MA4181 MODEL RISIKO Enjoy the Risks

Ukuran: px
Mulai penontonan dengan halaman:

Download "MA4181 MODEL RISIKO Enjoy the Risks"

Transkripsi

1 Catatan Kuliah MA4181 MODEL RISIKO Enjoy the Risks disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011

2 Tentang MA4181 Model Risiko A. Jadwal kuliah: Selasa; ; R.StudyHall Kamis; ; R.StudyHall B. Silabus: Ukuran Risiko (3 minggu) Teori Kebangkrutan (2 minggu) C. Buku teks: Yiu-Kuen Tse, 2009, Nonlife Actuarial Models: Theory, Methods and Evaluation. D. Penilaian: 1. Ujian, 17/18 November 2011 (30%). 2. Tugas dan Presentasi (20%) E. Matriks kegiatan perkuliahan: Table 1: Materi kuliah MA4181 Model Risiko. Minggu- Materi Keterangan 9-11 Ukuran Risiko Penjelasan kuliah Teori Kebangkrutan 13 Ujian 17/18 November Presentasi MA2082 BioStat. i K. Syuhada, PhD.

3 Daftar Isi 1 Ukuran Risiko Pendahuluan Ukuran Risiko Aksioma Value-at-Risk (VaR) Conditional Tail Expectation (CTE) Transformasi PH Transformasi Esscher Metode Distortion-Function Transformasi Wang Teori Kebangkrutan Pendahuluan Bangkrut dan Peluang Bangkrut Teori Kebangkrutan (Waktu Diskrit) Kebangkrutan Waktu Hingga Fungsi Surplus Waktu Kontinu ii

4 BAB 1 Ukuran Risiko Silabus: Ukuran risiko (premium-based, capital-based), Aksioma risiko, VaR dan ES, transformasi. Tujuan: 1. Mempelajari ukura-ukuran risiko (premium-based, capital-based) 2. Menghitung VaR dari distribusi kerugian kontinu dan diskrit 3. Mempelajari/menurunkan transformasi pada ukuran risiko 1.1 Pendahuluan Jenis-jenis risiko: 1. Risiko pasar (kerugian akibatan perubahan pada harga dan kondisi pasar) 2. Risiko kredit (risiko dari nasabah) 3. Risiko operasional (risiko bisnis yang bukan risiko pasar atau risiko kredit) Kegunaan ukuran risiko: 1. Menentukan modal 2. Menentukan premi 3. Manajemen risiko internal 4. Melaporkan kebijakan eksternal 1

5 1.2 Ukuran Risiko Definisi: Suatu ukuran risiko dari kerugian acak X, notasi ϱ(x), adalah fungsi bernilai riil ϱ : X R, dimana R adalah himpunan bilangan riil. Peubah acak X tak negatif. Misalkan mean dan variansi kerugian acak X adalah µ X dan σx 2. Ukuran risiko expected-value principle premium didefinisikan sebagai ϱ(x) = (1 + θ) µ X = µ X + θ µ X, dimana θ 0 adalah premium loading factor. pure premium saat θ = 0. Ukuran risiko dikatakan Ukuran risiko variance principle premium didefinisikan sebagai: ϱ(x) = µ X + α σ 2 X, dimana α 0 adalah loading factor. 1.3 Aksioma Beberapa aksioma dalam ukuran risiko, yang apabila dipenuhi maka ukuran risiko tersebut dikatakan coherent (koheren). Aksioma-aksioma tersebut adalah: 1. (T) Untuk setiap X dan konstanta tak negatif a, ϱ(x + a) = ϱ(x) + a 2. (S) Untuk setiap X dan Y, ϱ(x + Y ) ϱ(x) + ϱ(y ) 3. (PH) Untuk setiap X dan konstanta tak negatif a, ϱ(a X) = a ϱ(x) 4. (M) Untuk setiap X dan Y sdh X Y, ϱ(x) ϱ(y ) MA2082 BioStat. 2 K. Syuhada, PhD.

6 X VaR Contoh/Latihan: Figure 1.1: Value-at-Risk pada Distribusi Normal. 1. Tunjukkan, dengan aksioma PH, bahwa ϱ(0) = 0. Dengan hasil itu, buktikan bahwa jika aksioma PH dan M dipenuhi maka ϱ(x) 0 untuk X no unjustified loading? 3. no ripoff? 4. Tunjukkan bahwa ukuran risiko expected-value principle premium memenuhi aksioma S, PH dan M namun tidak memenuhi aksioma T. Bagaiman dengan ukuran risiko variance/standard deviation principle premium? 1.4 Value-at-Risk (VaR) Value at Risk (VaR) dari suatu peubah/variabel kerugian adalah nilai minimum suatu distribusi sdh peluang untuk mendapatkan kerugian lebih besar dari nilai tersebut tidak akan melebihi peluang yang diberikan. Definisi: Misalkan X adalah peubah acak kerugian dengan fungsi distribusi F X (.) dan δ adalah peluang, makab VaR pada tingkat peluang δ adalah δ-kuantil dari X: V ar δ (X) = F 1 X (δ) = x δ Jika F X (.) fungsi tangga (X tidak kontinu), didefiniskan V ar δ (X) = inf {x [0, ) : F X (x) δ} MA2082 BioStat. 3 K. Syuhada, PhD.

7 Contoh/Latihan: 1. Hitung V ar δ untuk distribusi kerugian X: E(λ), N (µ, σ 2 ), P(α, γ). 2. Hitung V ar δ untuk δ = 0.94, 0.97 dari distribusi kerugian berikut: X = 100, dgn peluang 0.03; 90, dgn peluang 0.01; 80, dgn peluang 0.04; 50, dgn peluang 0.12; 0, dgn peluang Tunjukkan bahwa V ar δ memenuhi aksioma T, PH dan M, namun tidak memenuhi aksioma S. 1.5 Conditional Tail Expectation (CTE) CTE memperhatikan informasi pada distribusi ekor diluar VaR. CTE pada level peluang δ, notasi CT E δ (X), didefinisikan sebagai atau CT E δ (X) = E(X X > x δ ) CT E δ (X) = E [ X X > V ar δ (X) ], untuk X kontinu. Ekspektasi diatas yang berpusat pada nilai V ar δ (X): E [ X V ar δ (X) X > V ar δ (X) ], disebut conditional VaR dan dinotasikan CV ar δ (X). Perhatikan bahwa CV ar δ (X) = E [ X V ar δ (X) X > V ar δ (X) ] = CT E δ (X) V ar δ (X) Jika V ar δ digunakan sebagai modal, maka shortfall dari modal adalah (X V ar δ ) +. MA2082 BioStat. 4 K. Syuhada, PhD.

8 Ketika X kontinu, V ar δ = x δ dan mean shortfall nya adalah E [ (X x δ ) + ] = E [ X xδ X > x δ ] P (X > xδ ) = (1 δ) CV ar δ 1 (1 δ) E[ ] (X x δ ) + = CV arδ = CT E δ (X) x δ Untuk mengevaluasi CT E δ, perhatikan bahwa 1 CT E δ = E(X X > x δ ) = (1 δ) 1 = (1 δ) = 1 (1 δ) x δ x δ 1 δ x f X (x) dx x df X (x) x ξ dξ, untuk ξ = F X (x). CT E δ dengan demikian dapat diinterpretasikan sebagai rata-rata kuantil yang melampaui x δ. Analog, 1 (1 δ) 1 δ V ar ξ dξ yang disebut dengan tail VaR atau T V ar δ (X). Contoh/Latihan: 1. Tentukan CT E δ dan CV AR δ pada distribusi kerugian X: E(λ), N (µ, σ 2 ), P(α, γ). 2. Hitung CT E δ untuk δ = 0.95 (juga TVaR yang berkorespondensi dengan nilai δ)dari distribusi kerugian berikut: X = 100, dgn peluang 0.03; 90, dgn peluang 0.01; 80, dgn peluang 0.04; 50, dgn peluang 0.12; 0, dgn peluang Tunjukkan bahwa CTE memenuhi aksioma T, S, PH dan M. MA2082 BioStat. 5 K. Syuhada, PhD.

9 1.6 Transformasi PH Misalkan X adalah kerugian acak kontinu tak negatif. Kerugian yang diharapkan (expected loss) dituliskan sebagai µ X = 0 ( 1 FX (x) ) dx = 0 S X (x) dx Misalkan X terdistribusi dengan S X(x) = ( S X (x)) 1/ρ, ρ 1, maka E( X) = µ X = 0 S X(x) dx = 0 ( S X (x)) 1/ρ dx, dimana parameter ρ disebut risk-aversion index. Distribusi dari X disebut PH (proportional hazard) transform atau transformasi PH dari distribusi X dengan parameter ρ. Misalkan h X (x) dan h X(x) sebagai fungsi hazard (hf) dari X dan X, maka h X(x) = 1 ( ) d S X(x) S X(x) dx ( (1/ρ) 1 = 1 S X (x)) S (x) X ( ) ρ 1/ρ S X (x) = 1 ( ) S X (x) ρ S X (x) = 1 ρ h X(x) Dapat disimpulkan bahwa hf dari X proporsional terhadap hf dari X. Jika ρ 1, maka hf dari X lebih kecil dari hf dari X, sehingga X memiliki ekor yang lebih tebal dari X. Contoh/Latihan: 1. Misalkan X beridistribusi Eksponensial dengan parameter λ. Maka sf dari transformasi PH dari X adalah S X = ( e λx) 1/ρ, MA2082 BioStat. 6 K. Syuhada, PhD.

10 yang berakibat X E(λ/ρ) Jadi, E( X) = ρ/λ λ = E(X) 2. Apakah ukuran risiko µ X memenuhi aksioma T, S, PH, dan M? 1.7 Transformasi Esscher Metode lain untuk memindahkan bobot ke kerugian yang lebih besar adalah dengan mentransformasi pdf. Jika X memiliki pdf f X (x), definisikan distribusi kerugian X dengan pdf f X(x), f X(x) = w(x) f X (x), dengan syarat w (x) > 0 agar lebih banyak bobot di ekor bagian kanan dari distribusi kerugian. Pdf f X(x) juga harus terdefinisi dengan baik. Fungsi bobot yang dapat digunakan adalah w(x) = eρx M X (ρ) = e ρx 0 e ρx f X (x) dx, ρ > 0, where M X (ρ) adalah fungsi pembangkit momen dari X. Dapat ditunjukkan bahwa dan w (x) > 0 0 f X(x) dx = 1 (pdf yang terdefinisi dengan baik) Distribusi dari X f X(x) = eρx f X (x) M X (ρ), ρ > 0 disebut Esscher transform atau transformasi Esscher dari X dengan param- MA2082 BioStat. 7 K. Syuhada, PhD.

11 eter ρ. Fungsi pembangkit momen dari X adalah M X(t) = M X(ρ + t) M X (ρ) Ukuran risiko dapat dikonstruksi sebagai nilai harapan dari transformasi Esscher dari X, ϱ(x) = E( X) = E(X eρx ) E(e ρx ), dimana dϱ(x)/dρ 0 sehingga ρ dapat diinterpretasikan sebagai risk-aversion index. Contoh/Latihan: 1. X berdistribusi Eksponensial dengan parameter λ. Hitung transformasi Esscher dari X dan risk-adjusted premium 2. Lakukan transformasi Esscher pada distribusi kerugian yang lain. 1.8 Metode Distortion-Function Definisi: Fungsi distorsi adalah fungsi tidak turun g(.) yang memenuhi g(1) = 1 dan g(0) = 0. Misalkan X peubah acak kerugian dengan sf S X (x). Fungsi distorsi g(.) tidak turun dan S X (.) tidak naik, sehingga g(s X (x)) adalah fungsi tidak naik dari x atau dg(s X (x)) dx 0 Peubah acak X dengan sf g(s X (x)) diinterpretasikan sebagai p.a. risk-adjusted loss dan g(s X (x)) sebagai risk-adjusted sf. Diasumsikan g(.) terbuka ke bawah, sehingga pdf dari X adalah dimana f X(x) = dg(s X(x)) dx dg (S X (x)) dx 0 = g (S X (x)) f X (x) MA2082 BioStat. 8 K. Syuhada, PhD.

12 sehingga g (S X (x)) fungsi tidak turun. Misalkan X peubah acak kerugian tak negatif. Ukuran risko distorsi berdasarkan fungsi distorsi g(.) didefinisikan ϱ(x) = 0 g(s X (x)) dx, yang merupakan mean dari risk-adjusted loss X. Ukuran risiko distorsi antara lain Pure premium : g(u) = u PH risk-adjusted premium : g(u) = u 1/ρ VaR g(s X (x)) = 1, 1 δ S X (x) 1 atau CTE g(s X (x)) = 1, 0 x V ar δ g(s X (x)) = S X(x) 1 δ, x > x δ = 1, 0 x x δ TEOREMA: Misalkan g(.) adalah fungsi distorsi terbuka ke bawah. kerugian X, Ukuran risiko dari ϱ(x) = 0 g(s X (x)) dx, memenuhi aksioma T, S, PH dan M. Dengan kata lain, ukuran risiko diatas adalah koheren. MA2082 BioStat. 9 K. Syuhada, PhD.

13 1.9 Transformasi Wang Pandang fungsi distorsi ( ) g(u) = Φ Φ 1 (u) + ρ, dimana Φ(.) adalah fungsi distribusi normal standar dan ρ parameter risiko, ρ > 0. Fungsi diatas dikenal dengan nama Wang transform atau transformasi Wang. Misalkan X adalah peubah acak kerugian dan X peubah acak hasil transformasi Wang dari X. Ukuran risiko hasil transformasi adalah ϱ(x) = E( X) = 0 ( ) Φ Φ 1 (S X (x)) + ρ dx Latihan: 1. Tentukan nilai g(0) dan g(1) 2. Tunjukkan bahwa transformasi Wang adalah fungsi naik dan terbuka ke bawah 3. Tunjukkan bahwa de( X)/dρ > 0 4. Jika X berdistribusi normal dengan mean µ dan variansi σ 2, tentukan distribusi kerugian berdasarkan transformasi Wang dan tentukan pula risk-adjusted premium MA2082 BioStat. 10 K. Syuhada, PhD.

14 BAB 2 Teori Kebangkrutan Silabus: Fungsi surplus, peluang ultimate ruin, peluang bangkrut sebelum waktu hingga, teori kebangkrutan (waktu diskrit), proses Poisson. Tujuan: 1. Mempelajari konsep surplus 2. Menghitung peluang ultimate ruin dan peluang bangkrut sebelum waktu hingga 3. Memahami dan memodelkan teori kebangkrutan (waktu diskrit) 4. Memahami proses Poisson dalam klaim dan kebangkrutan 2.1 Pendahuluan Konsep surplus: 1. Perusahaan asuransi memiliki modal awal atau initial surplus 2. Perusahaan menerima premi dan membayarkan klaim 3. Premi bersifat konstan sedangkan klaim/kerugian bersifat acak dan tidak pasti 4. Net surplus adalah modal awal + premi - klaim 5. Jika net surplus kurang dari atau sama dengan nol = Bangkrut atau Ruin 1

15 Fungsi surplus Misalkan perusahaan asuransi memiliki modal u saat waktu t = 0. Modal ini disebut initial surplus. Perusahaan menerima premi setiap waktu (secara reguler). Klaim kerugian sebesar X i dibayarkan setiap akhir periode i, i = 1, 2,.... Asumsikan {X i } saling bebas dan berdistribusi identik. Model yang merepresentasikan surplus pada waktu n dengan modal awal u adalah U(n; u) = u + n untuk n = 1, 2,.... n X i, i=1 2.2 Bangkrut dan Peluang Bangkrut Definisi Kebangkrutan akan terjadi pada waktu n jika U(n; u) 0 untuk pertama kali pada waktu n, n 1. Definisi Peubah acak T (u) yang menyatakan waktu bangkrut atau time of ruin adalah T (u) = min{n 1 : U(n; u) 0} Definisi Diberikan suatu initial surplu u, peluang ultimate ruin adalah ψ(u) = P (T (u) < ) Definisi Diberikan suatu initial surplus u, peluang bangkrut pada waktu t adalah ψ(t; u) = P (T (u) < t) untuk t = 1, 2,... MA2082 BioStat. 2 K. Syuhada, PhD.

16 2.3 Teori Kebangkrutan (Waktu Diskrit) Pandang kasus ψ(0) atau peluang bangkrut saat initial surplus u = 0: P (bangkrut saatu = 0) = ψ(0) = P (bangkrut saat u = 0 tidak ada klaim saat t = 1)P (tidak ada klaim saat t = 1) + P (bangkrut saat u = 0 ada 1 klaim saat t = 1)P (ada 1 klaim saat t = 1) + P (bangkrut saat u = 0 ada 2 klaim saat t = 1)P (ada 2 klaim saat t = 1) + = ψ(1) f X (0) + 1 f X (1) + 1 f X (2) + = ψ(1) f X (0) + S X (0) Untuk u = 1, ψ(1) = ψ(2) f X (0) + ψ(1) f X (1) + S X (1). Untuk u 1, modelnya adalah u ψ(u) = f X (0) ψ(u + 1) + f X (j) ψ(u + 1 j) + S X (u) j=1 atau ψ(u + 1) = 1 f X (0) ( ψ(u) ) u f X (j) ψ(u + 1 j) S X (u). j=1 Teorema Untuk fungsi surplus waktu diskrit, peluang ultimate ruin memenuhi ketaksamaan Lundberg: ψ(u) exp( r u), dimana r adalah adjustment coefficient, yaitu nilai r > 0 yang memenuhi persamaan E(e r(x 1) ) = 1. Diskusi: Dapatkah anda menunjukkan bahwa log M X (r) = r? MA2082 BioStat. 3 K. Syuhada, PhD.

17 Contoh. Misalkan klaim X setiap saat mengikuti distribusi Bernoulli dengan parameter θ. Peluang ultimate ruin saat u = 0, ψ(0) = ψ(1) f X (0) + S X (0) = ψ(1) (1 θ) + θ = θ = E(X), Sedangkan ψ(1) dapat dihitung dengan mudah dari persamaan diatas yaitu ψ(1) = 0. Dapatkah kita menghitung ψ(2)? Contoh/Latihan: 1. Tunjukkan bahwa untuk model surplus diskrit, ψ(0) = E(X) 2. Diketahui p.a klaim X memiliki fungsi peluang: f X (0) = 0.5; f X (1) = f X (2) = 0.2; f X (3) = 0.1 Hitung peluang ψ(u) untuk u Kebangkrutan Waktu Hingga Diberikan initial surplus u = 0. Pada saat t = 1, kebangkrutan akan terjadi dengan peluang ψ(1; 0) = P (T (0) 1) = P (X 1 = 1) + P (X 1 = 2) + = S X (0) dimana X 1 menyatakan banyaknya klaim pada waktu t = 1. Misalkan u = 1. Kebangkrutan pada saat t = 1 terjadi dengan peluang ψ(1; 1) = P (T (1) 1) = P (X 1 = 2) + P (X 1 = 3) + = S X (1) Kita pandang kasus kebangkrutan saat t = 2, diberikan initial surplus u = 0. Kebangkrutan pada saat atau sebelum (at or before time) t = 2 akan terjadi karena MA2082 BioStat. 4 K. Syuhada, PhD.

18 Bangkrut saat t = 1 Rugi sebesar j saat t = 1 untuk j = 0, 1,..., u yang kemudian diikuti oleh kebangkrutan pada saat/periode t 1 sesudahnya Kebangkrutan saat t, diberikan initial surplus u: u ψ(t; u) = ψ(1; u) + f X (j) ψ(t 1; u + 1 j) j=0 Contoh/Latihan: 1. Misalkan p.a X yang menyatakan klaim memiliki fungsi peluang f X (0) = 0.5; f X (1) = f X (2) = 0.2; f X (3) = 0.1. Hitung peluang kebangkrutan saat atau sebelum waktu t = 1, 2, diberikan u = 0, Claim severity setiap periode berdistribusi geometrik dengan parameter 0.6. Hitung peluang bangkrut saat atau sebelum t = 2, diberikan initial surplus u = Fungsi Surplus Waktu Kontinu Pandang model yang merepresentasikan surplus pada waktu t dengan modal awal u adalah U(t; u) = u + c t S(t), dimana S(t) = X 1 +X 2 + +X N(t) atau dengan kata lain total kerugian atau aggregate loss. Jika N(t) = 0 maka S(t) = 0. Kita akan memandang khusus saat N(t) adalah proses Poisson. Definisi N(t) adalah suatu proses Poisson dengan parameter λ, yaitu laju terjadinya events setiap unit waktu, jika (a) N(t 2 ) N(t 1 ) P OI(λ (t 2 t 1 )) (b) N(t) memenuhi independent increments MA2082 BioStat. 5 K. Syuhada, PhD.

19 Diskusi: S(t) merupakan compound Poisson process U(t; u) merupakan compound Poisson surplus process E(S(1)) = E(N(1))E(X) = λ µ X c = (1 + θ)e(s(1)), dimana θ > 0 adalah loading factor Contoh/Latihan: 1. Misalkan p.a X yang menyatakan klaim memiliki fungsi peluang f X (0) = 0.5; f X (1) = f X (2) = 0.2; f X (3) = 0.1. Hitung r. Hitung ketaksamaan Lundberg untuk u = 0, Dapatkah anda menentukan ketaksamaan Lundberg untuk kasus waktu kontinu? MA2082 BioStat. 6 K. Syuhada, PhD.

MA4181 MODEL RISIKO Enjoy the Risks

MA4181 MODEL RISIKO Enjoy the Risks Catatan Kuliah MA48 MODEL RISIKO Enjoy the Risks disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2 Tentang MA48 Model Risiko A. Jadwal kuliah:

Lebih terperinci

MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan

MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan Control your risk! Konsep Surplus 1 Perusahaan asuransi memiliki modal awal atau initial surplus 2 Perusahaan menerima premi dan membayarkan klaim 3 Premi bersifat

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2018

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2018

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM. Aprida Siska Lestia

UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM. Aprida Siska Lestia Vol.8 No. () Hal. 6-8 UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM Aprida Siska Lestia Program Studi Matematika, FMIPA Universitas Lambung Mangkurat. Email : [email protected]

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad Catatan Kuliah MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.

Lebih terperinci

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah MA3181 Teori Peluang - Khreshna Syuhada Bab 8 1 Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah Ilustrasi 8.1 Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 017 1 Tentang AK5161 Matematika

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula,

BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula, BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas semua konsep yang mendasari penelitian ini yaitu return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula, VaR, estimasi VaR dengan

Lebih terperinci

Peubah Acak, Fungsi Distribusi Bersama dan Copula

Peubah Acak, Fungsi Distribusi Bersama dan Copula Peubah Acak, Fungsi Distribusi Bersama dan Copula oleh Khreshna Syuhada Misalkan kita memiliki dua peubah acak X dan Y yang tidak saling bebas; fungsi distribusinya, berturut-turut, adalah F X dan G Y.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Poisson: Suatu Pengantar Orang Pintar Belajar Stokastik Tentang Kuliah Proses Stokastik Bab 1 : Tentang Peluang Bab 2 : Peluang dan Ekspektasi Bersyarat*

Lebih terperinci

Uji Hipotesis dan Aturan Keputusan

Uji Hipotesis dan Aturan Keputusan Uji Hipotesis dan Aturan Keputusan oleh: Khreshna Syuhada, PhD. 1. Pendahuluan Pada perkuliahan tingkat 2, telah dikenalkan masalah uji hipotesis sebagai berikut: Seorang peneliti memberikan klaim bahwa

Lebih terperinci

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Daftar Isi

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean MA38 Teori Peluang - Khreshna Syuhada Bab 7 Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean Ilustrasi 7. Seorang peserta kuis diberi dua buah pertanyaan (P-, P-2), yang harus dijawab dengan

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya

MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya Orang Pintar Belajar Stokastik Kuliah ProsStok, untuk apa? Fakultas Ekonomi ITB? Math is the language of economics. If you

Lebih terperinci

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika Catatan Kuliah MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA2082

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC Pengantar Seperti sudah disampaikan sebelumnya, analog

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

PROSES POISSON MAJEMUK. 1. Pendahuluan

PROSES POISSON MAJEMUK. 1. Pendahuluan PROSES POISSON MAJEMUK Chris Risen, Respatiwulan, Pangadi Program Studi Matematika FMIPA UNS Abstrak. Proses Poisson merupakan proses menghitung {; t 0} yang digunakan untuk menentukan jumlah kejadian

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 6: Statistika FMIPA Universitas Islam Indonesia Inferensi Statistik Pendahuluan Inferensi Statistik Inferensi statistik adalah metode untuk menarik kesimpulan mengenai suatu populasi. Inferensi statistik

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

III PEMBAHASAN. dengan kendala. Solusi dari permasalahan di atas diberikan oleh Teorema 1 berikut. Teorema 1 R = R (X) didefinisikan oleh

III PEMBAHASAN. dengan kendala. Solusi dari permasalahan di atas diberikan oleh Teorema 1 berikut. Teorema 1 R = R (X) didefinisikan oleh 4 III PEMBAHASAN 3.1. Meminimumkan Peluang Keangkrutan (Ruin Proaility) Keijakan suatu perusahaan asuransi dalam memilih kontrak reasuransi sangatlah penting, salah satu pendekatan rasional untuk memilih

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN PEMBAHASAN Pada bab ini akan dianalisis dan dibahas tentang pengukuran risiko operasional klaim asuransi kesehatan pada PT. XYZ menggunakan metode EVT. Pengukuran risiko operasional

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 2: Sifat-Sifat Estimator Statistika FMIPA Universitas Islam Indonesia Statistik Cukup Dalam kondisi real, kita tidak mengetahui parameter dari populasi data yang akan kita teliti Informasi dalam sampel

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3 Kuis Selamat Datang MA4183 Model Risiko Tanggal 22 Agustus 2015, Waktu: suka-suka menit Misalkan X peubah acak dengan fungsi distribusi berikut: 0, x < 0 1 + x, 0 x < 1 3 5 F (x = 3, 1 x < 2 5 9, 2 x

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp MA3081 STATISTIKA MATEMATIK(A) Bab 2: We love Statistics Pengantar Parameter adalah... ...suatu karakteristik dari populasi. Statistik adalah... ...suatu karakteristik dari sampel. Statistik adalah fungsi

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting Catatan Kuliah MA6281 PREDIKSI DERET WAKTU DAN COPULA Forger The Past(?), Do Forecasting disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK (not just) Always Listening, Always Understanding disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 18 BAB III METODE PENELITIAN Pada bab ini akan dikemukakan metode-metode yang akan digunakan pada bab selanjutnya. Metode-metode pada bab ini yaitu metode Value at Risk dengan pendekatan distribusi normal

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika Catatan Kuliah MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA2082

Lebih terperinci