PENGANTAR MODEL LINEAR Oleh: Suryana

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGANTAR MODEL LINEAR Oleh: Suryana"

Transkripsi

1 PENGANTAR MODEL LINEAR Oleh: Suryaa Model liear meyagkut masalah statistik yag ketergatugaya terhadap parameter secara liear. Betuk umum model liear adalah 0 1X1... px p, dega = Variabel respo X i = Variabel prediktor; i = 1, 2,..., p i = Parameter model liear; = error. A. Variabel Variabel dalam model liear dilihat dari skala pegukura, dapat berbetuk diskrit maupu kotiyu. Variabel diskrit terdiri dari skala omial da ordial. Variabel kotiyu terdiri dari skala iterval da rasio. Defiisi skala pegukura dapat dibaca pada buku Megolah Data Statistik dega Mudah Megguaka Miitab 14 oleh Iriawa da Astuti (2006) hal atau bukubuku pegalaha data laiya. Dilihat dari cara pegukura variabel dapat berbetuk variabel tetap (fixed variable) atau variabel radom (radom variable). Variabel tetap diperoleh dari racaga percobaa. Variabel ii didisai terlebih dahulu utuk megotrol pegamata. Biasaya level-levelya ditetapka terlebih dahulu. Sebagai cotoh, dalam pegamata produktivitas padi ditetapka variabel kualitas beih (X 1 ) terdiri dari tidak berlabel, label merah jambu, da labil biru da metode pegolaha (X 2 ) terdiri dari itesifikasi da o itesifikasi. Berbeda dega variabel tetap, variabel radom tidak ditetapka terlebih dahulu melaika lagsug diamati da hasil pegukuraya dicatat. Sebagai cotoh berat gabah kerig pae ( 1 ) da berat gabah kerig gilig ( 2 ) dalam peelitia produktivitas padi.

2 B. ANOVA, MANOVA, da ANACOVA Kombiasi variabel tetap da variabel radom dalam model liear meghasilka metode aalisis yag berbeda. ANOVA (Aalysis of Variace) memerluka prasyarat varibel prediktor merupaka variabel tetap da variabel respo terdiri dari variabel radom. Bila variabel respo lebih dari satu, metode aalisisya megguaka MANOVA (Multivariate Aalysis of Variace). Selajutya, bila variabel prediktor terdiri dari kombiasi atara variabel tetap da variabel radom maka metode aalisis yag diguaka diamaka ANACOVA. C. Racaga Percobaa da Model Liear Dalam peelitia produktivitas padi di atas, racaga percobaa yag diguaka adalah 3x2 racaga faktorial. Desaiya sebagai berikut: Utuk 1 X 21 X 22 X , 112,..., X , 122,..., X , 132,..., 13 13,,..., ,,..., ,,..., Utuk 2 X 21 X 22 X , 112,..., X , 122,..., X , 132,..., 13 13,,..., ,,..., ,,..., Catata: a. Racaga diatas megguaka ij replikasi. Dega racaga ii, dihasilka data tidak seimbag (ubalaced data). Bila ij = c maka aka dihasilka data seimbag (balaced data). b. Prisip radomisasi harus dipertahaka. Guaka agka radom utuk melakuka perlakua maa yag harus dilakuka lebih dahulu.

3 c. Fugsi replikasi utuk memperkecil kesalaha. d C.1 Model 3x2 Racaga Faktorial Utuk variabel respo u dega replikasi ij = 2, maka model 3x2 racaga faktorial adalah: ( ) ijku u iu ju iju ijku Dega u = 1, 2; i = 1, 2, 3; j = 1, 2; k = 1, 2. Utuk meyigkat, variabel respo dapat diyataka dalam betuk vektor 1 2 t. Utuk u = 1, ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) Dalam betuk =X +, diperoleh

4 Teryata matrik X yag dihasilka sigular. Vektor kolom matrik X bersifat depede. Perhatika vektor kolom-1 merupaka jumlah vektor kolom-2, kolom- 3, da kolom-4 atau jumlaha vektor kolom-5 da kolom-6 da lai-lai. Dega demikia rak matrik X tidak peuh (ot full rak). Akibatya, iverse matrik X tidak ada da estimasi parameter tidak dapat dihitug. Agar estimasi parameter dapat hitug, perlu dilakuka reparameterisasi dega memberika batasa (costrai): i i1 j ; ij i1 j1 j ij 0 Akibatya, Sehigga * * =X + mejadi

5 Dega X * * 2 da Dalam SPSS, matrik X * diamaka matrik kofigurasi. 1 C.2 Estimasi Parameter. Ada tiga metode mecari parameter yaitu: a. Ordiary Least Square (OLS), b. Maximum Likelihood (ML), c. Weighted Least Square (WLS). Baik OLS maupu ML meghasilka :

6 1 ˆ * t * * t X X X Dega batua Miitab 14, X X * t * Da * t X X * Catata: a. Partisi Matrik A11 A12 A A21 A22 A A A A A A A A A A B A A A A B B A21A11 B b. Peyebab matrik tidak full rak. a. Jumlah data kurag dari jumlah variabel, b. Miimum dibutuhka data > p + 1, c. Terdapat vektor kolom yag depede. c. Kesimpula: model 3x2 racaga faktorial dapat diyataka sebagai model liear.

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

Rancangan Pengamatan Berulang. Repeated Measurement Design

Rancangan Pengamatan Berulang. Repeated Measurement Design Racaga Pegamata Berulag Repeated Measuremet Desig Pedahulua Repeated measuremet (pegamata berulag) megacu kepada (Clewer & Scarisbrick, 006):. Suatu percobaa dimaa masig-masig uit percobaa meerima perbedaa

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun 47 BAB IV HASIL DAN PEMBAHASAN Sebagai hasil peelitia dalam pembuata modul Racag Bagu Terapi Ifra Merah Berbasis ATMega8 dilakuka 30 kali pegukura da perbadiga yaitu pegukura timer/pewaktu da di badigka

Lebih terperinci

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL BAB III PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP PADA GENERAL LINEAR MIXED MODEL Pada Bab III ii aka dibahas megeai taksira parameter pada Geeral Liear Mixed Model berdasarka asumsi

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupaka pegembaga dari ANAVA 1 Jala Jika pada ANAVA 1 jala 1 Faktor Jika pada ANAVA jala Faktor Model Liier i i 1,..., a j 1,..., Satu faktor ag diteliti Aava 1 jala k i j k i 1,,...,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP) PADA GENERAL LINEAR MIXED MODEL ri Hadhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Uiversitas Guadarma trihadika@staff.guadarma.ac.id

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di III. MATERI DAN METODE PENELITIAN 3.. Waktu da Tempat Peelitia telah dilakuka pada bula November - Desember 203 di peteraka Kambig yag ada di Kota Pekabaru Provisi Riau. 3.2. Alat da Baha Materi yag diguaka

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 14 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di IUPHHK-HA PT. Mamberamo Alasmadiri, Provisi Papua pada bula Jui higga Juli 2011. 3.2 Alat da Baha Alat da baha yag

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada bulan April 2014 di BBPTU-HPT Baturraden,

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada bulan April 2014 di BBPTU-HPT Baturraden, III. BAHAN DAN METODE A. Waktu da Tempat Peelitia Peelitia ii dilaksaaka pada bula April 014 di BBPTU-HPT Baturrade, Purwokerto. B. Baha da Alat Peelitia Baha peelitia ii yaitu rekordig produksi susu laktasi

Lebih terperinci

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 1-MPC PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Utuk meigkatka presisi (meguragi varias samplig), desai samplig serig memafaatka auxiliarry variable yag mempuyai hubuga yag erat

Lebih terperinci

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA 4.. Tujua : Setelah melaksaaka praktikum ii mahasiswa diharapka mampu : Membedaka data berdasarka jeis variabelya Mapatka mea da varias dari distribusi

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

METODE PENELITIAN. 3.1 Kerangka Pemikiran

METODE PENELITIAN. 3.1 Kerangka Pemikiran 24 III. METODE PENELITIN 3.1 Keragka Pemikira BMT l-fath IKMI melakuka fugsi meyalurka daa dega melakuka pembiayaa kepada UMKM. Produk pembiayaa yag dimiliki BMT l-fath IKMI adalah Murabahah da Iarah.

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung 42 III. METODE PENELITIAN 3.. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di Provisi Sumatera Barat yag terhitug mulai miggu ketiga bula April 202 higga miggu pertama bula Mei 202. Provisi Sumatera

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS.1 Pegertia-pegertia Lapaga pekerjaa adalah bidag kegiata dari pekerjaa/usaha/ perusahaa/kator dimaa seseorag bekerja. Pekerjaa utama adalah jika seseorag haya mempuyai satu pekerjaa

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 10 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di areal kerja IUPHHK-HA PT. Sarmieto Parakatja Timber, Kalimata Tegah selama satu bula pada bula April higga Mei 01.

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain BAB III METODE PENELITIAN 3.1 Desai Peelitia Dalam melakuka peelitia, terlebih dahulu meetuka desai peelitia yag aka diguaka sehigga aka mempermudah proses peelitia tersebut. Desai peelitia yag diguaka

Lebih terperinci

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS Pada bab ii aka dibahas tetag betuk model spasial lag sekaligus spasial error da prosedur Geeralized Spatial Two Stage Least Squares (GS2SLS) utuk megestimasi

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN : JURNAL MATEMATKA DAN KOMPUTER Vol 5 No, 39-46, April 22, SSN : 4-858 MENCAR SOLUS PENAKSR PARAMETER PADA ANALSS VARANS DENGAN PENDEKATAN GENERAL NVERS Sukestiaro Jurusa Matematika FMPA Uiversitas Negeri

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1 LEVELLING 1 PENGUKURAN SIPAT DATAR Salmai,, ST, MS, MT 21 PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Jika dua titik mempuyai ketiggia yag berbeda, dikataka mempuyai beda tiggi. Beda tiggi dapat

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Metodologi Peelitia Metodologi peelitia ii merupaka cara yag diguaka utuk memecahka masalah dega lagkah-lagkah yag aka ditempuh harus releva dega masalah yag telah dirumuska.

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

1. Uji Dua Pihak. mis. Contoh :

1. Uji Dua Pihak. mis. Contoh : . Uji Dua Pihak H 0 H a : : Cotoh : mis : mea kelas Lab mea kelas tapa lab Ho : Tidak ada perbedaa kemampua hasil belajar biologi siswa atara yag belajar melalui media laboratorium dega yag tidak. Ha :

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis BAB 3 METODE PENELITIAN 3.1 Peetapa Kriteria Optimasi Disii peerapa kriteria optimasi yag diguaka utuk megaalisis kebutuha pokok pada PT. Kusuma Kecaa Khatulistiwa yaitu : 1. Aalisis forecastig (peramala

Lebih terperinci

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F BAB III MENENUKAN MODEL KERUSAKAN DAN INERVAL WAKU PREVENIVE MAINENANCE OPIMUM SISEM AXIS PADA MESIN CINCINNAI MILACRON DOUBLE GANRY IPE-F 3.1 Pedahulua Pada Bab II telah dijelaska beberapa teori yag diguaka

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Daerah peelitia adalah Kota Bogor yag terletak di Provisi Jawa Barat. Pemiliha lokasi ii berdasarka pertimbaga atara lai: (1) tersediaya Tabel Iput-Output

Lebih terperinci

Perbandingan Beberapa Metode Pendugaan Parameter AR(1)

Perbandingan Beberapa Metode Pendugaan Parameter AR(1) Jural Vokasi 0, Vol.7. No. 5-3 Perbadiga Beberapa Metode Pedugaa Parameter AR() MUHLASAH NOVITASARI M, NANI SETIANINGSIH & DADAN K Program Studi Matematika Fakultas MIPA Uiversitas Tajugpura Jl. Ahmad

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Halama Tulisa Jural (Judul da Abstraksi) Jural Paradigma Ekoomika Vol.1, No.5 April 2012 PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Oleh : Imelia.,SE.MSi Dose Jurusa Ilmu Ekoomi da Studi Pembagua,

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Kabupaten Purbalingga, Jawa Tengah tahun pelajaran 2011/2012, dengan jumlah

BAB III METODOLOGI PENELITIAN. Kabupaten Purbalingga, Jawa Tengah tahun pelajaran 2011/2012, dengan jumlah BAB III METODOLOGI PEELITIA A. Subjek Peelitia Subjek yag diteliti adalah siswa kelas VII B SMP egeri 2 Mrebet Kabupate Purbaligga, Jawa Tegah tahu pelajara 2011/2012, dega jumlah 31 aak. B. Settig Peelitia

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB 3 DATA DAN METODOLOGI PENELITIAN

BAB 3 DATA DAN METODOLOGI PENELITIAN BAB 3 DATA DAN METODOLOGI PENELITIAN Pada Bab ii aka memberika iformasi hal yag berkaita dega lagkah-lagkah sistematis yag aka diguaka dalam mejawab pertayaa peelitia.utuk itu diperluka beberapa hal sebagai

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai

Lebih terperinci

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder 3. Ragkaia Logika Kombiasioal da Sequesial Ragkaia Logika secara garis besar dibagi mejadi dua, yaitu ragkaia logika Kombiasioal da ragkaia logika Sequesial. Ragkaia logika Kombiasioal adalah ragkaia yag

Lebih terperinci