METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR"

Transkripsi

1 METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR Penulis: Dr. Eng. Supriyanto, M.Sc, Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Penulisan vektor-kolom Sebelum kita membahas metode iterasi untuk menyelesaikan problem sistem persamaan linear, saya ingin menyampaikan satu hal yang sangat sederhana, yaitu tentang cara merepresentasikan elemen-elemen suatu vektor-kolom. Sebagaimana tertulis pada catatan catatan sebelumnya, biasanya suatu vektor-kolom ditulis sebagai x 1 x x =. Dengan operasi transpose, vektor-kolom tersebut dapat dinyatakan sebagai [ ] t x = x 1 x... x n () Contoh: 3 x = = 5 x n [ ] t 3 5 Cara penulisan seperti ini digunakan untuk menyatakan vektor-kolom pada suatu kalimat didalam paragraf. Alasannya supaya tidak terlalu menyita banyak ruang penulisan. Sementara, persamaan (1), lebih sering digunakan pada penulisan operasi matrik. Satu hal lagi, pada paragraf-paragraf berikutnya, saya persingkat penulisan istilah vektor-kolom menjadi vektor saja. Pengenalan norm Vektor x =(x 1 ; x ;...; x n ) t memiliki norm l dan l yang didefinisikan sebagai l = x = { 1 (1) n x i } 1/ (3) i=1

2 dan l = x =max x i (4) 1 i n Contoh: x =(3; ; ; 5) T memiliki norm l yaitu dan norm l yaitu l = x = (3) +( ) +() +(5) =, 0995 l = x =max{(3), ( ), (), (5)} = Saya menyarankan agar kedua norm ini diingat-ingat dengan baik, karena akan banyak disinggung pada catatan-catatan berikutnya. Pengenalan metode iterasi Sekarang kita mulai pembahasan tentang metode iterasi untuk menyelesaikan problem sistem persamaan linear. Metode ini berbeda dengan metode-metode yang telah dijelaskan sebelumnya, dimana metode ini dimulai dengan menentukan nilai awal (initial value) untuk setiap elemen vektor x. Kemudian berdasarkan nilai awal tersebut, dilakukan langkah perhitungan untuk mendapatkan elemen-elemen vektor x yang baru. x (baru) = T x (lama) + c atau x k = T x k 1 + c (5) dimana k =1,, 3,... Untuk lebih jelasnya, marilah kita perhatikan contoh berikut, diketahui sistem persamaan linear Ax = b yaitu x 1 x +x 3 = 6 x 1 +x x 3 +3x 4 = 5 x 1 x +x 3 x 4 = 3x x 3 +x 4 = 15

3 Lalu, sistem persamaan tersebut diubah susunannya menjadi seperti ini x 1 = 1 x x x = 1 x x 3 3 x x 3 = x x + 1 x 4 x 4 = 3 x + 1 x Kita bisa menyatakan bahwa nilai x 1,x,x 3 dan x 4 yang berada di ruas kiri tanda = (baca: sama dengan) sebagai x (baru). Sementara nilai x 1,x,x 3 dan x 4 yang berada di ruas kanan tanda = (baca: sama dengan) sebagai x (lama). Sistem persamaan tersebut menjadi seperti ini atau seperti ini x (baru) 1 = 1 x(lama) x(lama) x (baru) = 1 x(lama) x(lama) 3 3 x(lama) x (baru) 3 = x(lama) x + 1 x(lama) 4 x (baru) 4 = 3 x(lama) + 1 x(lama) = 1 x(k 1) x(k 1) = 1 x(k 1) x(k 1) 3 3 x(k 1) = x(k 1) x(k 1) + 1 x(k 1) 4 4 = 3 x(k 1) + 1 x(k 1) Sehingga bentuk sistem persamaan yang terakhir ini dapat dinyatakan dalam persamaan matrik sebagai berikut = Tx (k 1) + c (6) Pada k =1, 1 = 1 x(0) x(0) = 1 x(0) x(0) 3 3 x(0) = x(0) x(0) + 1 x(0) 4 4 = 3 x(0) + 1 x(0)

4 Misalnya kita tentukan nilai-nilai awal x (0) sebagai berikut x (0) 1 =0, x (0) =0, x (0) 3 =0 dan x (0) 4 =0. Atau dinyatakan seperti ini x (0) = (0; 0; 0; 0) t. Maka kita akan memperoleh nilai-nilai sebagai berikut 1 = 6 = 5 3 = 4 = 15 atau = (0, 6000;, 77; 1, 00; 1, 750) t. Setelah kita memperoleh nilai-nilai, perhitungan tersebut diulangi kembali dengan nilai k =. Lalu nilai-nilai = (0, 6000;, 77; 1, 00; 1, 750) t dimasukan ke ruas kanan, x () 1 = 1 x(1) x(1) x () = 1 x(1) x(1) 3 3 x(1) x () 3 = x(1) x(1) + 1 x(1) 4 x () 4 = 3 x(1) + 1 x(1) maka kita akan memperoleh nilai-nilai x () =(1, 0473; 1, 7159; 0, 05; 0, 5) t. Setelah kita memperoleh nilai-nilai x (), perhitungan tersebut diulangi kembali dengan nilai k =3. Lalu nilai-nilai x () =(1, 0473; 1, 7159; 0, 05; 0, 5) t dimasukan ke ruas kanan untuk mendapatkan x (3), x (3) 1 = 1 x() x() x (3) = 1 x() x() 3 3 x() x (3) 3 = x() x() + 1 x() 4 x (3) 4 = 3 x() + 1 x() maka kita akan memperoleh nilai-nilai x (3) =(0, 936;, 0530; 1, 0493; 1, 1309) t. Lalu proses perhitungan diulangi lagi dengan k =4. Begitu seterusnya proses ini diulangulang lagi untuk nilai-nilai k berikutnya. Proses yang berulang ini disebut iterasi. Sampai dengan x (3) di atas, kita sudah melakukan tiga kali proses iterasi. Lantas sampai kapankah 4

5 k ,0000 0,6000 1,0473 0,936 1, ,9997 1,0001 0,0000,77 1,7159,0530 1, ,0004 1, ,0000-1,00-0,05-1,0493-0, ,0004-0, ,0000 1,5 0,5 1,1309 0, ,0006 0,999 proses iterasi ini terus berlanjut? Jawabnya adalah sampai x (baru) mendekati solusi yang sesungguhnya, yaitu x = (1; ; 1; 1) t Dengan kata lain, proses iterasi harus di-stop atau dihentikan bila x (baru) sudah mendekati solusi. Lalu kriteria apa yang digunakan sehingga suatu hasil iterasi bisa dikatakan paling dekat dengan solusi yang sebenarnya? OK, simpan dulu pertanyaan ini, marilah kita amati hasil seluruh iterasi dari iterasi yang pertama hingga iterasi yang ke sepuluh. Tabel di atas ini menampilkan hasil perhitungan hingga iterasi yang ke sepuluh. Kita bisa saksikan bahwa hasil iterasi ke-1, =(0, 6000;, 77; 1, 00; 1, 5) adalah hasil yang paling tidak mendekati solusi x = (1; ; 1; 1) t. Dibandingkan dengan hasil iterasi ke-, jelas terlihat bahwa hasil iterasi ke- lebih mendekati solusi. Kalau terus diurutkan, maka hasil iterasi ke- merupakan hasil yang paling dekat dengan solusi. Dengan memanfaatkan perhitungan norm, secara kuantitatif dapat disimpulkan bahwa iterasi yang ke- adalah yang paling dekat dengan solusi. Pada tabel dibawah ini, saya menggunakan norm l, sedangkan hasil perhitungan norm, saya beri nama epsilon, ɛ. Jadi semakin kecil nilai epsilon, ɛ, hasil iterasinya semakin dekat dengan solusi. Kembali ke pertanyaan penting yang tadi yaitu kriteria apa yang digunakan sehingga suatu hasil iterasi bisa dikatakan paling dekat dengan solusi yang sebenarnya? Jawabnya adalah besar kecilnya nilai ɛ. Artinya kalau nilai ɛ ditentukan sebesar 0,, maka iterasi akan berhenti pada iterasi yang ke-4. Atau kalau nilai ɛ ditentukan sebesar 0,001, maka proses iterasi akan berhenti pada iterasi yang ke-. Kesimpulannya, semakin kecil nilai ɛ, semakin panjang proses iterasinya, namun hasil akhirnya semakin dekat dengan solusi sebenarnya. Jadi nilai ɛ berperan penting untuk menghentikan proses iterasi. Dalam hal ini, ɛ disebut sebagai stopping-criteria. norm l x () x (3) x () x (4) x (3)... x () x (9) ɛ 1,557 0,4967 0, ,001 5

6 Metode yang baru saja kita bahas ini disebut metode Iterasi Jacobi. Metode ini bertujuan mencari nilai-nilai pengganti variabel-variabel x dengan perumusan ) n j=1 ( a ij x (k 1) j + b i i = (7) a ii dimana i=1,,3,...,n. Algoritma Iterasi Jacobi Langkah 1: Tentukan k=1 Langkah : Ketika (k N) lakukan Langkah 3-6 Langkah 3: Untuk i=1,...,n, hitunglah x i = n j=1 (a ijxo j )+b i a ii Langkah 4: Jika x XO <ɛ, maka keluarkan OUTPUT (x 1,..., x n ) lalu STOP Langkah 5: Tentukan k=k+1 Langkah 6: Untuk i=1,...n, tentukan XO i = x i Langkah 7: OUTPUT ( Iterasi maksimum telah terlampaui ) lalu STOP Program dalam Fortran IMPLICIT NONE DIMENSION A(,),B(),X(),XO() REAL A,B,X,XO,EPS,NORM,S INTEGER N,I,J,K,ITMAX WRITE(*,*) ==> ITERASI JACOBI UNTUK SISTEM LINEAR <== WRITE(*,*) WRITE (*, (1X,A) ) JUMLAH PERSAMAAN? READ (*,*) N WRITE (*,*) MASUKAN ELEMEN-ELEMEN MATRIK A DAN VEKTOR B DO 5 I = 1,N DO 6 J = 1,N 6

7 WRITE (*, (1X,A,I,A,I,A) ) A(,I,,,J, ) = READ (*,*) A(I,J) 6 CONTINUE WRITE (*, (1X,A,I,A) ) B(,I, )? READ (*,*) B(I) WRITE (*,*) 5 CONTINUE WRITE (*, (1X,A) ) JUMLAH ITERASI MAKSIMUM? READ (*,*) ITMAX WRITE (*, (1X,A) ) NILAI EPSILON ATAU TOLERANSI? READ (*,*) EPS WRITE (*,*) MASUKAN NILAI AWAL UNTUK XO DO 7 I = 1,N WRITE (*, (1X,A,I,A) ) XO(,I, )? READ (*,*) XO(I) 7 CONTINUE WRITE (*,*) C MENAMPILKAN MATRIK A WRITE (*, (1X,A) ) MATRIK A: DO 0 I = 1,N WRITE (*,6) (A(I,J),J=1,N) 0 CONTINUE WRITE (*,*) C MENAMPILKAN VEKTOR B WRITE (*, (1X,A) ) VEKTOR B: DO 1 I = 1,N WRITE (*,6) B(I) 1 CONTINUE WRITE (*,*) C LANGKAH 1 K = 1 C LANGKAH 0 IF(K.GT.ITMAX) GOTO 00 C LANGKAH 3 7

8 NORM = 0.0 DO I = 1,N S = 0.0 DO 0 J=1,N S = S-A(I,J)*XO(J) 0 CONTINUE S = (S+B(I))/A(I,I) IF (ABS(S).GT.NORM) NORM=ABS(S) X(I) = XO(I)+S CONTINUE WRITE(*, (1X,A,I3) ) ITERASI KE-, K WRITE(*, (1X,A,F14.) ) NORM =, NORM WRITE(*, (1X,A,I3,A,F14.) ) ( X(,I, ) =, X(I),I=1,N) WRITE(*,*) C LANGKAH 4 IF(NORM.LE.EPS) THEN WRITE(*,7) K,NORM GOTO 400 END IF C LANGKAH 5 K = K+1 C LANGKAH 6 DO 30 I=1,N XO(I) = X(I) 30 CONTINUE GOTO 0 C LANGKAH 7 00 CONTINUE WRITE(*,9) 400 STOP 5 FORMAT(1X,I3) 6 FORMAT(1X,(6(1X,F14.))) 7 FORMAT(1X, KONVERGEN PADA ITERASI YANG KE-,I3,

9 *, NORM=,F14.) 9 FORMAT(1X, MELEBIHI BATAS MAKSIMUM ITERASI ) END Demikianlah catatan singkat dari saya tentang metode Iterasi Jacobi untuk menyelesaikan problem sistem persamaan linear. Saya cukupkan sementara sampai disini. Insya Allah akan saya sambung lagi dilain waktu. Kalau ada yang mau didiskusikan, silakan hubungi saya melalui supri9@gmail.com. 9

LU DECOMPOSITION (FAKTORISASI MATRIK)

LU DECOMPOSITION (FAKTORISASI MATRIK) LU DECOMPOSITION (FAKTORISASI MATRIK) Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Pada semua catatan

Lebih terperinci

INVERS MATRIK DAN ELIMINASI GAUSS

INVERS MATRIK DAN ELIMINASI GAUSS INVERS MATRIK DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Secara umum, sistem

Lebih terperinci

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Abstract

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Dr. Eng. Supriyanto, M.Sc Edisi I Laboratorium Jaringan Komputer Departemen Fisika-FMIPA Univeristas Indonesia 2006 Untuk Muflih Syamil dan Hasan Azmi... Mottoku : Tenang,

Lebih terperinci

REGRESI LINEAR DAN ELIMINASI GAUSS

REGRESI LINEAR DAN ELIMINASI GAUSS REGRESI LINEAR DAN ELIMINASI GAUSS Penulis: Supriyanto, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Diketahui data eksperimen tersaji dalam tabel berikut ini

Lebih terperinci

BAB II ISI ( ) (sumber:

BAB II ISI ( ) (sumber: BAB II ISI A. Permasalahan yang Diberikan Soal saudara dalam UTS ini harus terus digunakan untuk mengerjakan tugas proyek ini, yaitu: prediksi sifat-sifat tekanan uap murni suatu fluida hidrokarbon sebagai

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

MATRIK DAN KOMPUTASI

MATRIK DAN KOMPUTASI MATRIK DAN KOMPUTASI Penulis: Supriyanto, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Fukuoka, 5 Feb 2005 Catatan ini bermaksud menjelaskan secara singkat

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi II Revisi terakhir tgl: 12 Februari 2008 Departemen

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi II Revisi terakhir tgl: 28 April 2008 Departemen

Lebih terperinci

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com November 12, 2006 Suatu

Lebih terperinci

Komputasi untuk Sains dan Teknik -Dalam Matlab-

Komputasi untuk Sains dan Teknik -Dalam Matlab- Komputasi untuk Sains dan Teknik -Dalam Matlab- Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi III Revisi terakhir tgl: 25

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Interpolasi Cubic Spline

Interpolasi Cubic Spline Interpolasi Cubic Spline Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com December 13, 2006 Figure 1: Fungsi f(x) dengan

Lebih terperinci

Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear)

Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear) Kuliah #7 Pemodelan TK Lanjut S 2 (Tambahan) CONTOH RINGKAS: Solusi SPANL (Sistem Persamaan Aljabar Non Linear) Prof. Dr. Ir. Setijo Bismo, DEA. Departemen Teknik Kimia FTUI, Oktober 2015 A. Sistem Persamaan

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

Pelatihan fortran JURUSAN TEKNIK SIPIL 2014 / 2015

Pelatihan fortran JURUSAN TEKNIK SIPIL 2014 / 2015 Pelatihan fortran JURUSAN TEKNIK SIPIL 2014 / 2015 STRUKTUR PROGRAM FORTRAN STRUKTUR DARI PROGRAM FORTRAN DIBAGI MENJADI 5 BAGIAN KOLOM DAN TIAP-TIAP BARIS DI DALAM PROGRAM DAPAT BERISI : 1) METACOMMAND

Lebih terperinci

Metode Matematika untuk Geofisika

Metode Matematika untuk Geofisika Metode Matematika untuk Geofisika Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.ac.id ) ( Email: supri@fisika.ui.ac.id atau supri9@gmail.com ) Edisi I Revisi terakhir tgl: Desember 009 Departemen

Lebih terperinci

RUNGE-KUTTA ORDE EMPAT

RUNGE-KUTTA ORDE EMPAT RUNGE-KUTTA ORDE EMPAT Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri9@gmail.com December 30, 00 Pada saat membahas metode Euler

Lebih terperinci

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON ITERASI TITIK SEDERHANA METODE NEWTON RAPHSON Metode iterasi sederhana adalah metode yang memisahkan dengan sebagian yang lain sehingga diperoleh : g(. dikenal juga sebagai metode g( Bentuk iterasi satu

Lebih terperinci

BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN

BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN 1 BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN Pembahasan berikut ini akan meninjau salah satu implementasi operasi matrik untuk menyelesaikan sistem persamaan linier simultan. Selain menggunakan

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Sistem persamaan linear yang terdiri dari n persamaan dengan n variabel x 1, x 2,..., x n

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............

Lebih terperinci

Bab 5 Array (Variabel Berindeks)

Bab 5 Array (Variabel Berindeks) Bab 5 Array (Variabel Berindeks) 5.1. Pengertian array Variabel dengan tipe data tunggal (skalar) hanya dapat digunakan untuk menyimpan sebuah nilai saja, sehingga untuk menyimpan beberapa nilai sekaligus

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN (Epsilon Machine, Interpolasi dan Eliminasi Gauss) Setijo Bismo Departemen Teknik Kimia FTUI 06 Oktober 2015 Perlu untuk SELALU DIINGAT! Cara-Cara

Lebih terperinci

SCRIPT PERSAMAAN CRAMER

SCRIPT PERSAMAAN CRAMER SCRIPT PERSAMAAN CRAMER Program ; Uses crt; var a11,a12,a13,a21,a22,a23,a31,a32,a33,c1,c2,c3 : integer; D, Dx, Dy, Dz, x, y, z: real; Begin clrscr; writeln ('PENYELESAIAN PERS ALJABAR LINEAR':50); writeln

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

STATEMENT FORMAT, DATA, PARAMETER, SPESIFIKASI DAN PENGERJAAN. Kuliah ke-3

STATEMENT FORMAT, DATA, PARAMETER, SPESIFIKASI DAN PENGERJAAN. Kuliah ke-3 STATEMENT FORMAT, DATA, PARAMETER, SPESIFIKASI DAN PENGERJAAN Kuliah ke-3 1 PROGRAM FORTRAN STATEMENT FORMAT Bentuk umum penulisan statement FORMAT adalah ; < label statement > FORMAT Penjelasan

Lebih terperinci

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN (Epsilon Machine, Interpolasi dan Metode Newton-Raphson) Prof. Dr. Ir. Setijo Bismo, DEA. Departemen Teknik Kimia FTUI 09 Oktober 2015

Lebih terperinci

a. TRUE b. FALSE c. Jawaban A dan B keduanya dimungkinkan benar d. Tidak dapat ditentukan e. Tidak ada jawaban di antara A, B, C, D yang benar

a. TRUE b. FALSE c. Jawaban A dan B keduanya dimungkinkan benar d. Tidak dapat ditentukan e. Tidak ada jawaban di antara A, B, C, D yang benar Bidang Studi : Informatika / Komputer Kode Berkas : KOM-L01 (solusi) 1. Jika : A bernilai FALSE B bernilai TRUE Maka pernyataan di bawah bernilai? ((A and B) or (B and not A)) xor (A and B) a. TRUE b.

Lebih terperinci

LAMPIRAN LAMPIRAN-LAMPIRAN

LAMPIRAN LAMPIRAN-LAMPIRAN LAMPIRAN LAMPIRAN-LAMPIRAN 85 LAMPIRAN 1 Script Editor Matlab % Program Matlab Menghitung NILAI EIGEN Max-Plus Maksimum dan VEKTOR EIGEN yang bersesuaian untuk suatu Matriks Max-plus A % input : Matriks

Lebih terperinci

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN 1 BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN Dalam banyak usaha pemecahan permasalahan, seringkali harus diselesaikan dengan menggunakan persamaan-persamaan matematis, baik persamaan linier, persamaan kuadrat,

Lebih terperinci

Sistem Persamaan Aljabar Linier

Sistem Persamaan Aljabar Linier Sistem Persamaan Aljabar Linier Dimana: a ij = koefisien konstanta; x j = unknown ; b j = konstanta; n = banyaknya persamaan Metode-Metode untuk menyelesaikan Sistem Persamaan Aljabar Linier: 1. Metode

Lebih terperinci

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS 6.1 Teori Dualitas Teori dualitas merupakan salah satu konsep programa linier yang penting dan menarik ditinjau dari segi teori dan praktisnya.

Lebih terperinci

Komputasi untuk Sains dan Teknik -Menggunakan Matlab-

Komputasi untuk Sains dan Teknik -Menggunakan Matlab- Komputasi untuk Sains dan Teknik -Menggunakan Matlab- Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi III Revisi terakhir tgl:

Lebih terperinci

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

SISTEM PERSAMAAN LINEAR ( BAGIAN II ) SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2

Lebih terperinci

BAB VII PENCARIAN DATA (SEARCHING)

BAB VII PENCARIAN DATA (SEARCHING) 1 BAB VII PENCARIAN DATA (SEARCHING) Seperti halnya dengan pengurutan data, pencarian data (searching) merupakan operasi yang penting dalam pengolahan data. Bahkan, tidak jarang keduanya digunakan secara

Lebih terperinci

Algoritma Brute Force

Algoritma Brute Force Algoritma Brute Force Deskripsi Materi ini membahas tentang algoritma brute force dengan berbagai studi kasus Definisi Brute Force Straighforward (lempeng) Sederhana dan jelas Lebih mempertimbangkan solusi

Lebih terperinci

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN

Lebih terperinci

Pertemuan ke 4. Non-Linier Equation

Pertemuan ke 4. Non-Linier Equation Pertemuan ke 4 Non-Linier Equation Non-Linier Equation Persamaan Kuadrat Persamaan Kubik Metode Biseksi Metode Newton-Rapshon Metode Secant 1 Persamaan Kuadrat Persamaan kuadrat adalah suatu persamaan

Lebih terperinci

Nama : Suseno Rudiansyah NPM : Kelas : X2T Prodi : Teknik Informatika Tugas : Kuis Algoritma 2

Nama : Suseno Rudiansyah NPM : Kelas : X2T Prodi : Teknik Informatika Tugas : Kuis Algoritma 2 Nama : Suseno Rudiansyah NPM : 201543501544 Kelas : X2T Prodi : Teknik Informatika Tugas : Kuis Algoritma 2 Tugas Kuiz Algoritma 2. Dosen : Budi Santoso 1. Diketahui dua buah larik A = [12,3,9,4,15,6]

Lebih terperinci

BAB 2 ARRAY, OPERATOR DAN FORMAT DALAM FORTRAN

BAB 2 ARRAY, OPERATOR DAN FORMAT DALAM FORTRAN BAB 2 ARRAY, OPERATOR DAN FORMAT DALAM FORTRAN TUJUAN Tujuan Instruksi Umum: Menerangkan Operator-Operator Yang Terdapat Dalam FORTRAN. Menerangkan Tentang Array. Menerangkan Tentang Format Specifier Tujuan

Lebih terperinci

MODUL PEMROGRAMAN DENGAN MENGGUNAKAN BAHASA PASCAL CONTOH PROGRAM DENGAN MENGGUNAKAN BAHASA PASCAL (FPC)

MODUL PEMROGRAMAN DENGAN MENGGUNAKAN BAHASA PASCAL CONTOH PROGRAM DENGAN MENGGUNAKAN BAHASA PASCAL (FPC) MODUL PEMROGRAMAN DENGAN MENGGUNAKAN BAHASA PASCAL CONTOH PROGRAM DENGAN MENGGUNAKAN BAHASA PASCAL (FPC) 1. PENGGUNAAN MASUKAN (INPUT ) fileinp: text ; A,B,C : real ; assign(fileinp, 'input.txt'); reset(fileinp);

Lebih terperinci

ELEMEN DASAR PROGRAM FORTRAN. Kuliah ke-2

ELEMEN DASAR PROGRAM FORTRAN. Kuliah ke-2 ELEMEN DASAR Kuliah ke-2 1 Mengapa dengan FORTRAN? FORmula TRANslation adalah bahasa pemrograman komputer tingkat tinggi yang langsung berorientasi pada permasalahan teknik, dan umum dipakai oleh para

Lebih terperinci

Algoritma Brute Force

Algoritma Brute Force Algoritma Brute Force Definisi Brute Force Brute force adalah sebuah pendekatan yang lempang (straightforward( straightforward) ) untuk memecahkan suatu masalah, biasanya didasarkan pada pernyataan masalah

Lebih terperinci

Decrease and Conquer

Decrease and Conquer Decrease and Conquer Bahan Kuliah IF2211 Strategi Algoritma Oleh: Rinaldi Munir Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB 1 Decrease and conquer: metode desain algoritma

Lebih terperinci

BAB 3 STRUKTUR KENDALI, SUBROUTINE, DAN FUNGSI

BAB 3 STRUKTUR KENDALI, SUBROUTINE, DAN FUNGSI BAB 3 STRUKTUR KALI, SUBROUTINE, DAN FUNGSI TUJUAN Tujuan Instruksi Umum: Menjelaskan kepada mahasiswa mengenai struktur kendali pada Fortran Menjelaskan Kepada mahasiswa mengenai Function dan subroutine

Lebih terperinci

12/15/2014. Apa yang dimaksud dengan Pemrograman Bulat? Solusi yang didapat optimal, tetapi mungkin tidak integer.

12/15/2014. Apa yang dimaksud dengan Pemrograman Bulat? Solusi yang didapat optimal, tetapi mungkin tidak integer. 1 PEMROGRAMAN LINEAR BULAT (INTEGER LINEAR PROGRAMMING - ILP) Apa yang dimaksud dengan Pemrograman Bulat? METODE SIMPLEKS Solusi yang didapat optimal, tetapi mungkin tidak integer. 2 1 INTEGER LINEAR PROGRAMMING

Lebih terperinci

STATEMEN GO TO DAN IF-THEN. Pertemuan IX

STATEMEN GO TO DAN IF-THEN. Pertemuan IX STATEMEN GO TO DAN IF-THEN Pertemuan IX Statemen Alih Kontrol Pada bahasa pemrograman BASIC tidak hanya melakukan eksekusi baris demi baris atau secara berurutan yang tiap barisnya dieksekusi hanya satu

Lebih terperinci

Kompleksitas Algoritma (1)

Kompleksitas Algoritma (1) Kompleksitas Algoritma (1) Pendahuluan Sebuah algoritma tidak saja harus benar, tetapi juga harus efisien Algoritma yang bagus adalah algoritma yang efisien. Kebutuhan waktu dan ruang suatu algoritma bergantung

Lebih terperinci

Algoritma Pemrograman

Algoritma Pemrograman Algoritma Pemrograman Pertemuan Ke-12 (Matriks) Noor Ifada noor.ifada@if.trunojoyo.ac.id S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Pendahuluan Konsep Matriks Pendeklarasian Matriks Pemrosesan Matriks

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY

PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY Any Muanalifah August 9, 2010 Latar Belakang Latar Belakang Teori himpunan fuzzy berkembang pesat saat ini. Banyak sekali

Lebih terperinci

Pertemuan 6 Array Objektif: 1. Memahami cara mendeklarasi tipe indeks dalam array 2. Dapat membuat program sederhana menggunakan array Pertemuan 6 53

Pertemuan 6 Array Objektif: 1. Memahami cara mendeklarasi tipe indeks dalam array 2. Dapat membuat program sederhana menggunakan array Pertemuan 6 53 Pertemuan 6 Array Objektif: 1. Memahami cara mendeklarasi tipe indeks dalam array 2. Dapat membuat program sederhana menggunakan array Pertemuan 6 53 P4.1 Teori Larik / array adalah tipe terstruktur yang

Lebih terperinci

CCH1A4 / Dasar Algoritma & Pemrogramanan

CCH1A4 / Dasar Algoritma & Pemrogramanan CCH1A4 / Dasar & Pemrogramanan Yuliant Sibaroni M.T, Abdurahman Baizal M.Kom KK Modeling and Computational Experiment PROSEDUR Overview Prosedur Konsep Prosedur Prosedur Tanpa Input/Output Prosedur dengan

Lebih terperinci

PERBANDINGAN METODE ITERASI JACOBI DAN ITERASI GAUSS-SEIDEL DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER DENGAN MENGGUNAKAN SIMULASI KOMPUTASI

PERBANDINGAN METODE ITERASI JACOBI DAN ITERASI GAUSS-SEIDEL DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER DENGAN MENGGUNAKAN SIMULASI KOMPUTASI PERBANDINGAN METODE ITERASI JACOBI DAN ITERASI GAUSS-SEIDEL DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER DENGAN MENGGUNAKAN SIMULASI KOMPUTASI Skripsi Oleh Shella Niyyaka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear 5 BAB II LANDASAN TEORI A Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear Persamaan linear adalah bentuk kalimat terbuka yang memuat variabel dengan derajat tertinggi adalah satu Sedangkan sistem

Lebih terperinci

Perbandingan Kecepatan/Waktu Komputasi Beberapa Algoritma Pengurutan (Sorting)

Perbandingan Kecepatan/Waktu Komputasi Beberapa Algoritma Pengurutan (Sorting) Perbandingan Kecepatan/Waktu Komputasi Beberapa Algoritma Pengurutan (Sorting) Indrayana 1, Muhamad Ihsan Fauzi 2 Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi

Lebih terperinci

Komponen Terhubung dan Jalur Terpendek Algoritma Graf Paralel

Komponen Terhubung dan Jalur Terpendek Algoritma Graf Paralel Komponen Terhubung dan Jalur Terpendek Algoritma Graf Paralel Yosef Sukianto Nim 13506035 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung, Jalan Ganesha

Lebih terperinci

TEORI DUALITAS & ANALISIS SENSITIVITAS

TEORI DUALITAS & ANALISIS SENSITIVITAS TEORI DUALITAS & ANALISIS SENSITIVITAS Review - Interpretasi Ekonomis dari Simbol Dalam Simplex Simbol Interpretasi ekonmis X j C j Z b i a ij Tingkat Aktivitas ( j = 1, 2,, n ) Laba per satuan aktivitas

Lebih terperinci

BAB VI SEARCHING (PENCARIAN)

BAB VI SEARCHING (PENCARIAN) BAB VI SEARCHING (PENCARIAN) 7. 1 Pencarian Beruntun (Sequential Search) Prinsip kerja pencarian beruntun adalah membandingkan setiap elemen larik satu per satu secara beruntun, mulai dari elemen pertama

Lebih terperinci

OPERASI MATRIKS. a 11 a 12 a 13 a 14 A = a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44

OPERASI MATRIKS. a 11 a 12 a 13 a 14 A = a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 OPERASI MATRIKS Topik yang akan dibahas transpose perkalian TRANSPOSE Definisi: a 11 a 12 a 13 a 14 A = a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 a 11 a 21 a 31 a 41 A T = a 12 a 22 a

Lebih terperinci

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor. Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: syarif_abdullah@apps.ipb.ac.id 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System

Lebih terperinci

Reduksi Rank pada Matriks-Matriks Tertentu

Reduksi Rank pada Matriks-Matriks Tertentu Reduksi Rank pada Matriks-Matriks Tertentu E. Apriliani, B. Ari Sanjaya September 6, 7 Abstract. Dekomposisi nilai singular (Singular Value Decomposition - SVD) adalah suatu metode untuk menuliskan suatu

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Bab 1 PENDAHULUAN 1.1 Latar Belakang Teori himpunan fuzzy banyak diterapkan dalam berbagai disiplin ilmu seperti teori kontrol dan manajemen sains, pemodelan matematika dan berbagai aplikasi dalam bidang

Lebih terperinci

ALGORITMA & FLOWCHART

ALGORITMA & FLOWCHART ALGORITMA & FLOWCHART 1. DEFINISI ALGORITMA Terdapat beberapa definisi mengenai kata Algoritma : 1. Algoritma adalah urutan langkah-langkah logis penyelesaian masalah yang disusun secara sistematis (Rinaldi

Lebih terperinci

BAB III QUEUE (ANTRIAN)

BAB III QUEUE (ANTRIAN) BAB III QUEUE (ANTRIAN) 3.1 Pengertian Antrian Antrian (Queue) merupakan kumpulan data yang mana penambahan elemen hanya bias dilakukan pada suatu ujung yaitu rear /tail / belakang, dan pengha[usan dilakukan

Lebih terperinci

Algoritma Pemrograman

Algoritma Pemrograman Algoritma Pemrograman Pertemuan Ke-11 (Matriks) :: Noor Ifada :: S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Pendahuluan Konsep Matriks Pendeklarasian Matriks Pemrosesan Matriks Membaca Elemen Matriks

Lebih terperinci

PENGEMBANGAN SHORTEST PATH ALGORITHM (SPA) DALAM RANGKA PENCARIAN LINTASAN TERPENDEK PADA GRAF BERSAMBUNG BERARAH BERUNTAI

PENGEMBANGAN SHORTEST PATH ALGORITHM (SPA) DALAM RANGKA PENCARIAN LINTASAN TERPENDEK PADA GRAF BERSAMBUNG BERARAH BERUNTAI PENGEMBANGAN SHORTEST PATH ALGORITHM (SPA) DALAM RANGKA PENCARIAN LINTASAN TERPENDEK PADA GRAF BERSAMBUNG BERARAH BERUNTAI Oliver Samuel Simanjuntak Jurusan Teknik Informatika UPN Veteran Yogyakarta Jl.

Lebih terperinci

BAB XIII MENGECEK KESAMAAN DUA VEKTOR

BAB XIII MENGECEK KESAMAAN DUA VEKTOR 1 BAB XIII MENGECEK KESAMAAN DUA VEKTOR Dalam banyak kesempatan, seringkali kita memerlukan operasi untuk mengecek kesamaan di antara dua kelompok data. Dengan memanfaatkan ide dalam beberapa algoritma

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA KOMPUTASI

LAPORAN PRAKTIKUM FISIKA KOMPUTASI LAPORAN PRAKTIKUM FISIKA KOMPUTASI Judul : Metode Iterasi Jacobi Pelaksanaan Praktikum Hari : Senin Tanggal : 1 Juni 2015 Jam : 5-6 Oleh : Nama : Mei Budi Utami Nim : 081211332009 Dosen Pembimbing : Endah

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

Pendahuluan. Sebuah algoritma tidak saja harus benar, tetapi juga harus efisien. Algoritma yang bagus adalah algoritma yang efektif dan efisien.

Pendahuluan. Sebuah algoritma tidak saja harus benar, tetapi juga harus efisien. Algoritma yang bagus adalah algoritma yang efektif dan efisien. Pendahuluan Sebuah algoritma tidak saja harus benar, tetapi juga harus efisien. Algoritma yang bagus adalah algoritma yang efektif dan efisien. Algoritma yang efektif diukur dari berapa jumlah waktu dan

Lebih terperinci

Dasar Komputer & Pemrograman 2A

Dasar Komputer & Pemrograman 2A Dasar Komputer & Pemrograman 2A Materi 3 Reza Aditya Firdaus STATEMENT INPUT OUTPUT Dalam bahasa Pascal untuk keperluan input (membaca input) digunakan identifier standar READ atau READLN. Identifier standart

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Program Integer Program Integer merupakan pengembangan dari Program Linear dimana beberapa atau semua variabel keputusannya harus berupa integer. Jika hanya sebagian variabel

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH PEMROGRAMAN PASCAL * (TK) KODE / SKS: KK /2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH PEMROGRAMAN PASCAL * (TK) KODE / SKS: KK /2 SKS MATA KULIAH PEMROGRAMAN * (TK) Minggu ke Pokok Bahasan dan TIU 1. Algoritma Konsep Dasar Bahasa Pascal secara singkat sejarah dirancangnya bahasa Memberikan konsep dasar pembuatan program dalam bahasa

Lebih terperinci

Tipe Data dan Variabel. Dosen Pengampu Muhammad Zidny Naf an, M.Kom

Tipe Data dan Variabel. Dosen Pengampu Muhammad Zidny Naf an, M.Kom Tipe Data dan Variabel Dosen Pengampu Muhammad Zidny Naf an, M.Kom Format Pseudocode Lengkap Judul program/algoritma PROGRAM Euclidean Program untuk mencari GCD dari dua buah bilangan bulat positif m dan

Lebih terperinci

Minggu III STRUKTUR PEMILIHAN (KONTROL PROGRAM)

Minggu III STRUKTUR PEMILIHAN (KONTROL PROGRAM) Minggu III STRUKTUR PEMILIHAN (KONTROL PROGRAM) Motivasi Dalam kehidupan sehari-hari selalu diperlukan pemilihan dari beberapa alternatif Contoh : Terdapat beberapa alternatif untuk memilih sabun mandi

Lebih terperinci

CCH1A4 / Dasar Algoritma & Pemrogramanan

CCH1A4 / Dasar Algoritma & Pemrogramanan CCH1A4 / Dasar Algoritma & Pemrogramanan Yuliant Sibaroni M.T, Abdurahman Baizal M.Kom KK Modeling and Computational Experiment Pengurutan Tabel Overview Bubble Sort Insertion Sort Overview Dalam bab ini

Lebih terperinci

Struktur Data. Belajar Struktur Data Menggunakan Pascal Pertemuan-5

Struktur Data. Belajar Struktur Data Menggunakan Pascal Pertemuan-5 Struktur Data Belajar Struktur Data Menggunakan Pascal Pertemuan-5 I n W a h y u W i d o d o e m a i l @ r i n g k e s. c o m ARRAY Menurut definisinya, array (larik) adalah suatu variabel yang merepresentasikan

Lebih terperinci

REDUKSI RANK PADA MATRIKS-MATRIKS TERTENTU

REDUKSI RANK PADA MATRIKS-MATRIKS TERTENTU J. Math. and Its Appl. ISSN: 89-65X Vol. 4, No., November 7, 8 REDUKSI RANK PADA MATRIKS-MATRIKS TERTENTU Erna Apriliani, Bandung Arry Sanjoyo Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember,

Lebih terperinci

PERTEMUAN 5 Metode Simpleks Kasus Minimum

PERTEMUAN 5 Metode Simpleks Kasus Minimum PERTEMUAN 5 Metode Simpleks Kasus Minimum Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya berbeda. Model matematika dari Permasalahan

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

STRUKTUR DASAR ALGORITMA

STRUKTUR DASAR ALGORITMA STRUKTUR DASAR ALGORITMA 1. Sequence 2. Selection 3. Repetition satriyo-algoritma 1 SEQUENCE Sebuah runtutan terdiri dari satu atau lebih intruksi. Intruksi dilaksanakan setelah intruksi sebelumnya dilaksanakan.

Lebih terperinci

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

BAB VII ALGORITMA DIVIDE AND CONQUER

BAB VII ALGORITMA DIVIDE AND CONQUER BAB VII ALGORITMA DIVIDE AND CONQUER Pemrogram bertanggung jawab atas implementasi solusi. Pembuatan program akan menjadi lebih sederhana jika masalah dapat dipecah menjadi sub masalah - sub masalah yang

Lebih terperinci

Algoritma BAB V LOOP ( PERULANGAN )

Algoritma BAB V LOOP ( PERULANGAN ) Algoritma BAB V LOOP ( PERULANGAN ) Pendahuluan Perulangan dalam Pascal berguna untuk mengerjakan suatu statement atau blok statement secara berulang-ulang sebanyak yang anda inginkan. Pascal menyediakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Noise Pada saat melakukan pengambilan gambar, setiap gangguan pada gambar dinamakan dengan noise. Noise dipakai untuk proses training corrupt image, gambarnya diberi noise dan

Lebih terperinci

Saifoe El Unas 2. Free Format

Saifoe El Unas 2. Free Format Saifoe El Unas FPS 4.0 mempunyai 2 macam format penulisan program yg dapat dipilih oleh programmer : 1. Fixed Format Menggunakan standar Fortran 77. 2. Free Format Menggunakan standar Fortran 90. 1 Program

Lebih terperinci

TINJAUAN PRIMAL-DUAL DALAM PENGAMBILAN KEPUTUSAN

TINJAUAN PRIMAL-DUAL DALAM PENGAMBILAN KEPUTUSAN TINJAUAN PRIALDUAL DALA PENGABILAN KEPUTUSAN Oleh : Lusi elian Staf Pengajar Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia ABSTRAK Suatu program linear

Lebih terperinci

SORTING (PENGURUTAN DATA)

SORTING (PENGURUTAN DATA) SORTING (PENGURUTAN DATA) R. Denny Ari Wibowo, S.Kom STMIK BINA NUSANTARA JAYA LUBUKLINGGAU PENJELASAN Pengurutan data (sorting) secara umum didefinisikan sebagai suatu proses untuk menyusun kembali himpunan

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 12 & 13

SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 12 & 13 A. Kompetensi 1. Utama SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 12 & 13 Mahasiswa dapat memahami tentang konsep pemrograman

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem kejadian dinamik diskrit (discrete-event dynamic system) merupakan sistem yang keadaannya berubah hanya pada titik waktu diskrit untuk menanggapi terjadinya

Lebih terperinci

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU Definisi: Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen x, suatu variabel dependen y, dan satu atau lebih turunan

Lebih terperinci

ARRAY. Larik / array adalah tipe terstruktur yang terdiri dari sejumlah komponen-komponen yang mempunyai tipe yang sama.

ARRAY. Larik / array adalah tipe terstruktur yang terdiri dari sejumlah komponen-komponen yang mempunyai tipe yang sama. ARRAY Larik / array adalah tipe terstruktur yang terdiri dari sejumlah komponen-komponen yang mempunyai tipe yang sama. 1.1 Deklarasi yang akan dipergunakan harus di deklarasikan terlebih dahulu. Deklarasi

Lebih terperinci