Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL"

Transkripsi

1 Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar yang terbentuk berdasarkan proyeksi fungsional variabel bebasnya (pada sumbu datar, absis) pada variabel terikatnya (pada sumbu tegak, ordinat): y( ) f ( ) Sedangkan problem utama yang dijumpai dalam pencarian akar suatu PANLT adalah: perpotongan persamaan (kurva) itu dengan sumbu datar pada titik α (sehingga akarnya disebut juga sebagai α), dan pada saat yang bersamaan fungsi f() tersebut juga mencapai nilai nol nya. Bentuk umum PANLT ini dapat dituliskan sebagai: f ( ) = Berbagai teknik telah dikembangkan untuk pencarian akar (atau akar-akar) dari suatu PANLT dengan bentuk umum seperti di atas. Bebarapa di antaranya dapat dikelompokkan dalam metode-metode berikut: 1. Metode Titik Tetap (fied-point), yaitu suatu metode pendekatan numeris yang terbentuk dari reorganisasi PANLT sedemikian rupa sehingga dihasilkan 2 buah fungsi, di sisi yang satu hanya mengandung variabel bebasnya saja sedangkan di sisi lainnya berbentuk g(), suatu fungsi dalam bentuk yang lain. Metode ini memerlukan 1 (satu) buah harga (disebut sebagai - awal) sebagai tebakan untuk memulai proses iterasi. Karena sifatnya yang kurang praktis, bahkan tidak efisien dan juga lambat dalam mencapai konvergensi, maka metode ini tidak akan dibicarakan lebih lanjut dalam kuliah ini. Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (1/1)

2 2. Metode Bidang Bebas atau lebih spesifik lagi Metode Bidang Paruh (Bisection). Prinsip dari metode ini adalah pemaruhan (nilai rata-rata) dari nilai estimasi akar suatu PANLT yang dibentuk dengan cara menebak 2 buah harga awal pada interval [a,b] yang bertempat-kedudukan mengapit (di kiri dan kanan) akar atau jawab yang sebenarnya. Metode ini pada umumnya memerlukan 2 (dua) buah tebakan untuk harga-harga -awal ( dan 1 ). 3. Metode Tangent atau yang dikenal sebagai Metode Newton atau Metode Newton-Raphson, yang dihasilkan dari ekspansi f(α) sampai suatu harga tertentu ( n ) menggunakan deret Taylor, dengan cara mengabaikan term order (α - n )2 atau yang lebih tinggi. Alternatif lain, penurunan tersebut juga dapat dilakukan secara geometris, yang akan dijelaskan lebih lanjut pada Modul Metode Secant, yang terbentuk dari pendekatan melalui garis secant di sekitar jawab atau akar persamaan α. Di sisi lain, metode ini sebenarnya bentuk atau varian numeris dari bentuk turunan yang dipersyaratkan oleh Metode Newton Raphson. Metode ini akan dijelaskan lebih jauh pada Modul 8. B. Solusi Akar PANLT dengan Metode Bisection Solusi akar (atau akar-akar) dengan menggunakan Metode Bisection memiliki sifat-sifat numeris sebagai berikut: (a) Selalu melakukan pembagian dua (pemaruhan) interval [a,b] yang mengapit akar α, sehingga setelah n kali iterasi akan didapatkan akar persamaan yang berdekatan dengan harga yang sebenarnya (solusi analitis), dengan memperhitungkan kriteria (akurasi) yang diinginkan. (b) Kecepatan atau laju konvergensi dari metode bisection dapat diperkirakan menggunakan persamaan pendekatan: α c n 1 n ( ) ( b a) 2 Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (2/2)

3 yang dapat dibuktikan bahwa: α = lim n (c) Panjang ( b a) menggambarkan panjang interval yang digunakan sebagai harga awal untuk memulai proses iterasi dalam metode bisection ; yang berarti bahwa metode ini memiliki konvergensi linier dengan laju 1 2. c n C. Representasi Grafis dari Metode Bisection Representasi grafis dari metode bisection sebagai berikut: f() [a b] X X2 X1 Gambar 5.1. Representasi grafis metode bisection. Dari representasi grafis di atas, dapat diambil kesimpulan dengan jelas, bahwa: 2 = 1 2 sehingga setelah n kali iterasi akan diperoleh: atau n+ 1 = 1 2 n Pada saat panjang interval [a,b] tidak melampaui suatu harga t (yang di dalamnya terdapat akar α), sedemikian rupa sehingga jarak Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (3/3)

4 akar α tersebut dengan ekstremitas interval tidak melebihi t, maka pada saat itu toleransi perhitungan sudah dapat dilakukan. D. Algoritma Metode Bisection Asumsi awal yang harus diambil adalah: menebak interval awal [a,b] dimana f() adalah kontinu padanya, demikian pula harus terletak mengapit (secara intuitif) nilai akar α, sedemikian rupa sehingga: f ( a) f ( b) Algoritma BISECT(f,a,b,akar,ε,iter,itma,flag) 1. Tebak harga interval [a,b]; tentukan ε; dan itma 2. Set f = f(a); iter = ; flag = ; 3. Tentukan atau hitung akar = c := (a + b)/2; iter = iter + 1; 4. Jika f(a) f(c) maka b = c jika tidak a = c dan f = f(a); 5. Jika (b a) ε maka flag = 1 jika iter > itma maka flag = 2; 6. Jika flag = ulangi ke nomor 3; 7. Akar persamaan adalah: akar = (a + b)/2, sebagai akar terbaru; 8. Selesai. Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (4/4)

5 E. Listing Program Metode Bisection Diberikan persoalan untuk mengitung akar (akar-akar) persamaan f() =, sebagai berikut: f ( ) Listing program sederhana (non-subroutine) dan program dengan subroutine disertakan dalam gambar-gambar 5.2. dan 5.3. di bawah ini, yang ditulis dalam Bahasa FORTRAN 77 (kompatibel dengan Bahasa FORTRAN 9/95): e 1 = C Program: Solusi Persamaan Aljabar Non-Linier Tunggal (PANLT) C dengan Metode 'Bisection' C VARIAN: Program sederhana/non-subroutine C Kondisi proses dinyatakan dalam variabel 'flag' C flag = ; berarti sistem masih dalam proses iterasi C flag = 1; berarti proses telah mencapai konvergensi C flag = 2; berarti jumlah iterasi maksimum telah terlampaui C implicit none REAL*8 eps,f,f,f,,,1 INTEGER flag,iter,maiter WRITE(*,'(A,$)') 'Harga-harga awal, 1 : ' READ(*,*),1 WRITE(*,'(A,$)') 'Jumlah iterasi maksimum : ' READ(*,*) maiter WRITE(*,'(A,$)') 'Epsilon/kriteria proses : ' READ(*,*) eps f = f() iter = flag = DO WHILE(flag.EQ. ) iter = iter + 1 = ( + 1)/2 f = f() IF ((f*f).le..d) THEN 1 = ELSE = f = f IF IF ((1 - ).LE. eps) THEN flag = 1 ELSEIF (iter.gt. maiter) THEN flag = 2 IF DO Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (5/5)

6 = ( + 1)/2 WRITE(*,*) ' = ', WRITE(*,*) '1 = ',1 WRITE(*,*) ' = ', WRITE(*,*) 'f() = ',f() WRITE(*,*) 'Jumlah iterasi = ',iter STOP FUNCTION f() REAL*8 f, f = - ep(1.d/) RETURN Gambar 5.2. Listing program sederhana (tanpa subroutine). C Program: Solusi Persamaan Aljabar Non-Linier Tunggal (PANLT) C dengan Metode 'Bisection' C VARIAN: Program dengan Subroutine C implicit none eternal f REAL*8 eps,f,,,1 INTEGER flag,iter,maiter WRITE(*,'(A,$)') 'Harga-harga awal, 1 : ' READ(*,*),1 WRITE(*,'(A,$)') 'Jumlah iterasi maksimum : ' READ(*,*) maiter WRITE(*,'(A,$)') 'Epsilon/kriteria proses : ' READ(*,*) eps CALL BISECT(f,,1,,eps,iter,maiter,flag) WRITE(*,*) ' = ', WRITE(*,*) '1 = ',1 WRITE(*,*) ' = ', WRITE(*,*) 'f() = ',f() WRITE(*,*) 'Jumlah iterasi = ',iter STOP FUNCTION f() REAL*8 f, f = - ep(1.d/) RETURN Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (6/6)

7 SUBROUTINE BISECT(ff,,1,,eps,itnum,itma,prflag) C C Sub-program: Solusi PANLT dengan metode BISECTION C atau NILAI PARUH C ff : fungsi f() = yang akan dicari akarnya C : nilai -awal di sebelah kiri akar f() C 1 : nilai -awal di sebelah kanan akar f() C : akar f(), nilai paruh (antara dan 1) C eps : kriteria atau ketelitian penghitungan C itnum : jumlah iterasi yang dilakukan proses C itma : jumlah pembatas iterasi untuk proses C prflag : identifikasi untuk konvergensi, yaitu: C = proses sedang/akan berlangsung C 1 = proses mencapai konvergensinya C 2 = jumlah iterasi maksimum (itma) telah C terlampaui C REAL*8 eps,ff,f,f,,,1 INTEGER prflag,itnum,itma f = ff() itnum = prflag = DO WHILE(prflag.EQ. ) itnum = itnum + 1 = ( + 1)/2 f = ff() IF ((f*f).le..d) THEN 1 = ELSE = f = f IF IF ((1 - ).LE. eps) THEN prflag = 1 ELSEIF (itnum.gt. itma) THEN prflag = 2 IF DO = ( + 1)/2 RETURN Gambar 5.3. Listing program dengan subroutine. Tugas:! Cari akar (akar-akar) dari persamaan: f ( ) = e ln( ) Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (7/7)

8 F. Pustaka yang bersesuaian Atkinson, Kendal E., An Introduction to Numerical Analysis, John Wiley & Sons, Toronto, pp , Atkinson, L.V., Harley, P.J., An Introduction to Numerical Methods with Pascal, Addison-Wesley Publishing Co., Tokyo, pp , Bismo, Setijo, Kumpulan Bahan Kuliah Metode Numerik, Jurusan TGP-FTUI, Seri Kuliah Metode Numerik (Modul 5: Metode Bisection untuk Solusi PANLT (Persamaan Aljabar Non-Linier Tunggal) (8/8)

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95)

Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) A. Kendala Dalam Sistem Komputasi Numerik Dalam komputasi numerik, yaitu

Lebih terperinci

Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 6 METODE REGULA-FALSI (False Positio) utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Seperti telah dijelaska pada modul terdahulu, Metode Bisectio memiliki kelemaha pokok, yaitu:

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Persamaan yang kompleks, solusinya susah dicari. Contoh : AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.

Lebih terperinci

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial Denition 2.0.1 (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi)

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON ITERASI TITIK SEDERHANA METODE NEWTON RAPHSON Metode iterasi sederhana adalah metode yang memisahkan dengan sebagian yang lain sehingga diperoleh : g(. dikenal juga sebagai metode g( Bentuk iterasi satu

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Bahan Ajar 5: Permasalahan Akar Suatu Fungsi (Minggu ke-9 dan ke-10) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho

Lebih terperinci

ROOTS OF NON LINIER EQUATIONS

ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS Metode Bagi dua (Bisection Method) Metode Regula Falsi (False Position Method) Metode Grafik Iterasi Titik-Tetap (Fi Point Iteration) Metode

Lebih terperinci

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN (Epsilon Machine, Interpolasi dan Eliminasi Gauss) Setijo Bismo Departemen Teknik Kimia FTUI 06 Oktober 2015 Perlu untuk SELALU DIINGAT! Cara-Cara

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

Metode Numerik. Persamaan Non Linier

Metode Numerik. Persamaan Non Linier Metode Numerik Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

DASAR-DASAR PEMROGRAMAN. MS-EXCEL dan VBA Macro

DASAR-DASAR PEMROGRAMAN. MS-EXCEL dan VBA Macro DASAR-DASAR PEMROGRAMAN MS-EXCEL dan VBA Macro Setijo Bismo - Departemen Teknik Kimia FTUI - September 2015 PENGENALAN AWAL: Cara Membuka Editor Macro ( VBA ) (#1) Ingat: +, dapat dipakai untuk: Run Macro

Lebih terperinci

Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear)

Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear) Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear) Prof. Dr. Ir. Setijo Bismo, DEA. Departemen Teknik Kimia FTUI, Oktober 2015 A. Sistem Persamaan

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1

Lebih terperinci

p2(x)

p2(x) BAB 1 Konsep Dasar 1.1 Denisi dan Teorema Dalam Kalkulus Pengembangan metoda numerik tidak terlepas dari pengembangan beberapa denisi dan teorema dalam mata kuliah kalkulus yang berkenaan dengan fungsi

Lebih terperinci

Thermodynamic-Vapror Liquid Equilbrium

Thermodynamic-Vapror Liquid Equilbrium 1 Chemical Engineering Thermodynamic Problem 4-Vapor Liquid Equilibrium Disusun Oleh Alexander Stefan/1106068466 Cipto Tigor Pribadi N/1106070810 Ichwan Sangiaji R S/1106019924 Yan Aulia Ardiansyah/1206314642

Lebih terperinci

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR Rin Riani Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 PERSAMAAN NON LINIER Pengantar dan permasalahan persamaan Non-Linier Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 Pengantar 1. Persamaan linier sudah kita kenal sejak SMP. Contoh kasus

Lebih terperinci

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN (Epsilon Machine, Interpolasi dan Metode Newton-Raphson) Prof. Dr. Ir. Setijo Bismo, DEA. Departemen Teknik Kimia FTUI 09 Oktober 2015

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 7 METODE NEWTON-RAPHSON (Taget utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Pada modul terdahulu, walaupu kecepata kovergesi telah dapat ditigkatka secara lumaya berarti pada

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar persamaan

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 12 Rumusan Masalah Tentukan solusi dengan f fungsi nonlinear. f (x)

Lebih terperinci

Course Note Numerical Method Akar Persamaan Tak Liniear.

Course Note Numerical Method Akar Persamaan Tak Liniear. Course Note Numerical Method Akar Persamaan Tak Liniear. Dalam matematika terapan seringkali harus mencari selesaian persamaan yang berbentuk f() = 0 yakni bilangan o sedemikian sehingga f( o ) = 0. Dalam

Lebih terperinci

Veetha Adiyani Pardede M Komputasi Fisika METODE BISECTION

Veetha Adiyani Pardede M Komputasi Fisika METODE BISECTION METODE BISECTION Program ; Uses crt; var a,b,m,fa,fb,fm,tol,n : real; iter_max,it : integer; function f(x:real) : real; f:= sqr(x)+ 3*x - 5; Begin Clrscr; writeln ('=================================================================

Lebih terperinci

Persamaan Non Linier 1

Persamaan Non Linier 1 Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier Penentuan akar-akar persamaan

Lebih terperinci

Materi Kuliah. Periode: Minggu ke-1 sampai dengan Minggu ke-3

Materi Kuliah. Periode: Minggu ke-1 sampai dengan Minggu ke-3 Materi Kuliah ENCH800001 - PEMODELAN TEKNIK KIMIA LANJUT (S 2 ) Periode: Minggu ke-1 sampai dengan Minggu ke-3 DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS INDONESIA September 2015 Kuliah Minggu#01

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan TUGAS KOMPUTASI SISTEM FISIS 2015/2016 Identitas Tugas Program Mencari Titik Nol/Titik Potong Dari Suatu Sistem 27 Oktober 2015 Disusun oleh : Zulfikar Lazuardi Maulana (10212034) Ridho Muhammad Akbar

Lebih terperinci

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

1-x. dimana dan dihubungkan oleh teorema Pythagoras. `2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Pengertian dan notasi dari it suatu fungsi, f() di suatu nilai = a diberikan secara intuitif berikut. Bila nilai f() mendekati L untuk nilai mendekati a dari arah kanan maka dikatakan

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan BAB II TINJAUAN PUSTAKA 2.1 Kontrak Opsi Kontrak opsi merupakan suatu perjanjian atau kontrak antara penjual opsi dengan pembeli opsi, penjual opsi memberikan hak dan bukan kewajiban kepada pembeli opsi

Lebih terperinci

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yolla Sarwenda 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

BAB 1 PENDAHULUAN. Metode Numerik

BAB 1 PENDAHULUAN. Metode Numerik Metode Numerik BAB 1 PENDAHULUAN Metode numerik adalah metode menggunakan komputer untuk mengaproksimasi solusi masalah matematika melalui kinerja dari sejumlah operasi dasar pada angka. Alasan penggunaan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER Persamaan taklinier sudah diperkenalkan sejak di sekolah menengah, diataranya persamaan kuadrat, persamaan trigonometri dan persamaan yang memuat logaritma atau eksponen.

Lebih terperinci

Matematika Dasar NILAI EKSTRIM

Matematika Dasar NILAI EKSTRIM NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien

Lebih terperinci

Dr. Ir. Bib Paruhum Silalahi, M.Kom

Dr. Ir. Bib Paruhum Silalahi, M.Kom Metode Descent Oleh : Andaikan fungsi tujuan kita adalah minf(x);x R n. Secara umum f(x) dapat berupa fungsi nonlinear. Metode-metode descent adalah metode iteratif untuk memperoleh solusi pendekatan dari

Lebih terperinci

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON Jurnal Dinamika Informatika Volume 6, No 2, September 2017 ISSN 1978-1660 : 113-132 ISSN online 2549-8517 APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE

Lebih terperinci

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK Resdianti Marny 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR Penulis: Dr. Eng. Supriyanto, M.Sc, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Penulisan vektor-kolom Sebelum

Lebih terperinci

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM E-Jurnal Matematika Vol. 5 (1), Januari 2016, pp. 1-6 ISSN: 2303-1751 PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM Ida

Lebih terperinci

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f METODE NEWTON RAPHSON (1) METODE NEWTON RAPHSON Solusi Persamaan Non Linier Oleh : Metode Newton-Raphson merupakan salah satu metode terbuka untuk menentukan solusi akar dari persamaan non linier, dengan

Lebih terperinci

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui 3 AKAR PERSAMAAN TAK LINIER ܵ ¼ Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui fungsi ܵ, akan dicari nilai-nilai

Lebih terperinci

BAB II ISI ( ) (sumber:

BAB II ISI ( ) (sumber: BAB II ISI A. Permasalahan yang Diberikan Soal saudara dalam UTS ini harus terus digunakan untuk mengerjakan tugas proyek ini, yaitu: prediksi sifat-sifat tekanan uap murni suatu fluida hidrokarbon sebagai

Lebih terperinci

SolusiPersamaanNirlanjar

SolusiPersamaanNirlanjar SolusiPersamaanNirlanjar Bahan Kuliah IF4058 Topik Khusus Informatika I Oleh; Rinaldi Munir(IF-STEI ITB) Rinaldi Munir - Topik Khusus Informatika I 1 RumusanMasalah Persoalan: Temukan nilai yang memenuhi

Lebih terperinci

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,

Lebih terperinci

10 Persamaan Differensial Biasa (PDB) Dengan Nilai Batas

10 Persamaan Differensial Biasa (PDB) Dengan Nilai Batas P.B. Kosasih PDB nilai batas 47 Persamaan Differensial Biasa (PDB) Dengan Nilai Batas. PENGENAAN TOPIK Pada persoalan enjineering lebih sering dijumpai PDB tingkat dengan kondisi batas ang diberikan pada

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

Modul Dasar dasar C. 1. Struktur Program di C++

Modul Dasar dasar C. 1. Struktur Program di C++ Modul Dasar dasar C I 1. Struktur Program di C++ Dalam bahasa pemrograman C++ strukturnya adalah sebagai berikut: a. Header. Ex: #include b. Main adalah isi dari program diawali {. dan diakhiri

Lebih terperinci

Jurnal MIPA 36 (2): (2013) Jurnal MIPA.

Jurnal MIPA 36 (2): (2013) Jurnal MIPA. Jurnal MIPA 36 (2): 193-200 (2013) Jurnal MIPA http://journalunnesacid/nju/indexphp/jm APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHAMPIRI SOLUSI PERSAMAAN NON LINEAR Rochmad Jurusan Matematika, FMIPA, Universitas

Lebih terperinci

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa

Lebih terperinci

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc Aplikasi Turunan Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc 1 Menggambar Grafik Fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi

Lebih terperinci

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN 1 BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN Dalam banyak usaha pemecahan permasalahan, seringkali harus diselesaikan dengan menggunakan persamaan-persamaan matematis, baik persamaan linier, persamaan kuadrat,

Lebih terperinci

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I ARTI PENTING ANALISIS NUMERIK BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42 Jurnal Matematika Integratif ISSN 1412-6184 Volume 12 No 1, April 2016, pp 35 42 Perbandingan Tingkat Kecepatan Konvergensi dari Newton Raphson dan Secant Setelah Mengaplikasikan Aiken s dalam Perhitungan

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU 1 Nama Mata Kuliah : Pemrograman Komputer 2 Kode Mata Kuliah : TSS 2119 3 Semester : III 4 (sks) : 2 5

Lebih terperinci

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant Penyelesaian Persa amaan Non Linier Metode Iterasi Sederhana Metode Newton Raphson Permasalahan Titik Kritis pada Newton Raphson Metode Secant Iterasi/NewtonRaphson/Secant Metode Numerik - Metode Iter

Lebih terperinci

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta DESAIN OPTIMASI UNGSI TAK LINIER MENGGUNAKAN METODE PENYELIDIKAN IBONACCI Yemi Kuswardi Nurul Muhayat Abstract: optimum design is an action to design the best product based on the problem. Theoretically,

Lebih terperinci

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 Tornados P. Silaban 1, Faiz Ahyaningsih 2 1) FMIPA, UNIMED, Medan, Indonesia email: tornados.p_silaban@yahoo.com 2)

Lebih terperinci