Tujuan Pembelajaran. Saat saya menyelesaikan bab ini, saya ingin dapat melakukan hal-hal berikut.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Tujuan Pembelajaran. Saat saya menyelesaikan bab ini, saya ingin dapat melakukan hal-hal berikut."

Transkripsi

1

2 Tujuan Pembelajaran Saat saya menyelesaikan bab ini, saya ingin dapat melakukan hal-hal berikut. Merumuskan model dinamik didasarkan pada prinsip neraca Menyelesaikan model dinamik orde satu yang sederhana Menentukan aspek kunci yang bagaimana dari dinamik bergantung pada disain dan operasi proses 2

3 Kerangka Kuliah Kerangka Kuliah lasan mengapa kita perlu model dinamik Enam (6) - tahapan prosedur pemodelan ontoh-contoh - mixing tank - STR - draining tank Kesimpulan umum tentang model Workshop 3

4 Kenapa Kita Perlu Model Dinamik pa bus dan sepeda punya dinamika yang berbeda? Mana yang dapat membuat putaran-u dalam 1.5 meter? Mana yang menanggapi lebih baik saat mengenai benturan? Kinerja dinamik lebih tergantung pada kendaraan dari pada pengemudinya! Dinamika proses lebih penting dari pada kontrol komputer! 4

5 Kenapa Kita Perlu Model Dinamik Materi umpan dikirim secara periodik, tapi proses memerlukan aliran umpan yang kontinyu. Berapa besar volume tangki yang seharusnya? liran pengiriman periodik Umpan kontinyu ke proses Time Kita harus menyediakan fleksibilitas proses untuk kinerja dinamik yang baik! 5

6 Kenapa Kita Perlu Model Dinamik Pompa air pendingin mati. Berapa lama kita punya waktu hingga reaktor berjalan secara eksotermik? F Suhu Bahaya T L waktu Dinamika proses penting untuk kesalamatan! 6

7 Kenapa Kita Mengembangkan Model Matematika? Perubahan masukan, mis., step pada laju alir pendingin Proses Pengaruh pada variabel keluaran T Model matematika menolong kita menjawab pertanyaanpertanyaan ini! Bagaimana proses mempengaruhi respon? Berapa lama? Seberapa cepat Bentuk 7

8 Enam Tahapan Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Kita menerapkan prosedur ini untuk banyak sistem fisik neraca massa keseluruhan (overall material balance) neraca massa komponen neraca energi T 8

9 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya T pa keputusannya (decision)? pa variabelnya? Lokasi ontoh seleksi variabel level cairan massa total dalam cairan tekanan mol total dalam uap suhu neraca energi konsentrasi massa komponen 9

10 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Sketsa prosesnya Kumpulkan data Nyatakan asumsinya Definisikan sistem T Sifat kunci dari sistem? ariabel adalah sama di mana pun lokasinya dalam sistem 1

11 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Overall Material NER KONSERSI kumulasi massa massa masuk massa keluar omponent Material kumulasi massa komponen Energi kumulasi U PE KE massa komponen masuk penurunan komponen massa keluar massa komponen H PE KE inh PE KE out Q - W s 11

12 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya pa jenis persamaan yang pertama kita gunakan? Neraca konservasi untuk variabel kunci Berapa banyak persamaan yang kita perlukan? Derajat kebebasan = N - NE = pa setelah persamaan konservasi? Persamaan konstitutif, misal, Q = h (T) r = k e -E/RT Tidak prinsip, didasarkan pada data empirik 12

13 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Model dinamik kita akan melibatkan persamaan differensial (dan aljabar) karena ada akumulasi. d dt Dengan kondisi awal F ) k ( = 3.2 kg-mole/m 3 at t = Dan beberapa perubahan ke variabel masukan, forcing function, misal, = f(t) = 2.1 t (fungsi ramp) 13

14 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Kita akan menyelesaikan model sederhana secara analitis untuk menyediakan hubungan istimewa antara proses dan respon dinamiknya, yaitu ( t) ( t) t untuk t ( ) K (1 Banyak hasil akan punya bentuk yang sama! Kita ingin mengetahui bagaimana proses mempengaruhi K dan, yaitu K F F k F k e t / ) 14

15 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Kita akan menyelesaikan model kompleks secara numerik, yaitu d dt 2 k F( ) Menggunakan aproksimasi yang berbeda untuk derivatifnya, kita dapat mengambil metode Euler. n n1 F( ( t) ) k 2 n1 Metode lainnya termasuk Runge-Kutta dan dams. 15

16 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya ek hasil untuk kebenaran - tanda dan bentuk seperti diharapkan - mentaati asumsi - mengabaikan kesalahan numerik Plot hasilnya Evaluasi sensitivitas & akurasinya Bandingkan dengan data empirik 16

17 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Mari kita praktekkan pemodelan hingga kita siap untuk Olimpiade pemodelan! Silakan ingat bahwa pemodelan bukan olahraga tontonan! nda harus praktek (ambil bagian)! 17

18 ontoh Pemodelan 1: MIXING TNK Textbook Example 3.1: Tangki pencampuran pada gambar dioperasikan untuk waktu yang lama dengan konsentrasi umpan.925 kg-mole/m 3. Komposisi umpan mengalami peningkatan menjadi 1.85 kg-mole/m 3. Semua variabel lainnya tetap. Tentukan respon dinamiknya. F (Kita akan menyelesaikan ini di kelas) 18

19 Neraca Massa Komponen ontoh 1 kumulasi komponen Komponen Komponen masuk keluar Penurunan ( MW ) ( MW ) ( MW F MW F ) t tt t Membagi dengan t dan limit t : MW d dt MW F( ) 19

20 2 Solusi ontoh ) ( dt d F F dt d F F dt d F F dt d F dt d / / / / / / / / / / / / / ) ( ) ( ) 1 ( ) 1 exp( FI Integrasi Faktor t t t t t t t t t t t t t Ie I e e dt e e d e dt e d e dt de dt d e e dt d e e dt

21 21 Integrasi ontoh 1 ).925(1 ) (1 ).925)(1 (.925 dengan ) )(1 ( ) ( ) ( ) ( ) ( ) ( t pada ) ( 24.7 / 24.7 / 24.7 / / / / t t t awal awal t awal awal t awal awal awal t awal awal awal e e e e e e I t da dua aspek penting perilaku dinamik yang dapat ditentukan dari Persamaan di atas: Laju respon dinamik Steady-state gain (K p ) yang didefinisikan: 1. p input output K

22 Mari kita pahami respon ini 1.8 Outputnya halus, kurva monoton tank concentration Slope maximum pada t= 63% dari steady-state Pada steady state = K Perubahan input secara tiba-tiba time 2 inlet concentration Step pada inlet variable time 22

23 ontoh Pemodelan 2: STR STR isotermal pada gambar dioperasikan untuk waktu yang lama dengan konsentrasi umpan.925 kg-mole/m 3. Komposisi umpan mengalami kenaikan menjadi 1.85 kg-mole/m 3. ariabel lainnya tetap. Tentukan respon dinamik dari. Parameter yang sama seperti textbook Example 3.2 F B r k (Kita akan menyelesaikan ini di kelas) 23

24 24 Solusi ontoh 2 ) ( ) ( F k F dt d k F F dt d k F F dt d k F F dt d k F dt d

25 ontoh Pemodelan 2: STR Bubuhi keterangan dengan fitur kunci seperti ontoh 1 1 reactor conc. of (mol/m3) time (min) Mana yang lebih cepat, mixer atau STR? Selalu? 2 inlet conc. of (mol/m3) time (min) 25

26 ontoh Pemodelan 3: Dua STR Dua STR isotermal mula-mula pada keadaan tunak dan mengalami perubahan step ke komposisi umpan tangki pertama. Rumuskan model 2. Hati-hati khususnya saat mendefinisikan sistemnya! F 1 1 B 2 2 r k (Kita akan menyelesaikan ini di kelas) 26

27 ontoh Pemodelan 3: Dua STR Bubuhi keterangan dengan fitur kunci seperti ontoh tank 1 concentration tank 2 concentration time inlet concentration time 27

28 Enam Tahap Prosedur Pemodelan 1. Definisikan sasaran 2. Siapkan informasi 3. Rumuskan modelnya 4. Tentukan solusinya 5. nalisis hasilnya 6. alidasi modelnya Kita hanya dapat menyelesaikan beberapa model secara analitis - itu adalah linear (kecuali untuk beberapa pengecualian). Kita dapat menyelesaikan secara numerik Kita ingin menambah WWSN dari mempelajari bagaimana K (s-s gain) dan (konstanta waktu) bergantung pada disain dan operasi prosesnya. Karena itu, kita melinearisasi modelnya, meski kita tidak akan mencapai sebuah solusi eksak! 28

29 LINERISSI Memperluas Deret Taylor dan menyisakan hany bagian konstanta dan linear. Kita memiliki sebuah aproksimasi. Ini adalah satu-satunya variabel F( x) F( x s ) df dx x s ( x x s ) 1 2! d 2 dx F 2 x s ( x x s ) 2 R Ingat bahwa bagian ini adalah konstan karena dievaluasi pada x s We define the deviation variable: x = (x - x s ) 29

30 LINERISSI Kita harus mengevaluasi aproksimasinya. Itu tergantung pada non-linearitas y =1.5 x pada x = 1 exact approximate jarak x dari x s Karena pengendalian proses menjaga variabel mendekati harga yang diinginkan, analisis yang dilinearisasi sering (tapi, tidak selalu) valid. 3

31 ontoh Pemodelan 4: STR Non-Linear Textbook Example 3.5: STR isotermal pada gambar dioperasikan untuk waktu yang lama dengan konsentrasi umpan tetap. Komposisi umpan mengalami perubahan step. ariabel lainnya tetap. Tentukan respon dinamik dari. Non-linear! F B 2 r k (Kita akan menyelesaikan ini di kelas) 31

32 ontoh Pemodelan 4: STR Non-Linear Kita menyelesaikan model yang dilinearisasi secara analitis dan non-linear secara numerik. ariabel deviasi tidak mengubah jawabannya, hanya menerjemahkan harganya Dalam kasus ini, aproksimasi yang dilinearisasi dekat dengan solusi non-linear yang eksak. 32

33 ontoh Pemodelan 5: DRINING TNK Tangki dengan sebuah saluran buang memiliki aliran masuk dan keluar yang kontinyu. Tangki telah mencapai initial steady state saat penurunan step terjadi pada aliran masuk. Tentukan levelnya sebagai fungsi waktu. Selesaikan model non-linear dan linearisasinya. 33

34 ontoh Pemodelan 5: DRINING TNK Perubahan aliran kecil: aproksimasi linearisasi bagus Perubahan aliran besar: linearisasi jelek - secara fisik mustahil! (Kenapa?) 34

35 Pemodelan Dinamik Kita telah mempelajari sistem orde satu itu memiliki bentuk keluaran yang sama. dy dt Y 1.8 K [ f ( t ))] dengan input Output is smooth, monotonic curve atau forcing f(t) ontoh respon terhadap tank concentration Maximum slope at t= 63% of steady-state step input t steady state = K 2 Output changes immediately time 1.5 inlet concentration 1 = Step in inlet variable time 35

36 Pemodelan Dinamik The emphasis on analytical relationships is directed to understanding the key parameters. In the examples, you learned what affected the gain and time constant. sign K: Steady-state Gain magnitude (don t forget the units) how depends on design (e.g., ) and operation (e.g., F) :Time onstant sign (positive is stable) magnitude (don t forget the units) how depends on design (e.g., ) and operation (e.g., F) 36

37 Pemodelan Dinamik - WORKSHOP 1 Untuk setiap dari tiga proses yang telah kita modelkan, tentukan bagaimana gain dan konstanta waktu bergantung pada, F, T dan. Mixing tank linear STR STR dengan reaksi orde dua F 37

38 Pemodelan Dinamik - WORKSHOP 2 Gambarkan tiga sensor level yang berbeda untuk mengukur ketinggian cairan dalan draining tank. Untuk masing-masing, tentukan apakah pengukuran dapat dikonversikan ke sinyal listrik dan ditransmisikan ke sebuah komputer untuk display dan control. ku lelah memonitor level ini. ku ingin ini menjadi otomatis. L 38

39 Pemodelan Dinamik - WORKSHOP 3 Modelkan respon dinamik dari komponen () untuk perubahan step pada laju alir masuk dengan konsentrasi masuk tetap. Pertimbangkan dua sistem secara terpisah. Mixing tank STR dengan reaksi orde satu F 39

40 Pemodelan Dinamik - WORKSHOP 4 Parameter-parameter yang kita gunakan dalam model matematika tidak pernah diketahui secara eksak. Untuk banyak model diselesaikan pada buku ajar, evaluasi efek solusi dari kesalahan pada parameter. 2% pada laju reaksi konstan k 2% pada heat transfer coefficient 5% pada laju alir dan valume tangki Bagaimana kamu mempertimbangkan kesalahan pada banyak parameter dalam masalah yang sama? ek responmu dengan mensimulasikan menggunakan m-file MTLB 4

41 Pemodelan Dinamik - WORKSHOP 5 Tentukan persamaan yang diselesaikan untuk solusi numerik Euler untuk respon dinamik dari soal draining tank. Juga, berikan estimasi harga awal yang baik untuk integration time step, t, dan jelaskan rekomendasimu 41

42 Bab 3: Pemodelan Matematika Bagaimana yang sedang kita lakukan? Merumuskan model dinamik didasarkan pada prinsip neraca Menyelesaikan model dinamik orde satu yang sederhana Menentukan aspek kunci yang bagaimana dari dinamik bergantung pada disain dan operasi proses Banyak perbaikan, tapi kita perlu beberapa studi lagi! Baca textbook Tinjau catatannya, khususnya tujuan pembelajaran dan workshop Uji coba nasihat-nasihat belajar mandiri laminya, kita seharusnya punya tugas (assignment)! 42

43 BB 3: SUMBER PELJRN Home page - Instrumentation Notes - Interactive Learning Module (hapter 3) - Tutorials (hapter 3) - M-files in the Software Laboratory (hapter 3) Baca bagian pemodelan dinamik pada buku ajar sebelumnya - Felder and Rousseau, Fogler, Incropera & Dewitt Buku ajar lain dengan soal yang diselesaikan - Lihat kerangka kuliah dan buku pada cadangan di Thode 43

44 BB 3: NSIHT UNTUK BELJR MNDIRI 1. Diskusikan kenapa kita memerlukan bahwa derajat kebebasan untuk sebuah model harus nol. pa ada pengecualian? 2. Berikan contoh-contoh persamaan konstitutif dari kuliah teknik kimia sebelumnya. Untuk masing-masing, gambarkan bagaimana kita menentukan harga paramater. Bagaimana keakuratan harga itu? 3. Siapkan satu pertanyaan untuk setiap jenis dan bagikan dengan kelompok belajarmu: B/S, pilihan ganda, dan pemodelan. 4. Menggunakan m-file MTLB, tentukan efek besaran step masukan pada keakuratan model linearisasi untuk STR dengan reaksi orde dua. 44

45 BB 3: NSIHT UNTUK BELJR MNDIRI 5. Untuk kombinasi parameter fisik apa, sebuah model orde satu akan memperkirakan berikutnya? Sebuah respon osilasi terhadapan oscillatory response to a step input sebuah output yang naik tanpa batas sebuah output yang berubah sangat pelan 6. Siapkan secangkir kopi atau teh hangat yang segar. Ukur suhu dan catat suhu dan waktu hingga mencapai suhu lingkungan. Plot datanya. Diskusikan bentuk grafik suhunya. Dapatkah kamu menggambarkannya dengan respon dengan sebuah parameter kunci? Turunkan model matematika dan bandingkan dengan hasil eksperimenmu 45

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut.

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Tujuan Pembelajaran Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Memprediksi output untuk input yang khas untuk sistem dinamik Menurunkan dinamik sistem tersebut untuk struktur penting

Lebih terperinci

BAB 3 SISTEM DINAMIK ORDE SATU

BAB 3 SISTEM DINAMIK ORDE SATU BAB 3 SISTEM DINAMIK ORDE SATU Isi: Pengantar pengembangan model sederhana Arti fisik parameter-parameter proses 3. PENGANTAR PENGEMBANGAN MODEL Pemodelan dibutuhkan dalam menganalisis sisten kontrol (lihat

Lebih terperinci

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut.

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Tujuan Pembelajaran Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Mengenal contoh-contoh dari tujuh (7) obyektif pengendalian pada proses-proses kimia Menghitung indikator dari variabilitas

Lebih terperinci

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG KESETIMBANGAN ENERGI Konsep dan Satuan Perhitungan Perubahan Entalpi Penerapan Kesetimbangan Energi Umum

Lebih terperinci

Dinamika Proses pada Sistem Pemanas Tangki Berpengaduk dengan Arus Bypass

Dinamika Proses pada Sistem Pemanas Tangki Berpengaduk dengan Arus Bypass Dinamika Proses pada Sistem Pemanas Tangki Berpengaduk dengan Arus Bypass Yulius Deddy Hermawan *, Bambang Sugiarto, I Gusti Ayu Sri Pradnyadewi, dan Gusti Ayu Septiandani Program Studi Teknik Kimia, Fakultas

Lebih terperinci

VIII Sistem Kendali Proses 7.1

VIII Sistem Kendali Proses 7.1 VIII Sistem Kendali Proses 7.1 Pengantar ke Proses 1. Tentang apakah pengendalian proses itu? - Mengenai mengoperasikan sebuah proses sedemikian rupa hingga karakteristik proses yang penting dapat dijaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

4/16/2017. Start-up CSTR A, B Q A, B A, B. I Gusti S. Budiaman, Gunarto, Endang Sulistyawati Siti Diyar Kholisoh. (Levenspiel, 1999, page 84)

4/16/2017. Start-up CSTR A, B Q A, B A, B. I Gusti S. Budiaman, Gunarto, Endang Sulistyawati Siti Diyar Kholisoh. (Levenspiel, 1999, page 84) April 2017 I Gusti S. Budiaman, Gunarto, Endang Sulistyawati Siti Diyar Kholisoh PERANCANGAN REAKTOR (1210323) SEMESTER GENAP TAHUN AKADEMIK 2016-2017 JURUSAN TEKNIK KIMIA FTI UPN VETERAN YOGYAKARTA Reaktor

Lebih terperinci

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1]

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1] 1 feedback, terutama dalam kecepatan tanggapan menuju keadaan stabilnya. Hal ini disebabkan pengendalian dengan feedforward membutuhkan beban komputasi yang relatif lebih kecil dibanding pengendalian dengan

Lebih terperinci

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut.

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Tujuan Pembelajaran Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Disain dan implementasi sebuah eksperimen yang baik Melakukan kalkulasi secara grafik Melakukan kalkulasi secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Laju ALir Fluida Fluida adalah suatu zat yang bisa mengalami perubahan-perubahan bentuknya secara continue/terus-menerus bila terkena tekanan/gaya geser walaupun relatif kecil

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dinamika Proses Dinamika Proses adalah suatu hal yang terjadi di dalam suatu sistem, dengan adanya process variable yang cepat berubah dengan berubahnya manipulated variable

Lebih terperinci

Perancangan dan Simulasi MRAC PID Control untuk Proses Pengendalian Temperatur pada Continuous Stirred Tank Reactor (CSTR)

Perancangan dan Simulasi MRAC PID Control untuk Proses Pengendalian Temperatur pada Continuous Stirred Tank Reactor (CSTR) JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) A-128 Perancangan dan Simulasi MRAC PID Control untuk Proses Pengendalian Temperatur pada Continuous Stirred Tank Reactor (CSTR)

Lebih terperinci

Desain PI Controller menggunakan Ziegler Nichols Tuning pada Proses Nonlinier Multivariabel

Desain PI Controller menggunakan Ziegler Nichols Tuning pada Proses Nonlinier Multivariabel Desain PI Controller menggunakan Ziegler Nichols Tuning pada Proses Nonlinier Multivariabel Poppy Dewi Lestari 1, Abdul Hadi 2 Jurusan Teknik Elektro UIN Sultan Syarif Kasim Riau JL.HR Soebrantas km 15

Lebih terperinci

BAB III DINAMIKA PROSES

BAB III DINAMIKA PROSES BAB III DINAMIKA PROSES Tujuan Pembelajaran Umum: Setelah membaca bab ini diharapkan mahasiswa dapat memahami Dinamika Proses dalam Sistem Kendali. Tujuan Pembelajaran Khusus: Setelah mengikuti kuiah ini

Lebih terperinci

PEMODELAN SISTEM. Pemodelan & simulasi TM05

PEMODELAN SISTEM. Pemodelan & simulasi TM05 PEMODELAN SISTEM Pemodelan & simulasi TM5 Pemodelan Sistem isik Pemodelan matematis dari sebuah sistem diperoleh dengan mengaplikasikan hukum-hukum fisika yang secara natural mengatur komponen-komponen

Lebih terperinci

Teknik Reaksi Kimia Lanjut

Teknik Reaksi Kimia Lanjut UNIVERSITAS INDONESIA Teknik Reaksi Kimia Lanjut Pasca Sarjana Dicka A Rahim [ 110610795 ] Rindang Isnaniar Wisnu Aji [ 1106109043 ] 01 D E P O K P4 5 A Reaksi fase liquid : A + B C Mengikuti persamaan

Lebih terperinci

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI 4.1 TINJAUAN UMUM Tahapan simulasi pada pengembangan solusi numerik dari model adveksidispersi dilakukan untuk tujuan mempelajari

Lebih terperinci

Dinamika Suhu pada Sistem Tangki-Seri-Tak-Berinteraksi dengan Arus Recycle

Dinamika Suhu pada Sistem Tangki-Seri-Tak-Berinteraksi dengan Arus Recycle Prosiding Seminar Nasional Teknik Kimia Kejuangan ISSN 63 433 Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia Yogyakarta, 6 Januari 00 Dinamika Suhu pada Sistem Tangki-Seri-Tak-Berinteraksi

Lebih terperinci

SEMINAR TENOSIM 00 Yogyakarta, 8 Desember 00 Perancangan onfigurasi Pengendalian Proses pada Sistem Non Interacting Tank dengan Analisis uantitatif Relative Gain Array Yulius Deddy Hermawan, Yogi Suksmono,

Lebih terperinci

Dinamika Komposisi pada Sistem Tangki Pencampur 10 Liter

Dinamika Komposisi pada Sistem Tangki Pencampur 10 Liter Prosiding Seminar Nasional Teknik Kimia Kejuangan Yogyakarta, 6 Maret ISSN 69-49 Dinamika Komposisi pada Sistem Tangki Penampur Liter Yulius Deddy Hermawan *, Gogot Haryono, Marya Agustin, dan Hayanti

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA BAB V PENGETAHUAN PROSES PADA UNIT SINTESIS UREA V.I Pendahuluan Pengetahuan proses dibutuhkan untuk memahami perilaku proses agar segala permasalahan proses yang terjadi dapat ditangani dan diselesaikan

Lebih terperinci

DINAMIKA PROSES PERAMBATAN PANAS [DPP]

DINAMIKA PROSES PERAMBATAN PANAS [DPP] MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA DINAMIKA PROSES PERAMBATAN PANAS [DPP] Koordinator LabTK Dr. Dianika Lestari / Dr. Pramujo Widiatmoko PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

DINAMIKA PROSES PENGUKURAN TEMPERATUR (Siti Diyar Kholisoh)

DINAMIKA PROSES PENGUKURAN TEMPERATUR (Siti Diyar Kholisoh) DINAMIKA PROSES PENGUKURAN TEMPERATUR (Siti Diyar Kholisoh) ABSTRACT Process dynamics is variation of process performance along time after any disturbances are given into the process. Temperature measurement

Lebih terperinci

I. PENDAHULUAN 1.1. Latar Belakang Untuk mengungkapkan perilaku dinamik suatu sistem fisik seperti mekanik, listrik, hidrolik dan lain sebagainya, umumnya sistem fisik dimaksud dimodelkan dengan sistem

Lebih terperinci

ISTILAH-ISTILAH DALAM SISTEM PENGATURAN

ISTILAH-ISTILAH DALAM SISTEM PENGATURAN ISTILAH-ISTILAH DALAM SISTEM PENGATURAN PENGANTAR Sistem pengaturan khususnya pengaturan otomatis memegang peranan yang sangat penting dalam perkembangan ilmu dan teknologi. Dalam bahasan ini, akan diberikan

Lebih terperinci

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID Syahrir Abdussamad, Simulasi Kendalian Control Unit G.U.N.T Tipe dengan Pengendali PID MEDIA ELEKTRIK, Volume 4 Nomor, Juni 9 SIMULASI KENDALIAN FLOW CONTROL UNIT G.U.N.T TIPE DENGAN PENGENDALI PID Syahrir

Lebih terperinci

Pemodelan Sistem Pengatur Ketinggian Air pada Sebuah Tangki Tunggal

Pemodelan Sistem Pengatur Ketinggian Air pada Sebuah Tangki Tunggal Pemodelan Sistem Pengatur Ketinggian Air pada Sebuah Tangki Tunggal (Joni Dewanto) Pemodelan Sistem Pengatur Ketinggian Air pada Sebuah Tangki Tunggal Joni Dewanto Dosen Fakultas Teknik, Jurusan Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

Kinetika Kimia. Abdul Wahid Surhim

Kinetika Kimia. Abdul Wahid Surhim Kinetika Kimia bdul Wahid Surhim 2014 Kerangka Pembelajaran Laju Reaksi Hukum Laju dan Orde Reaksi Hukum Laju Terintegrasi untuk Reaksi Orde Pertama Setengah Reaksi Orde Pertama Reaksi Orde Kedua Laju

Lebih terperinci

SISTEM KENDALI OTOMATIS Analisa Respon Sistem

SISTEM KENDALI OTOMATIS Analisa Respon Sistem SISTEM KENDALI OTOMATIS Analisa Respon Sistem Analisa Respon Sistem Analisa Respon sistem digunakan untuk: Kestabilan sistem Respon Transient System Error Steady State System Respon sistem terbagi menjadi

Lebih terperinci

DINAMIKA PROSES PERAMBATAN PANAS [DPP]

DINAMIKA PROSES PERAMBATAN PANAS [DPP] MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA DINAMIKA PROSES PERAMBATAN PANAS [DPP] Disusun oleh: Dhyna Analyes Trirahayu Dr. Yogi Wibisono Budhi Dr. Ardiyan Harimawan PROGRAM STUDI TEKNIK KIMIA

Lebih terperinci

BAB I PENDAHULUAN. Sepeda motor adalah alat tranportasi yang memiliki beberapa kelebihan

BAB I PENDAHULUAN. Sepeda motor adalah alat tranportasi yang memiliki beberapa kelebihan BAB I PENDAHULUAN A. Latar Belakang Masalah Sepeda motor adalah alat tranportasi yang memiliki beberapa kelebihan diantara lain, ekonomis dalam penggunaan bahan bakar, tidak membutuhkan tempat parkir yang

Lebih terperinci

REAKTOR BATCH Chp. 12 Missen, 1999

REAKTOR BATCH Chp. 12 Missen, 1999 REKTOR BTCH Chp. 12 Missen, 1999 BTCH VERSUS CONTINUOUS OPERTION DESIGN EQUTIONS FOR BTCH RECTOR (BR) Pertimbangan umum t adalah waktu reaksi yang diperlukan untuk mencapai konversi f 1 sampai f 2 adalah

Lebih terperinci

ISTILAH ISTILAH DALAM SISTEM PENGENDALIAN

ISTILAH ISTILAH DALAM SISTEM PENGENDALIAN ISTILAH ISTILAH DALAM SISTEM PENGENDALIAN PENGANTAR Sistem pengendalian khususnya pengendalian otomatis memegang peranan yang sangat penting dalam perkembangan ilmu dan teknologi. Dalam bahasan ini, akan

Lebih terperinci

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu Pengetahuan memberikan landasan teori bagi perkembangan teknologi, salah satunya adalah matematika. Cabang matematika modern yang mempunyai cakupan wilayah penelitian

Lebih terperinci

Dinamika Level Cairan pada Sistem Tangki-Seri-Tak-Berinteraksi dengan Arus Recycle

Dinamika Level Cairan pada Sistem Tangki-Seri-Tak-Berinteraksi dengan Arus Recycle Dinamika Level Cairan pada Sistem Tangki-Seri-Tak-Berinteraksi dengan Arus Recycle Yulius Deddy Hermawan *, Yogi Suksmono, Dini Utami Dewi, dan Wina Widyaswara Jurusan Teknik Kimia, Fakultas Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai

BAB II TINJAUAN PUSTAKA. Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai BAB II TINJAUAN PUSTAKA 2.1 Studi Pustaka Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai Pengontrol Suhu Menggunakan Proportional Integral berbasis Mikrokontroler ATMEGA 8535 [3].

Lebih terperinci

PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN

PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN Nazrul Effendy 1), Masrul Solichin 2), Teuku Lukman Nur Hakim 3), Faisal Budiman 4) Jurusan Teknik Fisika, Fakultas

Lebih terperinci

Pemodelan Teknik Kimia Bebarapa Contoh Aplikasi Persamaan Diferensial (oleh: Prof. Dr. Ir. Setijo Bismo, DEA.)

Pemodelan Teknik Kimia Bebarapa Contoh Aplikasi Persamaan Diferensial (oleh: Prof. Dr. Ir. Setijo Bismo, DEA.) Pemodelan Teknik Kimia - 206 Bebarapa Contoh Aplikasi Persamaan Diferensial (oleh: Prof. Dr. Ir. Setijo Bismo, DEA.) Contoh #: Kepedulian terhadap Iklan Suatu produk sereal baru (diberi nama Oat Puff )

Lebih terperinci

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu)

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) KINETIKA DAN KATALISIS / SEMESTER PENDEK 2009-2010 PRODI TEKNIK KIMIA FTI UPN VETERAN YOGYAKARTA Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) Senin, 19 Juli 2010 / Siti Diyar Kholisoh, ST, MT

Lebih terperinci

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH TUTORIAL 3 REAKTOR REAKTOR KIMIA NON KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS KINETIK CSTR R. PLUG R.BATCH MODEL REAKTOR ASPEN Non Kinetik Kinetik Non kinetik : - Pemodelan Simulasi

Lebih terperinci

Model Matematis, Sistem Dinamis dan Sistem Kendali

Model Matematis, Sistem Dinamis dan Sistem Kendali Model Matematis, Sistem Dinamis dan Sistem Kendali PENDAHULUAN Beberapa istilah pada karakteristik tanggapan : Sistem : kombinasi beberapa komponen yang bekerja secara bersama-sama dan membentuk suatu

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

Pengendalian Proses CHS SKS. Departemen Teknik Kimia FTUI

Pengendalian Proses CHS SKS. Departemen Teknik Kimia FTUI Pengendalian Proses CHS310806 3 SKS Departemen Teknik Kimia FTUI Disain Pembelajaran Filosofi Pengendalian Proses SAP Mata Ajar Sebelumnya Pemodelan Dinamik (Mekanistik) Mata Ajar Sedang Berjalan SIMULASI

Lebih terperinci

BAB 5 KOMPONEN DASAR SISTEM KONTROL

BAB 5 KOMPONEN DASAR SISTEM KONTROL BAB 5 KOMPONEN ASAR SISTEM KONTROL 5. SENSOR AN TRANSMITER Sensor: menghasilkan fenomena, mekanik, listrik, atau sejenisnya yang berhubungan dengan variabel proses yang diukur. Trasmiter: mengubah fenomena

Lebih terperinci

Dari Neraca Massa A di Reaktor

Dari Neraca Massa A di Reaktor Kinetika dan Katalisis Semester Genap Tahun kademik 010-011 NLISIS & INTERPRETSI DT KINETIK - SISTEM REKTOR BTCH - siti diyar kholisoh PROGRM STUDI TEKNIK KIMI FTI UPN VETERN YOGYKRT Thursday, 19 th May

Lebih terperinci

III.11 Metode Tuning BAB IV PELAKSANAAN PENELITIAN IV.1 Alat Penelitian IV.2 Bahan Penelitian IV.3 Tata Laksana Penelitian...

III.11 Metode Tuning BAB IV PELAKSANAAN PENELITIAN IV.1 Alat Penelitian IV.2 Bahan Penelitian IV.3 Tata Laksana Penelitian... DAFTAR ISI SKRIPSI... i PERNYATAAN BEBAS PLAGARIASME... ii HALAMAN PENGESAHAN... iii HALAMAN TUGAS... iv KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR TABEL... x DAFTAR GAMBAR... xi DAFTAR LAMBANG DAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Penelitian Terkait Perkembangan teknik pengendalian di dunia industri dewasa ini sangat pesat. Banyak penelitian yang telah dilakukan dalam rangka menemukan teknik kendali baru

Lebih terperinci

Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR

Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR 2105100166 PENDAHULUAN LATAR BELAKANG Control system : keluaran (output) dari sistem sesuai dengan referensi yang diinginkan Non linear

Lebih terperinci

Simulasi Control System Design dengan Scilab dan Scicos

Simulasi Control System Design dengan Scilab dan Scicos Simulasi Control System Design dengan Scilab dan Scicos 1. TUJUAN PERCOBAAN Praktikan dapat menguasai pemodelan sistem, analisa sistem dan desain kontrol sistem dengan software simulasi Scilab dan Scicos.

Lebih terperinci

POLITEKNIK NEGERI SRIWIJAYA PALEMBANG

POLITEKNIK NEGERI SRIWIJAYA PALEMBANG SISTEM KENDALI ANALOG DAN DIGITAL Disusun Oleh: SELLA MARSELIA NIM. 061330310905 Dosen Mata Kuliah : Ir. Siswandi, M.T. PROGRAM STUDI TEKNIK LISTRIK FAKULTAS TEKNIK ELEKTRO POLITEKNIK NEGERI SRIWIJAYA

Lebih terperinci

Jadwal Kuliah. Senin. Rabu. Jam Ruang K103. Jam Ruang GK301

Jadwal Kuliah. Senin. Rabu. Jam Ruang K103. Jam Ruang GK301 Jadwal Kuliah Senin Jam 12.30-13.50 Ruang K103 Rabu Jam 10.00-11.50 Ruang GK301 2 Akses Internet Puskom FTUI Lab SPK TGP FTUI 3 Tujuan Pembelajaran Kuliah ini akan membangun pengetahuan proses (process

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

TL 2104 PTL TL 2104 PENGANTAR TEKNIK LINGKUNGAN. Prodi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung

TL 2104 PTL TL 2104 PENGANTAR TEKNIK LINGKUNGAN. Prodi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung TL 2104 PENGANTAR TEKNIK LINGKUNGAN Prodi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung Pendahuluan Tugas seorang Environmental Engineer: Desain unit-unit pengolahan

Lebih terperinci

TUTORIAL III REAKTOR

TUTORIAL III REAKTOR TUTORIAL III REAKTOR REAKTOR KIMIA NON KINETIK KINETIK BALANCE EQUILIBRIUM CSTR R. YIELD R. EQUIL R. PLUG R. STOIC R. GIBBS R. BATCH REAKTOR EQUILIBRIUM BASED R-Equil Menghitung berdasarkan kesetimbangan

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SIMULASI

BAB III PERANCANGAN DAN PEMBUATAN SIMULASI BAB III PERANCANGAN DAN PEMBUATAN SIMULASI Pada Bab III akan dibahas perancangan simulasi kontrol level deaerator. Pada plant sebenarnya di PLTU Suralaya, untuk proses kontrol level deaerator dibuat di

Lebih terperinci

Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung

Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung Optimasi mencakup dua proses : ❶ formulasi problem optimasi dalam bentuk persamaan matematis, ❷ penyelesaian problem matematis yang terbentuk Tujuan

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL PERNYATAAN BEBAS PLAGIARISME HALAMAN PENGESAHAN HALAMAN TUGAS HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR DAFTAR TABEL

DAFTAR ISI HALAMAN JUDUL PERNYATAAN BEBAS PLAGIARISME HALAMAN PENGESAHAN HALAMAN TUGAS HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR DAFTAR TABEL DAFTAR ISI HALAMAN JUDUL PERNYATAAN BEBAS PLAGIARISME HALAMAN PENGESAHAN HALAMAN TUGAS HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMBANG DAN SINGKATAN

Lebih terperinci

SINTESIS DAN INTEGRASI PROSES KIMIA

SINTESIS DAN INTEGRASI PROSES KIMIA SINTESIS DAN INTEGRASI PROSES KIMIA Design 2 1. Conceptual design: develop a preliminary flowsheet using approximate methods. 2. Preliminary design: use rigorous simulators to evaluate steady- state and

Lebih terperinci

PERANCANGAN PID SEBAGAI PENGENDALI ph PADA CONTINUOUS STIRRED TANK REACTOR (CSTR)

PERANCANGAN PID SEBAGAI PENGENDALI ph PADA CONTINUOUS STIRRED TANK REACTOR (CSTR) PERANCANGAN PID SEBAGAI PENGENDALI ph PADA CONTINUOUS STIRRED TANK REACTOR (CSTR) Fihir, Hendra Cordova Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

BAB 4 MODEL RUANG KEADAAN (STATE SPACE)

BAB 4 MODEL RUANG KEADAAN (STATE SPACE) BAB 4 MODEL RUANG KEADAAN (STATE SPACE) KOMPETENSI Kemampuan untuk menjelaskan pengertian tentang state space, menentukan nisbah alih hubungannya dengan persamaan ruang keadaan dan Mengembangkan analisis

Lebih terperinci

Instrumentasi dan Pengendalian Proses

Instrumentasi dan Pengendalian Proses 01 PENDAHULUAN Instrumentasi dan Pengendalian Proses - 121171673 salah satu ilmu terapan dalam teknik kimia dengan tujuan utama memberikan dasar pengetahuan tentang: a) dasar-dasar instrumentasi proses

Lebih terperinci

Sistem pengukuran Sistem pengukuran merupakan bagian pertama dalam suatu sistem pengendalian Jika input sistem pengendalian salah, maka output salah

Sistem pengukuran Sistem pengukuran merupakan bagian pertama dalam suatu sistem pengendalian Jika input sistem pengendalian salah, maka output salah Sistem pengukuran Sistem pengukuran merupakan bagian pertama dalam suatu sistem pengendalian Jika input sistem pengendalian salah, maka output salah Jika hasil pengukuran (input sistem pengendalian) salah,

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terkait Dalam perkembangannya penelitian CSTR telah banyak dilakukan. Dimulai dengan pengendalian CSTR menggunakan pengendali konvensional PID untuk mengendalikan

Lebih terperinci

Kesalahan Tunak (Steady state error) Dasar Sistem Kontrol, Kuliah 6

Kesalahan Tunak (Steady state error) Dasar Sistem Kontrol, Kuliah 6 Kesalahan Tunak (Steady state error) Review Perancangan dan analisis sistem kontrol 1. Respons transien : orde 1 : konstanta waktu, rise time, setting time etc; orde 2: peak time, % overshoot etc 2. Stabilitas

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. perangkat pendukung yang berupa piranti lunak dan perangkat keras. Adapun

BAB 4 IMPLEMENTASI DAN EVALUASI. perangkat pendukung yang berupa piranti lunak dan perangkat keras. Adapun BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Implementasi Perangkat Ajar Dalam perancangan dan pembuatan perangkat ajar ini membutuhkan perangkat pendukung yang berupa piranti lunak dan perangkat keras. Adapun

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

DISAIN KOMPENSATOR UNTUK PLANT MOTOR DC ORDE SATU

DISAIN KOMPENSATOR UNTUK PLANT MOTOR DC ORDE SATU DISAIN KOMPENSATOR UNTUK PLANT MOTOR DC ORDE SATU TUGAS PAPER ANALISA DISAIN SISTEM PENGATURAN Oleh: FAHMIZAL(2209 05 00) Teknik Sistem Pengaturan, Teknik Elektro ITS Surabaya Identifikasi plant Identifikasi

Lebih terperinci

BAB 3 PEMODELAN TANGKI REAKTOR BIODIESEL

BAB 3 PEMODELAN TANGKI REAKTOR BIODIESEL BAB 3 PEMODELAN TANGKI REAKTOR BIODIESEL 3.1. Proses Reaksi Biodiesel Dari serangkaian proses pembuatan biodiesel, proses yang terpenting adalah proses reaksi biodiesel yang berlangsung di dalam tangki

Lebih terperinci

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah BAB II LANDASAN TEORI 2.1 Umum Didalam dunia industri, dituntut suatu proses kerja yang aman dan berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah banyak serta dengan waktu

Lebih terperinci

Dynamic Economic Dispatch Menggunakan Pendekatan Penelusuran Ke Depan

Dynamic Economic Dispatch Menggunakan Pendekatan Penelusuran Ke Depan 1 Dynamic Economic Dispatch Menggunakan Pendekatan Penelusuran Ke Depan Sheila Fitria Farisqi, Rony Seto Wibowo dan Sidaryanto Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh

Lebih terperinci

BAB 2 PEMODELAN SISTEM

BAB 2 PEMODELAN SISTEM BAB 2 PEMODELAN SISTEM Bab 2 berisi pemodelan sistem sebagai dasar dalam analisis dan sintesis sistem kendali. Uraiannya meliputi pengertian sistem, model sistem, perbedaaan model dan simulasi, pengertian

Lebih terperinci

KINETIKA STERILISASI (STR)

KINETIKA STERILISASI (STR) MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA KINETIKA STERILISASI (STR) Disusun oleh: Kevin Yonathan Prof. Dr. Tjandra Setiadi Dr. Ardiyan Harimawan PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

Diktat TERMODINAMIKA DASAR

Diktat TERMODINAMIKA DASAR Bab III HUKUM TERMODINAMIKA I : SISTEM TERTUTUP 3. PENDAHULUAN Hukum termodinamika pertama menyatakan bahwa energi tidak dapat diciptakan dan dimusnahkan tetapi hanya dapat diubah dari satu bentuk ke bentuk

Lebih terperinci

BAB 3. Ir. Abdul Wahid, MT.

BAB 3. Ir. Abdul Wahid, MT. BB 3 Ir. bdul Wahid, MT. Departemen Teknik Kimia Fakultas Teknik Universitas Indonesia Depok 2007 BB 3 PRINSIP PEMODELN MTEMTIS 3.1 PENDHULUN Model yang dibahas pada bab ini berdasarkan pada teori dan

Lebih terperinci

ANALISIS DOMAIN WAKTU SISTEM KENDALI

ANALISIS DOMAIN WAKTU SISTEM KENDALI ANALISIS DOMAIN WAKTU SISTEM KENDALI Asep Najmurrokhman Jurusan Teknik Elektro Universitas Jenderal Achmad Yani 3 November 0 EL305 Sistem Kendali Respon Sistem Input tertentu (given input) Output = Respon

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 JURNAL TEKNIK POMITS Vol., No., (23) -6 Pengendalian Rasio Bahan Bakar dan Udara Pada Boiler Menggunakan Metode Kontrol Optimal Linier Quadratic Regulator (LQR) Virtu Adila, Rusdhianto Effendie AK, Eka

Lebih terperinci

BAB 1 FILOSOFI DASAR SISTEM KONTROL

BAB 1 FILOSOFI DASAR SISTEM KONTROL BAB 1 FILOSOFI DASAR SISTEM KONTROL 1. 1 Obyektif Sistem Kontrol Automatis Sebuah pabrik Kimia (chemical plant) adalah susunan unit-unit proses (reaktor, pompa, kolom destilasi, absorber, evaporator, tangki,

Lebih terperinci

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu)

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) KINETIKA DAN KATALISIS / SEMESTER GENAP 2010-2011 PRODI TEKNIK KIMIA FTI UPN VETERAN YOGYAKARTA Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) Siti Diyar Kholisoh & I Gusti S. Budiaman / Juni 2011

Lebih terperinci

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T.

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. Pembuatan Gula Berapa banyak air yang dihilangkan didalam evaporator (lb/jam)? Berapa besar fraksi massa komponen-komponen dalam arus buangan

Lebih terperinci

REZAN NURFADLI EDMUND NIM.

REZAN NURFADLI EDMUND NIM. MEKATRONIKA Disusun oleh : REZAN NURFADLI EDMUND NIM. 125060200111075 KEMENTERIAN PENDIDIKAN NASIONAL UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2014 BAB I PENDAHULUAN A. Latar Belakang Respon berasal

Lebih terperinci

Bab I Pendahuluan - 1 -

Bab I Pendahuluan - 1 - Bab I Pendahuluan I.1 Latar Belakang Pada saat ini, pengoperasian reaktor unggun diam secara tak tunak telah membuka cara baru dalam intensifikasi proses (Budhi, 2005). Dalam mode operasi ini, reaktor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dinamika Proses Dinamika Proses adalah suatu hal yang terjadi di dalam suatu sistem, dengan adanya process variable yang cepat berubah dengan berubahnya manipulated variable(bukaan

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

Transformasi Laplace Peninjauan kembali variabel kompleks dan fungsi kompleks Variabel kompleks Fungsi Kompleks

Transformasi Laplace Peninjauan kembali variabel kompleks dan fungsi kompleks Variabel kompleks Fungsi Kompleks Transformasi Laplace Metode transformasi Laplace adalah suatu metode operasional yang dapat digunakan secara mudah untuk menyelesaikan persamaan diferensial linear. Dengan menggunakan transformasi Laplace,

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 Tornados P. Silaban 1, Faiz Ahyaningsih 2 1) FMIPA, UNIMED, Medan, Indonesia email: tornados.p_silaban@yahoo.com 2)

Lebih terperinci

RANCANG BANGUN SELF TUNING PID KONTROL PH DENGAN METODE PENCARIAN AKAR PERSAMAAN KARAKTERISTIK

RANCANG BANGUN SELF TUNING PID KONTROL PH DENGAN METODE PENCARIAN AKAR PERSAMAAN KARAKTERISTIK RANCANG BANGUN SELF TUNING PID KONTROL PH DENGAN METODE PENCARIAN AKAR PERSAMAAN KARAKTERISTIK JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 Rancang Bangun Self Tuning PID Kontrol ph Dengan Metode

Lebih terperinci

BAB 1 Energi : Pengertian, Konsep, dan Satuan

BAB 1 Energi : Pengertian, Konsep, dan Satuan BAB Energi : Pengertian, Konsep, dan Satuan. Pengenalan Hal-hal yang berkaitan dengan neraca energi : Adiabatis, isothermal, isobarik, dan isokorik merupakan proses yang digunakan dalam menentukan suatu

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya sebarang bilangan c adalah : f (c) = ( ) ( ) Asalkan limit ini ada. Jika limit ini memang

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Model Matematika Konsentrasi Zat Pada Reaktor Alir Tangki Berpengaduk yang Disusun Seri Mathematical Model of Concentration of The Substance In CSTR Compiled Series

Lebih terperinci