = ENDIF ENDDO RETURN END Gambar 8.3. Listing program dengan subroutine. Perhatikan sekali lagi dengan baik-baik: bahwa listing programprogram di atas juga tidak memperhitungkan adanya kemungkinan harga kedua fungsi f( 1 ) dan f( 0 ) berharga sama atau keduanya nol! Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (9/9)

10 Bila saudara anggap perlu, coba perbaiki atau modifikasi programprogram di atas, agar supaya kemungkinan adanya masalah divergensi akibat fungsi-fungsi denominator dapat dihindari! Tugas: Cari akar (akar-akar) dari persamaan-persamaan berikut: (a). f ( ) = e ln( ) (b). f ( ) = 1 dan 6 B 2 (c). f ( ) = + e cos( ) ; dengan harga-harga B = 1, 5, 10, 25 dan 50. Analisislah hasil-hasilnya. E. Daftar Pustaka Atkinson, Kendal E., An Introduction to Numerical Analysis, John Wiley & Sons, Toronto, pp , Atkinson, L.V., Harley, P.J., An Introduction to Numerical Methods with Pascal, Addison-Wesley Publishing Co., Tokyo, pp , Bismo, Setijo, Modul Kuliah Metode Numerik, TGP-FTUI, Seri Kuliah Metode Numerik (Modul 8: Metode Secant untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (10/10)

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95)

Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) A. Kendala Dalam Sistem Komputasi Numerik Dalam komputasi numerik, yaitu

Lebih terperinci

Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 6 METODE REGULA-FALSI (False Positio) utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Seperti telah dijelaska pada modul terdahulu, Metode Bisectio memiliki kelemaha pokok, yaitu:

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

Materi Kuliah. Periode: Minggu ke-1 sampai dengan Minggu ke-3

Materi Kuliah. Periode: Minggu ke-1 sampai dengan Minggu ke-3 Materi Kuliah ENCH800001 - PEMODELAN TEKNIK KIMIA LANJUT (S 2 ) Periode: Minggu ke-1 sampai dengan Minggu ke-3 DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS INDONESIA September 2015 Kuliah Minggu#01

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

Metode Numerik. Persamaan Non Linier

Metode Numerik. Persamaan Non Linier Metode Numerik Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar

Lebih terperinci

Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear)

Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear) Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear) Prof. Dr. Ir. Setijo Bismo, DEA. Departemen Teknik Kimia FTUI, Oktober 2015 A. Sistem Persamaan

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar persamaan

Lebih terperinci

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON ITERASI TITIK SEDERHANA METODE NEWTON RAPHSON Metode iterasi sederhana adalah metode yang memisahkan dengan sebagian yang lain sehingga diperoleh : g(. dikenal juga sebagai metode g( Bentuk iterasi satu

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode

Lebih terperinci

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant Penyelesaian Persa amaan Non Linier Metode Iterasi Sederhana Metode Newton Raphson Permasalahan Titik Kritis pada Newton Raphson Metode Secant Iterasi/NewtonRaphson/Secant Metode Numerik - Metode Iter

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Persamaan yang kompleks, solusinya susah dicari. Contoh : AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.

Lebih terperinci

ROOTS OF NON LINIER EQUATIONS

ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS Metode Bagi dua (Bisection Method) Metode Regula Falsi (False Position Method) Metode Grafik Iterasi Titik-Tetap (Fi Point Iteration) Metode

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

DASAR-DASAR PEMROGRAMAN. MS-EXCEL dan VBA Macro

DASAR-DASAR PEMROGRAMAN. MS-EXCEL dan VBA Macro DASAR-DASAR PEMROGRAMAN MS-EXCEL dan VBA Macro Setijo Bismo - Departemen Teknik Kimia FTUI - September 2015 PENGENALAN AWAL: Cara Membuka Editor Macro ( VBA ) (#1) Ingat: +, dapat dipakai untuk: Run Macro

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN (Epsilon Machine, Interpolasi dan Eliminasi Gauss) Setijo Bismo Departemen Teknik Kimia FTUI 06 Oktober 2015 Perlu untuk SELALU DIINGAT! Cara-Cara

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

BAB 1 PENDAHULUAN. Metode Numerik

BAB 1 PENDAHULUAN. Metode Numerik Metode Numerik BAB 1 PENDAHULUAN Metode numerik adalah metode menggunakan komputer untuk mengaproksimasi solusi masalah matematika melalui kinerja dari sejumlah operasi dasar pada angka. Alasan penggunaan

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial Denition 2.0.1 (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi)

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Decrease and Conquer

Decrease and Conquer Decrease and Conquer Bahan Kuliah IF2211 Strategi Algoritma Oleh: Rinaldi Munir Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB 1 Decrease and conquer: metode desain algoritma

Lebih terperinci

Thermodynamic-Vapror Liquid Equilbrium

Thermodynamic-Vapror Liquid Equilbrium 1 Chemical Engineering Thermodynamic Problem 4-Vapor Liquid Equilibrium Disusun Oleh Alexander Stefan/1106068466 Cipto Tigor Pribadi N/1106070810 Ichwan Sangiaji R S/1106019924 Yan Aulia Ardiansyah/1206314642

Lebih terperinci

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 PERSAMAAN NON LINIER Pengantar dan permasalahan persamaan Non-Linier Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 Pengantar 1. Persamaan linier sudah kita kenal sejak SMP. Contoh kasus

Lebih terperinci

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN (Epsilon Machine, Interpolasi dan Metode Newton-Raphson) Prof. Dr. Ir. Setijo Bismo, DEA. Departemen Teknik Kimia FTUI 09 Oktober 2015

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Persamaan Non Linier 1

Persamaan Non Linier 1 Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier Penentuan akar-akar persamaan

Lebih terperinci

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Bahan Ajar 5: Permasalahan Akar Suatu Fungsi (Minggu ke-9 dan ke-10) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho

Lebih terperinci

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 7 METODE NEWTON-RAPHSON (Taget utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Pada modul terdahulu, walaupu kecepata kovergesi telah dapat ditigkatka secara lumaya berarti pada

Lebih terperinci

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN JURUSAN INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA BANDA ACEH 2012 DAFTAR ISI DAFTAR ISI... 1 KATA PENGANTAR... 2 PENDAHULUAN...

Lebih terperinci

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

1-x. dimana dan dihubungkan oleh teorema Pythagoras. `2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

BAB II ISI ( ) (sumber:

BAB II ISI ( ) (sumber: BAB II ISI A. Permasalahan yang Diberikan Soal saudara dalam UTS ini harus terus digunakan untuk mengerjakan tugas proyek ini, yaitu: prediksi sifat-sifat tekanan uap murni suatu fluida hidrokarbon sebagai

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Buku 1 : RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui 3 AKAR PERSAMAAN TAK LINIER ܵ ¼ Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui fungsi ܵ, akan dicari nilai-nilai

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR Penulis: Dr. Eng. Supriyanto, M.Sc, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Penulisan vektor-kolom Sebelum

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

10 Persamaan Differensial Biasa (PDB) Dengan Nilai Batas

10 Persamaan Differensial Biasa (PDB) Dengan Nilai Batas P.B. Kosasih PDB nilai batas 47 Persamaan Differensial Biasa (PDB) Dengan Nilai Batas. PENGENAAN TOPIK Pada persoalan enjineering lebih sering dijumpai PDB tingkat dengan kondisi batas ang diberikan pada

Lebih terperinci

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,

Lebih terperinci

Pertemuan ke-4 Persamaan Non-Linier: Metode Secant

Pertemuan ke-4 Persamaan Non-Linier: Metode Secant Analisa Terapan: Metode Numerik Pertemuan ke- Persamaan Non-Linier: Metode Secant Oktober Department o Civil Engineering Metode Secant Dasar ( Dalam Metode Newton (i i i - ( + ( i [ ( i i, ( i ] Turunan

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER Persamaan taklinier sudah diperkenalkan sejak di sekolah menengah, diataranya persamaan kuadrat, persamaan trigonometri dan persamaan yang memuat logaritma atau eksponen.

Lebih terperinci

MATERI. Akar-akar Persamaan Metode Akolade. Metode Terbuka. Metode Grafik Metode Bagi Dua Metode Posisi Salah

MATERI. Akar-akar Persamaan Metode Akolade. Metode Terbuka. Metode Grafik Metode Bagi Dua Metode Posisi Salah MATERI Akar-akar Persamaan Metode Akolade Metode Grafik Metode Bagi Dua Metode Posisi Salah Metode Terbuka Iterasi Satu Titik Sederhana Metode Newton-Raphson Metode Secant Akar Ganda Sistem Persamaan Aljabar

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN

PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN Any Muanalifah Dosen Jurusan Tadris Matematika FITK IAIN Walisongo Abstrak Persoalan yang melibatkan

Lebih terperinci

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan TUGAS KOMPUTASI SISTEM FISIS 2015/2016 Identitas Tugas Program Mencari Titik Nol/Titik Potong Dari Suatu Sistem 27 Oktober 2015 Disusun oleh : Zulfikar Lazuardi Maulana (10212034) Ridho Muhammad Akbar

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1 Studi Kasus Penyelesaian Pers.Non Linier Studi Kasus Non Linier 1 Contoh Kasus Penyelesaian persamaan non linier terkadang muncul sebagai permasalahan yang terpisah, tetapi terkadang pula muncul sebagai

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

PETUNJUK PRAKTIKUM MATLAB LANJUT

PETUNJUK PRAKTIKUM MATLAB LANJUT PRAKTIKUM KE-1 Materi : Solusi Persamaan Non Linier Tujuan : Mahasiswa dapat menyelesaikan masalah yang berkaitan dengan persamaan non linier 1.1 Rasionalisasi Misalkan dimiliki model permasalahan sebagai

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

Veetha Adiyani Pardede M Komputasi Fisika METODE BISECTION

Veetha Adiyani Pardede M Komputasi Fisika METODE BISECTION METODE BISECTION Program ; Uses crt; var a,b,m,fa,fb,fm,tol,n : real; iter_max,it : integer; function f(x:real) : real; f:= sqr(x)+ 3*x - 5; Begin Clrscr; writeln ('=================================================================

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Pertemuan 3: Penyelesaian Persamaan Transedental Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Persamaan Dalam Matematika Persamaan Linier Persamaan Kuadrat Persamaan Polynomial Persamaan Trigonometri

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Analisis Numerik & Pemrograman Kode/Bobot : TSP-303/3 SKS Deskripsi Singkat : Mata Kuliah ini mempelajari tentang analisis numerik dan bahasa pemrograman

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

Kata Pengantar. Medan, 11 April Penulis

Kata Pengantar. Medan, 11 April Penulis Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.

Lebih terperinci

BAB III METODE UNTUK MENAKSIR VOLATILITAS. harga saham, waktu jatuh tempo, waktu sekarang, suku bunga,

BAB III METODE UNTUK MENAKSIR VOLATILITAS. harga saham, waktu jatuh tempo, waktu sekarang, suku bunga, BAB III METODE UNTUK MENAKSIR VOLATILITAS 3.1. Pendahuluan Dalam menentukan harga opsi call dan opsi put dibutuhkan parameter harga saham, waktu jatuh tempo, waktu sekarang, suku bunga, strike price, dan

Lebih terperinci

ELEMEN DASAR PROGRAM FORTRAN. Kuliah ke-2

ELEMEN DASAR PROGRAM FORTRAN. Kuliah ke-2 ELEMEN DASAR Kuliah ke-2 1 Mengapa dengan FORTRAN? FORmula TRANslation adalah bahasa pemrograman komputer tingkat tinggi yang langsung berorientasi pada permasalahan teknik, dan umum dipakai oleh para

Lebih terperinci

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU 1 Nama Mata Kuliah : Pemrograman Komputer 2 Kode Mata Kuliah : TSS 2119 3 Semester : III 4 (sks) : 2 5

Lebih terperinci

SolusiPersamaanNirlanjar

SolusiPersamaanNirlanjar SolusiPersamaanNirlanjar Bahan Kuliah IF4058 Topik Khusus Informatika I Oleh; Rinaldi Munir(IF-STEI ITB) Rinaldi Munir - Topik Khusus Informatika I 1 RumusanMasalah Persoalan: Temukan nilai yang memenuhi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan BAB II TINJAUAN PUSTAKA 2.1 Kontrak Opsi Kontrak opsi merupakan suatu perjanjian atau kontrak antara penjual opsi dengan pembeli opsi, penjual opsi memberikan hak dan bukan kewajiban kepada pembeli opsi

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 12 Rumusan Masalah Tentukan solusi dengan f fungsi nonlinear. f (x)

Lebih terperinci

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Pengertian Metode Numerik Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Metode Numerik Tujuan Metode Numerik

Lebih terperinci

p2(x)

p2(x) BAB 1 Konsep Dasar 1.1 Denisi dan Teorema Dalam Kalkulus Pengembangan metoda numerik tidak terlepas dari pengembangan beberapa denisi dan teorema dalam mata kuliah kalkulus yang berkenaan dengan fungsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci