Peubah Acak dan Distribusi Kontinu

dokumen-dokumen yang mirip
MA3081 STATISTIKA MATEMATIKA We love Statistics

Pengantar Statistika Matematik(a)

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematik(a)

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

MA5181 PROSES STOKASTIK

Pengantar Proses Stokastik

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BEBERAPA TEKNIK DISTRIBUSI FUNGSI PEUBAH ACAK

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA4181 MODEL RISIKO Enjoy the Risks

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA5181 PROSES STOKASTIK

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

Pengantar Proses Stokastik

Pengantar Proses Stokastik

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

Pengantar Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik

DISTRIBUSI SATU PEUBAH ACAK

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

Pengantar Statistika Matematika II

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

MA3231 Analisis Real

BAB II LANDASAN TEORI

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Peubah Acak dan Distribusi

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

MA4181 MODEL RISIKO Enjoy the Risks

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I

STATISTIK PERTEMUAN VI

Catatan Kuliah. MA5181 Proses Stokastik

Pengantar Statistika Matematika II

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk!

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

asimtot.wordpress.com BAB I PENDAHULUAN

A. Distribusi Gabungan

AK5161 Matematika Keuangan Aktuaria

Sebaran Peubah Acak Bersama

STATISTIKA UNIPA SURABAYA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

A. Distribusi Gabungan

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Risk is managed, not avoided

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

IKG4A2 Kapita Selekta Dosen: Aniq A. Rohmawati, M.Si Data Deret Waktu dan i.i.d

Catatan Kuliah. MA4183 Model Risiko

II. TINJUAN PUSTAKA. lim f(x) = L berarti bahwa bilamana x dekat tetapi sebelah kiri c 0 maka f(x)

Catatan Kuliah. MA4183 Model Risiko

MA5181 PROSES STOKASTIK

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Control your Risk!

Pengenalan Copula. Sapto Wahyu Indratno

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2

Catatan Kuliah. MA5181 Proses Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Kuliah 3: TURUNAN. Indah Yanti

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Sebaran Peubah Acak Bersama

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

MA3231 Analisis Real

DASAR-DASAR ANALISIS MATEMATIKA

PEMBANGKIT RANDOM VARIATE

Variabel Banyak Bernilai Real 1 / 1

MA1201 KALKULUS 2A Do maths and you see the world

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Transkripsi:

BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi distribusi F (x) adalah fungsi tangga berikut 0, x (, 0); 1/8, x [0, 1); F (x) = 1/2, x [1, 2); 7/8, x [2, 3); 1, x [3, ). 2. Misalkan X peubah acak dengan support S = [a, b], b > 0. Misalkan peluang X akan berada di selang S proporsional terhadap panjang selang. Dengan kata lain, P (x 1 X x 2 ) = λ (x 2 x 1 ), 1

untuk a x 1 x 2 b. Untuk menentukan λ, misalkan x 1 = a dan x 2 = b. Maka, P (a X b) = 1 = λ (b a) λ = 1/(b a) Fungsi distribusinya: 0, x < a; x a F (x) = P (X x) = P (a X x) = b a, x [a, b]; 1, x > b. Peubah acak X dikatakan berdistribusi Uniform, X U(a, b). Sifat-sifat fungsi distribusi: F () = 0 dan F ( ) = 1 F merupakan fungsi tidak turun; F (a) F (b) untuk a b F adalah fungsi kontinu kanan; lim ɛ 0 + F (x + ɛ) = F (x) Misalkan X peubah acak dengan fungsi distribusi F (x). Jika b a, maka P (a < X b) = F (b) F (a) Untuk setiap x, P (X = x) = lim ɛ 0 + P (x ɛ < X ) = F (x) F (x ) (Perhatikan notasi F (x ) dan kasus apabila fungsi distribusi kontinu kiri) Definisi: Distribusi dari peubah acak X dikatakan KONTINU jika fungsi distribusi disetiap x kontinu dan fungsi distribusi tersebut dapat diturunkan. Misalkan X peubah acak kontinu dengan fungsi distribusi F X (x). Misalkan g(x) fungsi naik satu-satu kontinu. Untuk y yang berada di daerah hasil dari g, fungsi invers x = g 1 (y) ada. Misalkan Y = g(x). Fungsi distribusi dari Y adalah P (Y y) = P (g(x) y) = P (X g 1 (y)) = F X (g 1 (y)) Misalkan g(x) fungsi turun satu-satu kontinu. Untuk y yang berada di daerah hasil dari g, fungsi invers x = g 1 (y) ada. Misalkan Y = g(x). Fungsi distribusi dari Y adalah P (Y y) = P (g(x) y) = P (X > g 1 (y)) = 1 F X (g 1 (y)) MA3081 Stat.Mat. 2 K. Syuhada, PhD.

Misalkan X U(0, 1) dan Y = g(x) = hx + k, h < 0. Maka X = g 1 (Y ) = F X (x) = F Y (y) = Y Latihan: 1. Misalkan X peubah acak kontinu yang memiliki fungsi distribusi F X (x) yang naik murni. Misalkan Y = F X (X). Tentukan distribusi dari Y 2. Misalkan U peubah acak berdistribusi U(0, 1). Misalkan F X (x) fungsi distribusi yang naik murni dari X. Tentukan fungsi distribusi dari peubah acak F 1 X (U) 3. Misalkan U 1, U 2,..., U n sampel acak dari U(0, 1). Bangkitkan sampel acak dari F X (x) (ambil contoh misalnya untuk F X (x) = 1 e λ x, x > 0) Misalkan X peubah acak kontinu dengan fungsi distribusi F X (x). Misalkan Y = g(x) fungsi kontinu tidak monoton. Kita ketahui bahwa pada fungsi yang monoton, F Y (y) = P (Y y) = P (g(x) y) dimana dalam hal ini setiap solusi inverse x = g 1 (y) digunakan untuk menentukan F Y (y) dengan menggunakan F X (g 1 (y)). Untuk X U( 1, 2) dan g(x) = Y = X 2, kita dapatkan fungsi distribusi dari Y : F Y (y) = MA3081 Stat.Mat. 3 K. Syuhada, PhD.

1.2 Unsur Peluang Misalkan X peubah acak kontinu, x bilangan positif kecil. Definisikan h(a, b) = def P (a X a + b) = F X (a + b) F X (a) Untuk h(x, x) = P (x X x + x), maka deret Taylor-nya disekitar x = 0 adalah dimana h(x, x) = F (x + x) F (x) = h(x, 0) + d d x h(x, x) x=0 x + o( x) lim x 0 = = o( x) x = 0 Fungsi df (x) = [ ] d dx F (x) x disebut DIFERENSIAL. Dalam statistika, diferensial dari fungsi distribusi adalah UNSUR PELUANG (yang merupakan pendekatan terhadap h(x, x)). Unsur peluang adalah fungsi linier dari d dx F (x). Contoh: Misalkan F (x) = 1 e 3x untuk x 0. Apakah F (x) suatu fungsi distribusi? Hitung unsur peluang di x = 2. Cari pendekatan untuk P (2 X 2.01). Densitas rata-rata pada selang (x, x + x) didefinisikan: def P (x X x + x) Density rata-rata = x Sedangkan fungsi densitas peluang atau fungsi peluang (f.p) di x adalah limit MA3081 Stat.Mat. 4 K. Syuhada, PhD.

densitas rata-rata saat x 0: f.p = f(x) = def = = lim x 0 = d dx F (x) P (x X x + x) x Catatan: Unsur peluang dituliskan sebagai df (x) = f(x) x. Sifat-sifat fungsi peluang: f(x) 0 untuk semua x f(x) = 1 Hubungan antara fungsi peluang dan fungsi distribusi: f(x) = d dx F (x) F (x) = x f(u)du P (a < X < b) =... =... =... = F (b) F (a) = b a f(x)dx Latihan: 1. Misalkan λ bilangan riil positif. Jika F (x) = 1 e λx, maka f(x) = 2. Jika X U(a, b) maka F (x) = dan f(x) = 3. *Misalkan f(x) = c/(1 + x 2 ) untuk < x < dan c konstanta. Fungsi f(x) tak negatif dan (1 + x2 ) 1 dx = π. Berapa nilai c agar f(x) menjadi fungsi peluag? Tentukan fungsi distribusinya. 4. *Pandang distribusi waktu tunggu. Misalkan T adalah waktu kedatangan kejadian ke-r dalam Proses Poisson dengan laju λ. Tentukan fungsi peluang dari T MA3081 Stat.Mat. 5 K. Syuhada, PhD.

Misalkan X peubah acak kontinu dengan fungsi peluang f(x) dan Y = g(x) fungsi yang terdiferensial bernilai tunggal. Maka fungsi peluang dari Y : f Y (y) = f X (g 1 (y)) d dy g 1 (y) untuk support Y = g(x). Komponen J(y) = d dy g 1 (y) adalah transformasi Jacobian. BUKTI: Misalkan g(x) memiliki lebih dari satu fungsi invers maka unsur peluang yang terpisah harus dihitung untuk setiap fungsi invers. Contoh, misalkan X U( 1, 2) dan Y = g(x) = X 2. Maka untuk y [0, 1], terdapat 2 fungsi invers yaitu?, dan satu fungsi invers untuk y (1, 4] yaitu?. Fungsi peluang dari Y adalah: f(y) = MA3081 Stat.Mat. 6 K. Syuhada, PhD.

1.3 Ekspektasi Misalkan X peubah acak dengan fungsi peluang f(x). Nilai harapan dari X, jika ada, adalah E(X) = µ X = f(x)dx Catatan: nilai ekspektasi dikatakan ada jika nilai integral adalah hingga. Misalkan X rv dengan pdf f(x). adalah E[g(X)] =. g(x)f(x)dx Maka nilai harapan dari g(x), jika ada, Operator integral bersifat linier. Jika g 1 (X) dan g 2 (X) fungsi-fungsi yang memiliki ekspektasi dan a, b, c konstanta, maka E[ag 1 (X) + bg 2 (X) + c] = ae[g 1 (X)] + be[g 2 (X)] + c Contoh/Latihan: 1. Jika distribusi X simetrik di sekitar c dan nilai harapanny ada maka E(X) = c. Bukti: E(X c) = = c = = 0 0 (x c)f(x) dx (x c)f(x)dx + uf(c u)du + c 0 (x c)f(x)dx uf(c + u)du u(f(c + u) f(c u)) du = 0 2. Misalkan X U(a, b). Tunjukkan bahwa distribusi tersebut simetrik disekitar (a + b)/2. MA3081 Stat.Mat. 7 K. Syuhada, PhD.

Bukti: ( a + b f 2 untuk δ [ b a, ] b a 2 2 ) ( a + b δ = f 2 ) + δ = 1 b a 3. Misalkan X berdistribusi Cauchy dengan fungsi peluang f(x) = 1 [ ], σπ 1 + (x µ)2 σ 2 dengan µ, σ konstanta yang memenuhi µ < dan σ (0, σ). Tunjukkan bahwa fungsi peluang simetrik di sekitar µ namun ekspektasinya bukanlah µ. 4. Misalkan X Exp(λ). Nilai harapan dari X adalah... MA3081 Stat.Mat. 8 K. Syuhada, PhD.

1.4 Distribusi Bivariat Suatu fungsi f X,Y (x, y) dikatakan fungsi peluang bivariat jika f X,Y (x, y) 0, untuk semua x, y f X,Y (x, y) dxdy = 1 Jika f X,Y (x, y) fungsi peluang bivariat maka F X,Y (x, y) = P (X x, Y y) = x y f X,Y (u, v) dvdu Sifat-sifat fungsi distribusi bivariat: 1. F X,Y (x, ) = F X (x) 2. F X,Y (, y) = F Y (y) 3. F X,Y (, ) = 1 4. F X,Y (, y) = F X,Y (x, ) = F X,Y (, ) = 0 5. f X,Y (x, y) = 2 x y F X,Y (x, y) f X,Y (x, y) x y adalah unsur peluang bersama, P (x X x + x, y Y y + y) = f X,Y (x, y) x y + o( x y) Contoh/Latihan: 1. Jika (X, Y ) U(a, b, c, d) maka f X,Y (x, y) = 2. Untuk soal no 1 di atas, misalkan a = c = 0, b = 4, d = 6 maka P (2.5 X 3.5, 1 Y 4) = P (X 2 + Y 2 > 16) = 3. Jika f X,Y (x, y) = 6/5(x + y 2 ) untuk x (0, 1) dan y (0, 1). Tentukan P (X + Y < 1). MA3081 Stat.Mat. 9 K. Syuhada, PhD.

Untuk menentukan fungsi peluang marginal, integralkan peubah yang tidak diinginkan : f X (x) = f X,Y (x, y) dy f Y (y) = f X,Y (x, y) = f X,Y (x, y) dx f W,X,Y,Z (w, x, y, z) dwdz Pada fungsi peluang f X,Y (x, y) = 6/5(x + y 2 ) diperoleh f X (x) = f Y (y) = dan nilai harapan E(g(X, Y )) = E(X) = g(x, y) f X,Y (x, y) dxdy = MA3081 Stat.Mat. 10 K. Syuhada, PhD.

1.5 Distribusi Bersyarat Misalkan f X,Y (x, y) adalah fungsi peluang bersama, maka fungsi peluang Y, diberikan X = x, adalah f Y X (y x) = def f X,Y (x, y), f X (x) asalkan f X (x) > 0. Contoh: Misalkan X dan Y memiliki distribusi bersama maka f X,Y (x, y) = 8xy, 0 < x < y < 1, f X (x) = E(X r ) = f Y (y) = E(Y r ) = f X Y (x y) = f Y X (y x) = E(X r Y = y) = E(Y r X = x) = Misalkan (X, Y ) adalah peubah acak berpasangan dengan fungsi peluang bersama f X,Y (x, y). Pandang persoalan memprediksi Y setelah X = x terobservasi. Prediktor dinotasikan sebagai ŷ(x). Prediktor terbaik didefinisikan sebagai fungsi Ŷ (X) yang meminimumkan ] 2 E [Y Ŷ (X) = Prediktor terbaik adalah ŷ(x) = E(Y X = x). BUKTI: Contoh/Latihan: (y ŷ(x)) 2 f X,Y (x, y) dydx 1. Misalkan X dan Y memiliki distribusi bersama f X,Y (x, y) = 8xy, 0 < x < y < 1, MA3081 Stat.Mat. 11 K. Syuhada, PhD.

maka f Y X (y x) = ŷ(x) = 2. Misalkan (Y, X) berdistribusi normal bivariat dengan E(Y ) = µ Y, E(X) = µ X, V ar(y ) = σ 2 Y, V ar(x) = σ2 X, Cov(X, Y ) = ρ X,Y σ X σ Y. Distribusi bersyarat Y, diberikan X, adalah (Y X = x) 3. Tunjukkan bahwa ] E X [f Y X (y X) = f Y (y) 4. Buktikan E X {E [ ]} [ ] h(y ) X = E h(y ) 5. Buktikan ] V ar(y ) = E X [V ar(y X) [ ] + V ar E(Y X) 6. Misalkan X dan Y memiliki distribusi bersama Maka f X,Y (x, y) = 3y2 x 3, 0 < y < x < 1 f Y (y) = E(Y r ) =, E(Y ) =, V ar(y ) = f X (x) = f Y X (y x) = E(Y r X = x) =, E(Y X = x) =, V ar(y X = x) = V ar(e(y X)) = E(V ar(y X)) = MA3081 Stat.Mat. 12 K. Syuhada, PhD.

1.6 Fungsi Pembangkit Momen Misalkan X peubah acak kontinu, fungsi pembangkit momen dari X adalah M X (t) = E(e tx ) = e tx f(x)dx, asalkan ekspektasi ada untuk t disekitar 0. Jika semua momen dari X tidak ada, maka fungsi pembangkit momen juga tidak ada. Fungsi pembangkit momen berkaitan dengan fungsi pembangkit peluang M X (t) = G X (e t ) asalkan G X (t) ada untuk t disekitar 1. Jika M X (t) adalah fungsi pembangkit peluang maka M X (0) = 1. Contoh/Latihan: 1. Jika f X (x) = λe λx I 0, (x), maka M X (t) = 2. Jika M X (t) ada maka M a+bx (t) = 3. Jika X i, i = 1,..., n saling bebas, M Xi (t) ada untuk setiap i, dan S = Xi, maka M S (t) = 4. Fungsi pembangkit momen bersifat unik. Setiap distribusi memiliki fungsi pembangkit momen yang unik, dan setiap fungsi pembangkit momen berkorespondensi dengan tepat satu distribusi. Akibatnya, jika fungsi pembangkit momen ada maka fungsi pembangkit momen tersebut secara unik menentukan distribusinya. Beri contoh. 5. Pandang turunan dari M X (t) yang kemudian dievaluasi di t = 0. Apa yang dapat anda katakan? Dapatkah kita mendapatkan momen orde tinggi? 6. Dapatkah hasil diatas digunakan untuk distribusi diskrit? Ambil contoh distribusi Geometrik dengan parameter p. MA3081 Stat.Mat. 13 K. Syuhada, PhD.

7. Misalkan Y U(a, b). Gunakan fungsi pembangkit momen untuk mendapatkan momen pusat (( E((Y µ Y ) 2 ) = E Y a + b ) r ) 2 MA3081 Stat.Mat. 14 K. Syuhada, PhD.