1 PROBABILITAS. Pengertian

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "1 PROBABILITAS. Pengertian"

Transkripsi

1 PROBABILITAS Pengertian Pada awal perkuliahan, sebelum menjelaskan probabilitas, dibahas sepintas sebagai pengantar tentang eksperimen, titik sampel, ruang sampel, dan peristiwa, serta variabel random secara umum. Dasar semua ini, perlu pula diingat kembali teori himpunan. Selanjutnya, dijelaskan materi probabilitas. Definisi.: Jika A suatu peristiwa yang bersesuain dengan suatu eksperimen dan ruang sample berhingga S yang setiap titik sampelnya berpeluang sama terjadi, maka probabilitas peristiwa A, ditulis P(A, didefinisikan: P(A = n ( A n ( S Contoh.: Pada pelantunan sebuah dadu, tentukan probabilitas dari peristiwa A : memuat semua titik sampel gasal B : memuat semua titik sampel prima C : memuat semua titik sampel yang tak kurang dari 3. Jawab: P(A = ½, P(B = /3, dan P(C = ½. Apabila X suatu variabel random yang bersesuaian dengan suatu eskperimen dan ruang sample S, sedangkan peristiwa A berkaitan dengan suatu harga tertentu dari X, yaitu i, maka P(A = P(X = i. Dengan demikian, dapat diperoleh untuk peristiwa-peristiwa lain, sebagai P(B = P(X i atau P(C = P(X ³ i atau P(D = P( i X j, dan seterusnya. Contoh.: Pada pelantunan tiga buah mata uang logam, ditentukan variabel random X : banyaknya ²G² yang nampak. Tentukan: Bahan Ajar Statistika Matematika I

2 (a P(X = 0 (c P(X = (e P(X 3 (g P(X > (b P(X = (d P(X = 3 (f P(X (h P(X > 3 Jawab: dibiarkan sebagai latihan! Sifat dan Teorema Dasar Probabilitas Definisi probabilitas (probabilitas a priori di atas mempunyai beberapa kelemahan, yaitu (a Tidak berlaku untuk ruang sampel takhingga; (b Persyaratan: ²Setiap titik sampel berpeluang sama untuk muncul² tidak selalu dipenuhi oleh setiap eksperimen. Sehingga untuk mengembangkan teori probabilitas lebih kanjut, disusunlah beberapa sifat berikut:. P(A adalah bilangan real yang non-negatif untuk setiap peristiwa A dalam S, P(A ³ 0. P(S = 3. Jika A, A, merupakan peristiwa-peristiwa yang saling asing di S, A i Ç A j = Æ untuk i ¹ j =,, 3,, maka P(A È A È = P(A + P(A + Dari sifat-sifat di atas dapat diturunkan beberapa teorema berikut: Teorema.: P(A c = P(A Bukti: Karena A Ç A c = Æ dan A È A c = S, maka P(A È A c = P(A + P(A c = P(S =. Jadi P(A c = P(A. Teorema.3: 0 P(A Bahan Ajar Statistika Matematika I

3 Bukti: P(A ³ 0 jelas. Akan dibuktikan P(A, sebagai berikut: P(A c = P(A atau P(A c = P(A = P(A c Karena P(A c ³ 0 dan P(A ³ 0, maka jelas P(A. Teorema.4: P(Æ = 0 Bukti: Karena A È Æ = A dan A Ç Æ = Æ, sehingga P(A È Æ = P(A + P(Æ = P(A. Jadi P(Æ = 0. Teorema.5: Untuk peristiwa-peristiwa A dan B sebarang, berlaku: P(A È B = P(A + P(B - P(A Ç B Bukti: Dari teori himpunan, diketahui bahwa A È B = A È (A c Ç B, dan A Ç (A c Ç B = Æ. Maka P(A È B = P(A + P(A c Ç B (* Di lain pihak B = S Ç B = (A È A c Ç B = (A Ç B È (A c Ç B. Karena (A Ç B Ç (A c Ç B = Æ, maka P(B = P(A Ç B + P(A c Ç B. (** Dari (* dan (**, diperoleh P(A È B = P(A + P(B - P(A Ç B. Teorema.6: Untuk setiap peristiwa A, B, dan C berlaku P(AÈBÈC=P(A+P(B+P(C P(AÇB P(AÇC P(BÇC+P(AÇBÇC Bukti: P(A È B È C = P((AÈB È C = P(AÈB + P(C - P((AÈB Ç C = P(A + P(B P(A Ç B + P(C P((A Ç C È (B Ç C = P(A + P(B + P(C P(A Ç B [P(A Ç C + P(B Ç C - P((A Ç B Ç C] Bahan Ajar Statistika Matematika I 3

4 Teorema.7: Jika A Í B, maka P(A P(B Bukti: Karena A Í B berarti A È (B A = B. Sehingga P(B = P(A È (B A = P(A + P(B A P(A Ç (B A = P(A + P(B A P(A Ç (B A = P(A + P(B A P(A Ç B Ç A c = P(A + P(B A P(A Ç A c Ç B ³ P(A Peristiwa-peristiwa Saling Lepas dan Saling Bebas Definisi.8: Dua peristiwa A dan B disebut saling lepas, apabila A Ç B = Æ. Definisi.9: Dua peristiwa A dan B disebut saling bebas jika dan hanya jika P(AÇB = P(AP(B. Definisi.0: Tiga peristiwa A, B, dan C disebut saling bebas, jika dan hanya jika keempat syarat berikut dipenuhi: P(A Ç B = P(AP(B P(A Ç C = P(AP(C P(B Ç C = P(BP(C P(A Ç B Ç C = P(AP(BP(C Contoh.3: Pada pelantunan dua dadu, ditentukan peristiwa-peristiwa berikut: A = {(, y = 5}, B = {(, y y = 4}, C = {(, y > y} (a Tentukan peristiwa-peristiwa yang lepas (b Tentukan dua peristiwa yang bebas. Teorema.: Jika A dan B bebas, maka A c dan B c bebas, A dan B c bebas, serta A c dan B bebas. Bahan Ajar Statistika Matematika I 4

5 Probabilitas Bersyarat Definisi.: Jika dan A dan B merupakan dua peristiwa di dalam satu ruang sampel S dan P(A ¹ 0, maka probabilitas bersyarat dari B jika A diketahui, ditulis P(B A, didefinisikan sebagai P(B A = P ( A Ç B P ( A Teorema.3: Jika A dan B merupakan dua peristiwa di dalam ruang sampel S dan P(A ¹ 0, maka berlaku P(A Ç B = P(AP(B A Teorema.4: Jika A,B, dan C merupakan tiga peristiwa di dalam ruang sampel S sedemikian hingga P(A ¹ 0 dan P(A Ç B ¹ 0, maka P(A Ç B Ç C = P(AP(B AP(C A Ç B Teorema.5: Jika A dan B dua peristiwa saling bebas, maka P(B A = P(B Bukti: Untuk Teorema.3,.4, dan.5 dibiarkan sebagai latihan Contoh.4: Suatu industri suku cadang pesawat terbang mengetahui dari pengalaman sebelumnya bahwa probabilitas suatu pesanan siap dikapalkan pada waktunya adalah 0.80, dan probabilitas pesanan akan siap dikapalkan dan juga diantarkan pada saatnya adalah 0.7. Carilah probabilitas, bahwa pesanan tersebut akan diantarkan pada saatnya jika diketahui telah dikapalkan pada saatnya. Jawab: Probabilitas yang dicari adalah Bahan Ajar Statistika Matematika I 5

6 Fungsi Distribusi Variabel Random Diskrit Definisi.: Jika X suatu variabel random, dan jika banyak harga-harga yang mungkin dari X adalah berhingga (finite atau takhingga terhitung (countable infinite, denumerable, maka X disebut suatu variabel random diskrit. Jadi hargaharga X tersebut dapat disusun sebagai,,, n, Definisi.: Jika X suatu variabel random diskrit dengan harga-harga,,, maka suatu fungsi f( = P(X = disebut suatu fungsi probabilitas atau fungsi densitas probabilitas (probability density function, disingkat pdf, dari X, apabila memenuhi syarat-syarat: (i f( ³ 0 untuk semua n (ii å f i ( = i Contoh.: Jika X variabel random diskrit dengan harga-harga 0,,,, sedang P(X = k = C k n p k q n k, dengan k, p, dan q non-negatif dan p+q=, maka P(k memenuhi syarat untuk fungsi probabilitas dari X. Variabel Random Kontinu Definisi.3: X disebut suatu variabel random kontinu, jik aterdapat suatu fungsi f, yang disebut fungsi densitas probabilitas (pdf dari X, memenuhi syarat sebagai berikut: (i f( ³ 0, untuk semua (ii ò f ( d = (iii Untuk suatu a, b dengan - < a < b < diperoleh P(a X b = b ò f ( d a Bahan Ajar Statistika Matematika I 6

7 Contoh.: Tunjukkan bahwa f( yang didefinisikan sebagai ì, 0 f( = í î 0, untuk yang lain merupakan pdf dari variabel random kontinu X. Jawab: (i f( ³ 0 jelas dari fungsi di atas; (ii ò 0 f ( d = ò 0 d + d ò + 0 d = 0 Jadi, terbukti f( merupakan pdf dari X. ò Contoh.3: Jika diketahui X variabel random kontinu dengan pdf ì c, 0 f( = í î 0, untuk yang lain Carilah: (a harga konstanta c (c P(X > (b P(/ < X < 3/ (d Grafik f( Jawab: (a c = ½ (b P(/ < X < 3/ = ½ (c P(X > = ¾ Fungsi Distribusi Definisi.4: Jika X suatu variable random, diskrit atau kontinu, maka fungsi distribusi kumulatif (cummulative distribution function, CDF, ditulis F(, didefinisikan sebagai F( = P(X. Fungsi distribusi kumulatif seringkali disebut fungsi distribusi. Teorema.5: (a Jika X suatu variabel random diskrit dengan fungsi probabilitas f(, maka: n F( = å f ( i di mana i i (b Jika X suatu variabel random kontinu dengan fungsi densitas f(, maka: F( = ò f ( t dt Bahan Ajar Statistika Matematika I 7

8 Contoh.4: Jika suatu variabel random X mempunyai harga 0,, dan dengan probabilitas berturut-turut /3, /6, dan ½, maka fungsi kumulatifnya adalah ì0, jika 0 / 3, jika 0 F( = í /, jika î, jika ³ Grafik fungsinya adalah: F( 0 3 X Contoh.5: Jika X suatu variabel kontinu dengan fungsi densitas ì, untuk 0 f( = í î 0, untuk yang lain maka fungsi kumulatifnya adalah ì0, jika 0 F( = í, jika 0 î, jika ³ Grafiknya dapat dibuat sebagai latihan. Contoh.6: Sasaran tembak pada suatu latihan menembak, membentuk lingkaran dengan jari-jari R dan berpusat di titik O(0,0. Fungsi distribusi F( untuk variabel random X dapat dicari sebagai latihan. Bahan Ajar Statistika Matematika I 8

9 3 Distribusi Multivariat Distribusi Bivariat dan Trivariat Definisi 3.: Jika X dan X variabel-variabel random diskrit, maka fu ngsi f(, = P(X =, X = untuk setiap (, dalam X dan X, disebut fungsi probabilitas bersama atau distribusi probabilitas bersama (joint distribution dari X dan X. Teorema 3.: Suatu fungsi bivariat dapat merupakan distribusi probabilitas bersama dari sepasang variabel random diskrit X dan X jika dan hanya jika f(, memenuhi syarat berikut: (i f(, ³ 0 untuk setiap (, dalam domainnya; (ii åå f, =, di mana ;jumlah dobel berlaku untuk semua ( pasangan (, yang mungkin dalam doimainnya. Contoh 3.: Tentukan harga c sedemikian hingga fungsi f(, = c untuk, =,, 3 merupakan distribusi probabilitas bersama. Jawab: Diselesaikan sendiri, sehingga memperoleh c = /36. Definisi 3.3: Jika X dan X merupakan variabel random diskrit, maka fungsi: F(, = P(X, X = åå s t f ( s, t untuk - <, - < ; di mana, f(s, t harga-harga dari distribusi probabilitas bersama dari X dan X pada (s, t; disebut fungsi distribusi bersama, atau distribusi kumulatif bersama dari X dan X. Contoh 3.: Apabila F(, distribusi bersama dari variabel random diskrit X dan X tersebut dalam Contoh 3., maka diperoleh F(, 3 = P(X, X 3 = ½. Bahan Ajar Statistika Matematika I 9

10 Definisi 3.4: Suatu fungsi bivariat dengan harga-harga f(, yang didefinasikan pada disebut fungsi densitas probabilitas bersama (joint pdf dari variabel random kontinu X dan X jika dan hanya jika P[(X, X Î A] = òò A f (, d d untuk setiap region A pada bidang. Teorema 3.5: Suatu fungai bivariat merupakan suatu fungsi densitas probabilitas bersama dari sepasang variabel random kontinu X dan X, jika harga-harganya f(, memenuhi syarat (i f(, ³ 0 untuk - < <, - < < (ii ò ò f ( d d =, Fungsi densitas probabilitas bersama sering disebut densitas bersama (joint density Contoh 3.3: Jika densitas bersama X dan X adalah sebagai berikut: ì f(, = í î untuk 0, 0, untuk yang lain maka dengan menyelesaikannya, diperoleh fungsi distribusi bersama adalah F(, = ì0, untuk 0, 0 (, untuk 0, 0 í (, untuk, 0 (, untuk 0, î, untuk, Bahan Ajar Statistika Matematika I 0

11 Distribusi Marginal Definisi 3.6: Jika X dan X merupakan variabel random diskrit dan f(, adalah harga dari distribusi probabilitas bersama di (,, maka fungsi yang diberikan oleh g( = å f (, untuk setiap di dalam range dari X disebut densitas marginal dari X. Demikian pula, fungsi yang dtberikan oleh h( = å f (, untuk setiap di dalam range dari X disebut densitas marginal dari X. Definisi 3.7: Jika X dan X merupakan variabel random kontinu dan f(, adalah harga dari distribusi probabilitas bersama di (,, maka fungsi yang diberikan oleh g( = ò f ( d untuk - < <, - < <, disebut densitas marginal dari X. Demikian pula, fungsi yang dtberikan oleh h( = ò f ( d untuk - < <, - < <, disebut densitas marginal dari X. Contoh 3.4: Jika densitas bersama ì ( 3 f(, = í î0,, untuk 0 untuk,, 0 yang lain maka densitas marginal dari X adalah g( = /3( +, untuk 0 < <, dan densitas marginal dari X adalah h( = /3( + 4, untuk 0 < <. Bahan Ajar Statistika Matematika I

12 Seperti halnya pada distribusi univariat, di sini didefinisikan pula fungsi distribusi marginal dan fungsi distribusi marginal bersama berikut. Definisi 3.8: Jika F(, adalah harga dari fungsi distribusi bersama dari variabel random X dan X di titik (,, maka fungsi G dengan G( = P(X, X = untuk - < < disebut fungsi distribusi marginal dari X. Demikian pula fungsi H dengan H( = P(X =, X untuk - < < disebut fungsi distribusi Marginal dari X. Definisi 3.9: Jika F(,, 3 merupakan harga dari fungsi distribusi bersama variabel random X, X, dan X 3 di titik (,, 3, maka fungsi G dengan G(, = P(X, X, X 3 =, untuk - < <, - < <. disebut fungsi distribusi marginal bersama dari X dan X. Contoh 3.5: Jika diketahui densitas dari variabel random X, X, dan X 3 berikut 3 ì( e ; 0, 0, 3 0 f(,, 3 = í î 0; yang lain maka fungsi distribusi marginal bersama dari X dan X 3 dengan ì 3 ( ( e ; 0, 0 F(,, 3 = í î0;,, 3 yang lain adalah ì0, ; 0 3 G(, 3 í ( ( e ; 0, î e ; ³, 3 0 dan fungsi distribusi marginal dari X adalah ì0, ; 0 H( = í ( ; 0 î ; ³, 3 0 Bahan Ajar Statistika Matematika I

13 Distribusi Bersyarat Definisi 3.0: Jika f(, adalah harga dari distribusi variabel random diskrit X dan X di (, dan h( adalah harga dari distribusi marginal X di, maka f (, fungsi f( =, h( ¹ 0 untuk setiap range dari X (untuk kasus h ( variabel random kontinu, - < <, disebut distribusi bersyarat dari X jika diketahui X =. Demikian pula fungsi W( = f (,, g( ¹ 0, untuk g ( setiap range dari X (untuk kasus variabel random kontinu, - < <, disebut distribusi bersyarat dari X jika diketahui X =, dan g( adalah harga dari distribusi marginal X di. Contoh 3.6: Jika diketahui fungsi densitas variabel random X dan X ì4 ; 0, 0 f(, = í î0;, yang lain maka densitas bersyat dari X jika X = adalah ì ; 0 f( = í î0; yang lain Bahan Ajar Statistika Matematika I 3

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi

Lebih terperinci

HANDOUT MATAKULIAH : STATISTIKA MATEMATIKA I

HANDOUT MATAKULIAH : STATISTIKA MATEMATIKA I HANDOUT MATAKULIAH : STATISTIKA MATEMATIKA I Disusun Oleh: Entit Puspita, S.Pd, M.Si NIP : 196704081994032002 JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata Probabilitas dan Statistika Adam Hendra Brata Himpunan nilai-nilai yang mungkin dari peubah acak X merupakan himpunan tak terhitung yaitu tidak dapat dinyatakan sebagai {,, 3,., n } atau {,, 3,.} tetapi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

Oleh: BAMBANG AVIP PRIATNA M

Oleh: BAMBANG AVIP PRIATNA M Oleh: BAMBANG AVIP PRIATNA M Pecobaan / eksperimen acak Ruang Sampel Peristiwa / kejadian / event Peluang peristiwa Sifat-sifat peluang Cara menghitung peluang 1. hasilnya tidak dapat diduga dengan tingkat

Lebih terperinci

Distribusi Peubah Acak

Distribusi Peubah Acak Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG 4 April 2017 Garis Besar Pembahasan FUNGSI

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

BAB 3 Teori Probabilitas

BAB 3 Teori Probabilitas BAB 3 Teori Probabilitas A. HIMPUNAN a. Penulisan Hipunan Cara Pendaftaran Cara Pencirian 1) A = {a,i,u,e,o} 1) A = {X: x huruf vokal } 2) B = {1,2,3,4,5} menghasilkan data diskrit 2) B = {X: 1 x 2} menghasilkan

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan. RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B)

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B) DISTRIBUSI MARGINAL DAN DISTRIBUSI GABUNGAN Disusun guna memenuhi tugas mata kuliah Statistika Matematika Dosen Pengampu: Supandi, M.Si Disusun oleh:. Diah Sani Susilawati (8355/ 7B). Farid Hidaat (836/

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita lebih tertarik bukan pada titik sampelnya, tetapi gambaran numerik dari hasil. Misalkan pada pelemparan sebuah

Lebih terperinci

Situasi 1: a. Buatlah pernyataan-pernyataan yang sesuai dengan situasi di atas!

Situasi 1: a. Buatlah pernyataan-pernyataan yang sesuai dengan situasi di atas! BAHAN AJAR 3 DISTRIBUSI PEUBAH ACAK GABUNGAN DAN FUNGSI PELUANG MARGINAL Situasi 1: Sebuah kotak berisi tiga ballpoint berwarna merah, dua berwarna biru dan tiga berwarna hitam. Kemudian dua buah ballpoint

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit dan Distribusi Peluang Peubah Acak (Random Variable): Sebuah keluaran numerik yang merupakan hasil dari percobaan (eksperimen) Untuk setiap anggota dari ruang sampel percobaan,

Lebih terperinci

Ruang Sampel /Sample Space (S)

Ruang Sampel /Sample Space (S) Ruang Sampel /Sample Space (S) Gugus semua hasil yang mungkin dari suatu percobaan statistika. Tiap hasil dalam ruang sampel disebut unsur (elemen) atau anggota ruang sampel tersebut atau dengan singkat

Lebih terperinci

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Peubah Acak Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita

Lebih terperinci

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen. Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan

Lebih terperinci

BAB II DISTRIBUSI PEUBAH ACAK

BAB II DISTRIBUSI PEUBAH ACAK H. Maman Suherman,Drs.,M.Si BAB II DISTIBUSI PEUBAH ACAK. Peubah Acak Variable andom Pada bab anda telah mengenal ruang peluang S, Ω, P dimana S adalah ruang sampel dari eksperimen acak, Ω adalah lapangan

Lebih terperinci

KATA PENGANTAR. Salatiga, Juni Penulis. iii

KATA PENGANTAR. Salatiga, Juni Penulis. iii KATA PENGANTAR Teori Probabilitas sangatlah penting dalam memberikan dasar pada Statistika dan Statistika Matematika. Di samping itu, teori probabilitas juga memberikan dasar-dasar dalam pembelajaran tentang

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

1. σ field dan pengukuran Definisi 1.1

1. σ field dan pengukuran Definisi 1.1 TEORI PROBABILITAS 1. σ field dan pengukuran Misalkan Ω adalah elemen dari himpunan. Contoh Ω merupakan himpunan bilangan dalam suatu interval di bilangan riil yang merupakan hasil dari percobaan random.

Lebih terperinci

PELUANG DAN PEUBAH ACAK

PELUANG DAN PEUBAH ACAK PELUANG DAN PEUBAH ACAK Materi 3 - STK511 Analisis Statistika October 3, 2017 Okt, 2017 1 Konsep Peluang 2 Pendahuluan Kejadian di dunia: pasti (deterministik) atau tidak pasti (probabilistik) Contoh kejadian

Lebih terperinci

DALIL-DALIL PROBABILITAS

DALIL-DALIL PROBABILITAS DALIL-DALIL PROBABILITAS 1 Teori probabilitas 1. Tentang perobaan-perobaan yang sifatnya aak (atau tak tentu). 2. Konsep dasar probabilitas bilit dapat digunakan dalam menarik kesimpulan dari suatu perobaan

Lebih terperinci

Harapan Matematik (Teori Ekspektasi)

Harapan Matematik (Teori Ekspektasi) (Teori Ekspektasi) PROBABILITAS DAN STATISTIKA Semester Genap 2014/2015 LUTFI FANANI lutfi.class@gmail.com Sifat Definisi Harapan matematik atau nilai ekspektasi adalah satu konsep yang penting di dalam

Lebih terperinci

Sampling dengan Simulasi Komputer

Sampling dengan Simulasi Komputer Modul Sampling dengan Simulasi Komputer PENDAHULUAN Sutawanir Darwis M etode statistika merupakan alat untuk menyelesaikan masalah apabila solusi analitik tidak mungkin diperoleh. Dengan metode statistika

Lebih terperinci

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata dan Statistika Ruang Adam Hendra Brata adalah suatu ilmu untuk memprediksi suatu kejadian (event) atau dapat disebut peluang suatu kejadian berdasarkan pendekatan matematis. Dengan ilmu probabilitas, kita

Lebih terperinci

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Pertemuan ke-5 : Kamis, 7 April 2016 Dosen : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Materi Teori Peluang: 1. Operasi Kejadian 2. Peluang: definisi dan sifat-sifatnya Operasi Kejadian

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. 1http://istiarto.staff.ugm.ac.id STATISTIKA. Discrete Probability Distributions

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. 1http://istiarto.staff.ugm.ac.id STATISTIKA. Discrete Probability Distributions Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Discrete Probability Distributions 1http://istiarto.staff.ugm.ac.id Discrete Probability Distributions Distribusi Hipergeometrik Bernoulli

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Distribusi Probabilitas Diskrit: Binomial & Multinomial Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi

Lebih terperinci

Fungsi Kepadatan Probabilitas/Probability Density Function-PDF

Fungsi Kepadatan Probabilitas/Probability Density Function-PDF Fungsi Kepadatan Probabilitas/Probability Density Function-PDF Slide : Tri Harsono PENS Politeknik Elektronika Negeri Surabaya (PENS) 1 PDF Definisi Fungsi kepadatan probabilitas atau probability density

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA

PEUBAH ACAK DAN DISTRIBUSINYA 4/6/009 Pemetaan (Fungsi) PEUBAH ACAK DAN DISTRIBUSINYA Suatu pemetaan / fungsi Kategori fungsi:. Fungsi titik A B MA 08 Statistika Dasar Dosen : Udjianna S. Pasaribu Utriweni Mukhaiyar Senin, 6 Februari

Lebih terperinci

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu Lanjut. Adam Hendra Brata

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu Lanjut. Adam Hendra Brata Probabilitas dan Statistika Fungsi Lanjut Adam Hendra Brata Gabungan Gabungan Fungsi Acak Fungsi Rapat Kumulatif Gabungan Untuk variabel random kontinu, analog dengan kasus diskrit, fungsi rapat probabilitas

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

menetapkan olahraga perlu makin ani bagi setiap anggota masyarakat, nasional yaitu memasyarakatkan masyarakat. Tak hanya itu saja

menetapkan olahraga perlu makin ani bagi setiap anggota masyarakat, nasional yaitu memasyarakatkan masyarakat. Tak hanya itu saja ! " # $ $ %! & '! ( ) ) ' * % ) ' # + )! )! ' ),! &! ) % ( - ( " ( # + & ( )! &! ) %. % & ' (! # ' ) + #! ) ' $ ) ( / * * * 0 1 ) ' ( ( ) ( +! +! ' ( % $ ) ( & + / $ & 0 2 3 4 5 6 4 7 8 9 4 5 : ; 4 < =

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

TINJAUAN SINGKAT KALKULUS

TINJAUAN SINGKAT KALKULUS A TINJAUAN SINGKAT KALKULUS Salah satu syarat yang diperlukan untuk mempelajari komputasi numerik adalah pengetahuan dasar tentang kalkulus, termasuk pengenalan beberapa notasi dalam kalkulus, sifat-sifat

Lebih terperinci

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia HUKUM PROBABILITAS Pertemuan ke ke--4 Didin Astriani Prasetyowati, M.Stat Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) +

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T

Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T Statistika & Probabilitas Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T Kejadian Kejadian adalah himpunan bagian (subset) dari ruang sampel S. Dapat dipahami, kejadian adalah himpunan dari

Lebih terperinci

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

TEORI PROBABILITA OLEH: RESPATI WULANDARI, M.KES

TEORI PROBABILITA OLEH: RESPATI WULANDARI, M.KES TEORI OLEH: RESPATI WULANDARI, M.KES KONSEP Dalam kehidupan sehari-hari orang selalu dihadapkan dengan masalah-masalah ketidakpastian. Misalnya: 1. pengusaha dihadapkan pada masalah berhasil atau tidaknya

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

IKI30320 Kuliah Nov Ruli Manurung. Uncertainty. Probability theory. Semantics & Syntax. Inference. Ringkasan

IKI30320 Kuliah Nov Ruli Manurung. Uncertainty. Probability theory. Semantics & Syntax. Inference. Ringkasan Outline IKI 30320: Sistem Cerdas : Probabilistic Reasoning 1 2 3 Fakultas Ilmu Komputer Universitas Indonesia 4 21 November 2007 5 Knowledge engineering di FKG Duniah penuh ketidakpastian (uncertainty)

Lebih terperinci

STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika

STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika Penulis: Prof. Drs. Subanar, Ph.D Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pertemuan 2. Hukum Probabilitas

Pertemuan 2. Hukum Probabilitas Pertemuan 2 Hukum Probabilitas Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a B) = n(a) + n(b) n(a B) Kejadian majemuk adalah gabungan atau

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci

Probabilitas. Tujuan Pembelajaran

Probabilitas. Tujuan Pembelajaran Probabilitas 1 Tujuan Pembelajaran 1.Menjelaskan Eksperimen, Hasil,, Ruang Sampel, & Peluang 2. Menjelaskan bagaimana menetapkan peluang 3. Menggunakan Tabel Kontingensi, Diagram Venn, atau Diagram Tree

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

VARIABEL RANDOM DAN DISTRIBUSI PELUANG

VARIABEL RANDOM DAN DISTRIBUSI PELUANG 1 VARIABEL RANDOM DAN DISTRIBUSI PELUANG Dr. Vita Ratnasari, M.Si Definisi Variabel Random 2 Variabel random ialah Suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel.

Lebih terperinci

Hubungan antara kejadian dengan ruang contohnya Representasi secara grafis untuk mengilustrasikan logical relations di antara kejadian kejadian

Hubungan antara kejadian dengan ruang contohnya Representasi secara grafis untuk mengilustrasikan logical relations di antara kejadian kejadian Diagram Venn. Hubungan antara kejadian dengan ruang contohnya Representasi secara grafis untuk mengilustrasikan logical relations di antara kejadian kejadian S = Himpunan bilangan asli A = Himpunan bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

Probabilitas & Teorema Bayes

Probabilitas & Teorema Bayes 1 Probabilitas & Teorema Bayes Nurwahyu Alamsyah, S.Kom wahyualamsyah.wordpress.com wahyu@plat-m.com Statistika D3 Manajemen Informatika Universitas Trunojoyo Madura 2 Terminologi Teori Probabilitas didasarkan

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Continuous Probability Distributions.

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Continuous Probability Distributions. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Continuous Probability Distributions 1 Continuous Probability Distributions Normal Distribution Uniform Distribution Exponential Distribution

Lebih terperinci

Teori Probabilitas. Debrina Puspita Andriani /

Teori Probabilitas. Debrina Puspita Andriani    / Teori Probabilitas 5 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Teorema Bayes Berapa

Lebih terperinci

Pertemuan 8 & 9. Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean

Pertemuan 8 & 9. Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean Pertemuan 8 & 9 Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean Distribusi Normal Multivariat Ingat V.R.Univariat Variabel random univariat X berdistribusi

Lebih terperinci

Bab 3 Pengantar teori Peluang

Bab 3 Pengantar teori Peluang Bab 3 Pengantar teori Peluang Istilah peluang atau kemungkinan, sering kali diucapkan atau didengar. Sebagai contoh ketika manajer dari sebuah klub sepak bola ditanya wartawan tentang hasil pertandingan

Lebih terperinci

Statistika. Random Variables Discrete Random Variables Continuous Random Variables. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada

Statistika. Random Variables Discrete Random Variables Continuous Random Variables. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada Statistika Random Variables Discrete Random Variables Continuous Random Variables 1 Pengertian Random variable (variabel acak) Jenis suatu fungsi

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII October 7, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7,

Lebih terperinci

IKI 30320: Sistem Cerdas Kuliah 16: Probabilistic Reasoning

IKI 30320: Sistem Cerdas Kuliah 16: Probabilistic Reasoning IKI 30320: Sistem Cerdas : Probabilistic Reasoning Fakultas Ilmu Komputer Universitas Indonesia 21 November 2007 Outline 1 2 3 4 5 Outline 1 2 3 4 5 Knowledge engineering di FKG Anda diminta membuat agent

Lebih terperinci

The image cannot be display ed. Your computer may not hav e enough memory to open the image, or the image may hav e been corrupted.

The image cannot be display ed. Your computer may not hav e enough memory to open the image, or the image may hav e been corrupted. The image cannot be display ed. Your computer may not hav e enough memory to open the image, or the image may hav e been corrupted. Restart y our computer, and then open the file again. If the red x still

Lebih terperinci

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Probabilitas PELUANG Eksperimen Aktivitas / pengukuran / observasi suatu fenomena yang bervariasi outputnya Ruang Sampel / Sample Space Semua output

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

Joint Distribution Function

Joint Distribution Function DISTRIBUSI PROBABILITAS MARGINAL & BERSYARAT TI2131 TEORI PROBABILITAS MINGGU KE-6 1 Joint Distribution Function Distribusi peluang gabungan dari dua variabel random X dan Y merupakan distribusi peluang

Lebih terperinci

ALJABAR SET & AKSIOMA PROBABILITAS

ALJABAR SET & AKSIOMA PROBABILITAS ALJABAR SET & AKSIOMA PROBABILITAS Pokok Bahasan Sample Space Event Aljabar Set Prinsip dan Aksioma Probabilitas Equally Likely Event Conditional Probability Independent Event Sample Space dan Event Eksperimen

Lebih terperinci

Fungsi Kepadatan Probabilitas

Fungsi Kepadatan Probabilitas Fungsi Kepadatan Probabilitas Gambaran Permasalahan Fungsi Distribusi Data Dalam Statistik [] Perusahaan jasa penjualan telur ayam kampung yang dikelola sendiri oleh Pak Hadi, mempunyai 3 orang karyawan.

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Teori Probabilitas 3.2. Debrina Puspita Andriani /

Teori Probabilitas 3.2. Debrina Puspita Andriani    / Teori Probabilitas 3.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Berapa peluang munculnya

Lebih terperinci

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual Materi dan Jadual Statistika(MMS 2401) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Tatap Muka Pokok Bahasan 1. Statistika Deskriptif 2. Statistika Deskriptif

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci