Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL"

Transkripsi

1 Modul 6 METODE REGULA-FALSI (False Positio) utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Seperti telah dijelaska pada modul terdahulu, Metode Bisectio memiliki kelemaha pokok, yaitu: kecepataya dalam mecapai divergesi; maka beberapa ahli matematika telah berusaha meyempuaka metode tersebut. Namu demikia, metode ii memiliki kelebiha yaitu: kepastia atau jamiaya dalam meuju kovergesi. Dalam modul ii aka dibahas suatu metode solusi baru yag memodifikasi metode bisectio, yag kierjaya lebih cepat dalam mecapai kovergesi, amu masih tetap memiliki kepastia atau jamia meuju kovergesi. B. Solusi Akar PANLT dega Metode Regula-Falsi Solusi akar (atau akar-akar) dega megguaka Metode Regula- Falsi merupaka modifikasi dari Metode Bisectio dega cara memperhitugka kesebagua yag dilihat pada kurva berikut: y y f(x) (b,f(b)) P a c α b x (a,f(a)) Q R Gambar 6.. Represetasi grafis metode Regula-Falsi. Seri Kuliah Metode Numerik (Modul 6: Metode Regula-Falsi utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal) (/)

2 Perhatika kebagua 2 segitiga Pcb da PQR di atas, sehigga persamaa berikut dapat diguaka: atau sehigga c Pb bc PR RQ f ( b) 0 f ( b) f ( a ) b c b a : b f ( b) b f ( b) a f ( a) Persamaa di atas disebut sebagai persamaa rekursif dari Metode Regula Falsi. Kecepata atau laju kovergesi dari Metode Regula-Falsi sama dega Metode Bisectio, yaitu kovergesi liier, amu dega faktor pegali (kostata) yag lebih besar dari 2 (faktor pegali berkisar atara 2 ). C. Algoritma Metode Regula-Falsi Asumsi awal yag harus diambil adalah sama seperti pada Metode Bisectio, yaitu: meebak iterval awal [a,b] dimaa f(x) adalah kotiu padaya, demikia pula iterval tersebut harus terletak megapit (secara ituitif) ilai akar α, sedemikia rupa sehigga: f ( a) f ( b) 0 Meskipu pada algoritma berikut masih megadug beberapa kelemaha, amu secara umum masih sagat megutugka utuk dipakai. Perbaika da modifikasi secara umeris dilakuka oleh Bret (Atkiso, 978), utuk algoritma tersebut. Seri Kuliah Metode Numerik (Modul 6: Metode Regula-Falsi utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal) (2/2)

3 Algoritma REGFAL(f,a,b,akar,ε,iter,itmax,flag). Tebak harga iterval [a,b]; tetuka ε; da itmax 2. Set xold 2*b-a; iter 0; flag 0; 3. Tetuka atau hitug akar c b f(b) [(b a)/(f(b) f(a)); iter iter + ; 4. Jika f(b) f(c) 0 maka a c jika tidak b c; 5. Jika abs(c xold) ε maka flag atau jika iter > itmax maka flag 2 atau jika tidak maka iter iter + da akar c; 6. Jika flag 0 ulagi ke omor 3; 7. Selesai. Gambar 6.2. Algoritma Metode-Regula Falsi Sehigga formula rekursif dari Metode REGULA-FALSI: dapat dituliska dalam resume berikut: x f ( a ) a f ( b ) f ( b ) f ( x b f ( a) f ( a ) ( + ) a ) < 0? ( ) a + + a x, b, b + + x b Adapu sifat atau karakteristik metode ii secara umum adalah: Memerluka 2 harga awal ( a 0 da b 0 sedemikia rupa sehigga f(a 0 ) f(b 0 ) 0) Kovergesi Superliier ( Sedag, atara liier da kuadrat) Seri Kuliah Metode Numerik (Modul 6: Metode Regula-Falsi utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal) (3/3)

4 Baik diguaka utuk fugsi yag turuaya tak terdefiisi dega jelas ( diskotiyu) Diverge (RTE, ru time error) bila a b ( ε mesi ) Kriteria peghetia iterasi : b a da atau f ( x ) ε ε Adapu tabel kerja dari metode ii (sesuai dega algoritmaya), dapat disajika secara sistematis sebagai berikut: Tabel 6.. Tabel Kerja Metode Regula-Falsi x a b f(a) f(b) D. Listig Program Metode Regula-Falsi Diberika persoala utuk meghitug akar (akar-akar) persamaa f(x) 0, sebagai berikut: f ( x) x e x 0 Listig program sederhaa (o-subroutie) da program dega subroutie utuk Metode Regula-Falsi disertaka dalam gambargambar 6.2. da 6.3. di bawah ii, yag ditulis dalam Bahasa FORTRAN 77 (kompatibel dega Bahasa FORTRAN 90/95): Seri Kuliah Metode Numerik (Modul 6: Metode Regula-Falsi utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal) (4/4)

5 C Program: Solusi Persamaa Aljabar No-Liier Tuggal (PANLT) C dega Metode 'Regula Falsi' C VARIAN: Program sederhaa/no-subroutie C Kodisi proses diyataka dalam variabel 'flag' C flag 0; berarti sistem masih dalam proses iterasi C flag ; berarti proses telah mecapai kovergesi C flag 2; berarti jumlah iterasi maksimum telah terlampaui C implicit oe REAL*8 eps,f,f0,f,x,xold,x0,x INTEGER flag,iter,maxiter WRITE(*,'(A,$)') 'Harga-harga awal x0, x : ' READ(*,*) x0,x WRITE(*,'(A,$)') 'Jumlah iterasi maksimum : ' READ(*,*) maxiter WRITE(*,'(A,$)') 'Epsilo/kriteria proses : ' READ(*,*) eps iter 0 flag 0 xold 2*x - x0 DO WHILE(flag.EQ. 0) x x - (x - x0)/(f(x) - f(x0))*f(x) IF ((f(x)*f(x)).le. 0.0D0) THEN x0 x x x IF IF (ABS(x - xold).le. eps) THEN flag IF (iter.gt. maxiter) THEN flag 2 iter iter + xold x IF DO WRITE(*,*) 'x0 ',x0 WRITE(*,*) 'x ',x WRITE(*,*) 'xold ',xold WRITE(*,*) 'x ',x WRITE(*,*) 'f(x) ',f(x) WRITE(*,*) 'Flag ',flag WRITE(*,*) 'Jumlah iterasi ',iter STOP FUNCTION f(x) REAL*8 f,x f x - exp(.0d0/x) RETURN Gambar 6.3. Listig program sederhaa (tapa subroutie). Seri Kuliah Metode Numerik (Modul 6: Metode Regula-Falsi utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal) (5/5)

6 C Program: Solusi Persamaa Aljabar No-Liier Tuggal (PANLT) C dega Metode 'REGULA-FALSI' C VARIAN: Program dega Subroutie C implicit oe exteral f REAL*8 eps,f,x,x0,x INTEGER flag,iter,maxiter WRITE(*,'(A,$)') 'Harga-harga awal x0, x : ' READ(*,*) x0,x WRITE(*,'(A,$)') 'Jumlah iterasi maksimum : ' READ(*,*) maxiter WRITE(*,'(A,$)') 'Epsilo/kriteria proses : ' READ(*,*) eps CALL REGFAL(f,x0,x,x,eps,iter,maxiter,flag) WRITE(*,*) 'x0 ',x0 WRITE(*,*) 'x ',x WRITE(*,*) 'x ',x WRITE(*,*) 'xold ',x WRITE(*,*) 'f(x) ',f(x) WRITE(*,*) 'Flag ',flag WRITE(*,*) 'Jumlah iterasi ',iter STOP FUNCTION f(x) REAL*8 f,x f x - exp(.0d0/x) RETURN SUBROUTINE REGFAL(ff,x0,x,x,eps,itum,itmax,prflag) C C Sub-program: Solusi PANLT dega metode REGULA-FALSI C sebagai perbaika dari metode BISECTION C ff : fugsi f(x) 0 yag aka dicari akarya C x0 : ilai x-awal di sebelah kiri akar f(x) C x : ilai x-awal di sebelah kaa akar f(x) C x : akar f(x), ilai paruh (atara x0 da x) C eps : kriteria atau ketelitia peghituga C itum : jumlah iterasi yag dilakuka proses C itmax : jumlah pembatas iterasi utuk proses C prflag : idetifikasi utuk kovergesi, yaitu: C 0 proses sedag/aka berlagsug C proses mecapai kovergesiya C 2 itmax telah terlampaui C REAL*8 eps,ff,x,xold,x0,x INTEGER prflag,itum,itmax Seri Kuliah Metode Numerik (Modul 6: Metode Regula-Falsi utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal) (6/6)

7 itum 0 prflag 0 xold 2*x - x0 DO WHILE(prflag.EQ. 0) x x - (x - x0)/(ff(x) - ff(x0))*ff(x) itum itum + IF ((ff(x)*ff(x)).le. 0.0D0) THEN x0 x x x IF IF (ABS(x - xold).le. eps) THEN prflag IF (itum.gt. itmax) THEN prflag 2 xold x IF DO RETURN Gambar 6.4. Listig program dega subroutie. Tugas: x! Cari akar (akar-akar) dari persamaa: f ( x) e l( x) E. Pustaka yag bersesuaia Atkiso, Kedal E., A Itroductio to Numerical Aalysis, Joh Wiley & Sos, Toroto, pp , 978. Atkiso, L.V., Harley, P.J., A Itroductio to Numerical Methods with Pascal, Addiso-Wesley Publishig Co., Tokyo, pp. 49-5, 983. Bismo, Setijo, Modul Kuliah Metode Numerik, TGP-FTUI, 999. Seri Kuliah Metode Numerik (Modul 6: Metode Regula-Falsi utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal) (7/7)

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 7 METODE NEWTON-RAPHSON (Taget utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Pada modul terdahulu, walaupu kecepata kovergesi telah dapat ditigkatka secara lumaya berarti pada

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal

Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal Kompleksitas Waktu utuk Algoritma Rekursif ZK Abdurahma Baizal Algoritma Rekursif Betuk rekursif : suatu subruti/fugsi/ prosedur yag memaggil diriya sediri. Betuk dimaa pemaggila subruti terdapat dalam

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

Pengertian Secara Intuisi

Pengertian Secara Intuisi Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

III PERBANDINGAN MODEL-MODEL BINOMIAL. : harga saham : tingkat harapan pendapatan. yaitu

III PERBANDINGAN MODEL-MODEL BINOMIAL. : harga saham : tingkat harapan pendapatan. yaitu III PERBANDINGAN MODEL-MODEL BINOMIAL 3. Model Kotiu da Model Diskret Perkembaga Harga Saham Saham merupaka aset fiasial yag ilaiya berubah-ubah megikuti harga pasar, sehigga dalam jagka waktu tertetu

Lebih terperinci

BAB II PENCARIAN AKAR PERSAMAAN NON LINIER

BAB II PENCARIAN AKAR PERSAMAAN NON LINIER BAB II PENCARIAN AKAR PERSAMAAN NON LINIER PENDAHULUAN Dalam bab ii, kita aka membahas tetag beberapa metode umerik yag dapat diguaka utuk meemuka akar-akar persamaa o-liier. Masalah yag aka kita bahas

Lebih terperinci

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK 8 B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK A. D I F E R E N S I A S I N U M E R I K Misal diberika set data Diketaui set data (, ), (, ), (, ),., (, ) ag memeui relasi = f() Aka ditetuka d/d dalam iterval,

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital Aplikasi Iterpolasi Biliier pada Pegolaha Citra Digital Veriskt Mega Jaa - 35408 Program Studi Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha 0 Badug 403, Idoesia veriskmj@s.itb.ac.id

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Penyelesaian Persamaan Non Linier Pengantar Penyelesaian Pers. Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Numerik Tabel/Biseksi/RegulaFalsi 1 Pengantar Penyelesaian Persamaan Non

Lebih terperinci

Studi Komparatif Metode Newton dan Metode Tali Busur untuk Menghampiri Akar Persamaan f(x)=0

Studi Komparatif Metode Newton dan Metode Tali Busur untuk Menghampiri Akar Persamaan f(x)=0 Lapora Peelitia Studi Komparatif Metode Newto da Metode Tali Busur utuk Meghampiri Akar Persamaa f()= Peeliti: Drs. Sahid, MSc. Jurusa Pedidika Matematika Fakultas Matematika da Ilmu Pebetahua Alam Uiversitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se METODE REGULA FALSI METODE REGULA FALSI Solusi Persamaan Non Linier Universitas Budi Luhur Metode regula falsi merupakan salah satu metode tertutup untuk menentukan solusi akar dari persamaan non linier,

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci Kompleksitas dari Algoritma-Algoritma utuk Meghitug Bilaga Fiboacci Gregorius Roy Kaluge NIM : 358 Program Studi Tekik Iformatika, Istitut Tekologi Badug Jala Gaesha, Badug e-mail: if8@studets.if.itb.ac.id,

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3 Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id Tel.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci