TEKNIK BUKTI: I Drs. C. Jacob, M.Pd

dokumen-dokumen yang mirip
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

KUANTIFIER Drs. C. Jacob, M.Pd Dalam Bagian 1 kita menentukan kalimat. P(x): x 2 5x + 6 = 0. Untuk setiap x, x 2 5x + 6 = 0.

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil

METODA PEMBUKTIAN DALAM MATEMATIKA

INDUKSI MATEMATIKA A. Penalaran Induktif dan Deduktif Penalaran dalam matematika ada dua jenis, yaitu penalaran induktif dan penalaran deduktif. 1.

LOGIKA DAN BUKTI. Drs. C. Jacob, M.Pd

STUDI PENALARAN DEDUKTIF MAHASISWA PGMI STAIN PURWOKERTO DITINJAU DARI KEMAMPUAN PEMBUKTIAN MATEMATIKA. Mutijah

I. PERNYATAAN DAN NEGASINYA

untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus

Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember

BAB IV PENALARAN MATEMATIKA

1.6 RULES OF INFERENCE

BAB 6 LOGIKA MATEMATIKA

KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks

ARGUMEN (ARGUMENT) Drs. C. Jacob, M.Pd LOGIKA BERUSAHA UTK MEMBEDAKAN ARGUMEN VALID (CORRECT) & INVALID (INCORRECT)

TEKNIK BUKTI: II Drs. C. Jacob, M.Pd

BAB III PENALARAN KONDISIONAL. A. Bentuk Umum dan Struktur Pernyataan Kondisional. Penalaran kondisional berhubungan dengan pernyataan: Jika...

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA

LOGIKA MATEMATIKA (Pendalaman Materi SMA)

METODA PEMBUKTIAN DALAM MATEMATIKA

Logika. Modul 1 PENDAHULUAN

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.

DESKRIPSI BUTIR INSTRUMEN 1 PENILAIAN BUKU TEKS PELAJARAN MATEMATIKA SEKOLAH MENENGAH ATAS/MADRASAH ALIYAH

BAB I PENDAHULUAN. Proses pembelajaran matematika di perguruan tinggi membutuhkan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

Pengantar Analisis Real

LOGIKA MATEMATIKA I. PENDAHULUAN

EKSKLUSIF OR (XOR) DEFINISI

22. MATEMATIKA SMA/MA (PROGRAM IPA)

PEMBUKTIAN, PENALARAN, DAN KOMUNIKASI MATEMATIK. OLEH: DADANG JUANDI JurDikMat FPMIPA UPI 2008

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

PENALARAN INDUKTIF DAN DEDUKTIF

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

BAB IV LOGIKA A. Pernyataan B. Operasi uner

BAB I DASAR-DASAR LOGIKA

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan

BAB I PENDAHULUAN. Matematika berasal dari bahasa latin manthanein atau mathema yang berarti belajar

PENALARAN DALAM MATEMATIKA

PENGANTAR ANALISIS REAL

Guru mengajak siswa untuk menganalisa sifat-sifat lingkaran dalam sebuah segitiga. Dengan mengingatkan kembali sifat garis singgung sebuah lingkaran,

PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin*

KATA PENGANTAR. Assalamu alaikum Wr. Wb.

Kata Pengantar. Terima kasih atas kesediaan Bapak atau Ibu guru yang menggunakan buku Matematika Aplikasi SMA Kelas X XII. Hormat kami, Tim Penyusun

GASING GASING (Sragen GAmpang asyik MenyenaNGkan)

PEMETAAN KEMAMPUAN PEMBUKTIAN MATEMATIS SEBAGAI PRASYARAT MATA KULIAH ANALISIS RIIL MAHASISWA PENDIDIKAN MATEMATIKA

SARANA BERFIKIR ILMIAH

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Induksi Matematika. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar

PRODI PENDIDIKAN MATEMATIKA CIREBON

TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P. Hasil Telaah

KESIMPULAN, IMPLIKASI, DAN SARAN

50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.

Soal Beserta Pembahasan Kunci Jawaban Matematika PDGK4108

Pokok Bahasan. Daftar Pustaka 1 Mahasiswa memahami pernyataan dan yang 1 KB 1 Pernyataan dan negasinya PAT UT1 5 Modul 1

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.

Kegiatan Belajar 1 HAKIKAT MATEMATIKA

PEMECAHAN MASALAH MATEMATIKA

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

BAB I PENDAHULUAN. 1.1 Latar Belakang Pendidikan merupakan salah satu aspek dalam kehidupan yang memegang

PROPOSISI MAJEMUK. dadang mulyana

BAB I PENDAHULUAN. Matematika merupakan salah satu mata pelajaran yang konsep, kaidah,

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

Pertemuan 5. Proposisi Lanjutan. Dosen Ir. Hasanuddin Sirait, MT STMIK Parna Raya Manado HP :

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

1 INDUKSI MATEMATIKA

Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

Matematika Industri I

Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si.

BAB II HAKIKAT DAN PERANAN MATEMATIKA

BAB II TINJAUAN PUSTAKA. menekankan dari hasil eksperimen atau hasil observasi. Matematika terbentuk

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

MATEMATIKA DISKRIT. Logika

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.

BAB I LOGIKA MATEMATIKA

MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)

LOGIKA Matematika Industri I

Jadi penting itu baik, tapi jadi baik jauh lebih penting

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

Modul Matematika X Semester 2 Logika Matematika

PENGEMBANGAN SILABUS TAHUN PELAJARAN 2012/2013

CHAPTER 5 INDUCTION AND RECURSION

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B

STRATEGI PEMECAHAN MASALAH DALAM MATEMATIKA.

BAB 2 LANDASAN TEORI

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 3) A. Pendahuluan Matriks dan Sistem Persamaan Linear

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR

KONSTRUKSI SISTEM BILANGAN

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.

CHAPTER 5 INDUCTION AND RECURSION

BUKTI DAN PEMBUKTIAN DALAM PENGAJARAN MATEMATIKA DI SEKOLAH MENENGAH. Tedy Machmud Fakultas MIPA Universitas Negeri Gorontalo

KAJIAN PENDEKATAN INDUKTIF-DEDUKTIF & BERPIKIR KREATIF

Transkripsi:

TEKNIK BUKTI: I Drs C Jacob, MPd Email: cjacob@upiedu Dalam dua bagian pertama kita memperkenalkan suatu kata-kata sukar logika dan matematika Tujuannya adalah tentu, agar mampu untuk membaca dan menulis matematika, dan ini membutuhkan lebih dari kata-kata sukar yang sesuai Ini juga membutuhkan sintaksis Yakni, kita perlu untuk mengerti bagaimana pernyataan digabung untuk membentuk entitas matematis misterius yang dikenal sebagai suatu bukti Untuk lebih mengerti proses bukti, lebih dulu diperkenalkan dua tipe utama dari penalaran logis: penalaran induktif dan penalaran deduktif CONTOH 31: Perhatikan fungsi f(n) = n 2 + n + 17 Jika kita evaluasi fungsi ini untuk berbagai bilangan bulat positif, kita mengamati bahwa kita selalu memperoleh suatu bilangan prim (Ingat bahwa suatu bilangan bulat positif n adalah prim jika n > 1 dan hanya pembagi positifnya adalah 1 dan n) Misalnya, f(1) = 19 f(2) = 23 f(3) = 29 f(4) = 37 f(8) = 89 f(12) = 173

f(15) = 257 dan semua bilangan ini prim Pada basis pengalaman ini kita dapat konjektur bahwa fungsi f(n) = n 2 + n + 17 selalu menghasilkan bilangan prim apabila n adalah suatu bilangan bulat positif Menggambarkan suatu konklusi dari jenis ini merupakan suatu contoh dari penalaran induktif Pada basis itu terlihat pada salah satu kasus individual membuat suatu konklusi umum Jika kita misalkan p(n) adalah kalimat n 2 + n + 17 adalah suatu bilangan prim dan kita mengerti bahwa n tentang suatu bilangan bulat positif, maka yang dapat kita tanyakan adalah apakah n, p(n) suatu pernyataan benar? Sudahkah kita buktikan benar? Ini adalah penting untuk merealisasikan bahwa tentu saja kita belum membuktikan bahwa ini benar Kita telah menunjukkan bahwa n p(n) adalah benar Kenyataannya, kita mengetahui bahwa p(n) benar untuk banyak n Tetapi kita belum membuktikan bahwa ini benar untuk semua n Bagaimana kita dapat menghadirkan dengan suatu bukti? Ini tidak dapat dihasilkan, karena pernyataan n, p(n) adalah salah Bagaimana Saya mengetahui pernyataan itu salah? Saya mengetahui bahwa ini salah karena Saya dapat memikirkan suatu contoh di mana n 2 + n + 17 adalah bukan prim Suatu contoh seperti itu disebut suatu contohtandingan (counterexample) Salah satu contohtandingan adalah n = 17:

17 2 + 17 + 17 = 17 19 Ada contoh lain juga Misalnya, apabila n = 16, 16 2 + 16 + 17 = 16(16 + 1) + 17 = 17 2, tetapi ini hanya mengambil salah satu contohtandingan untuk membuktikan bahwa n, p(n) adalah salah Pada basis CONTOH 31 dapat menyimpulkan bahwa penalaran induktif tidak dibuktikan secara logis, tetapi sangat berguna Malahan, tipe penalaran ini merupakan basis untuk sebagian besar jika tidak semua eksperimentasi ilmiah Penalaran induktif juga sering merupakan sumber dari konjektur yang apabila dibuktikan menjadi teorema matematika CONTOH 32: Perhatikan fungsi g(n, m) = n 2 + n + m, di mana n dan m adalah bilangan bulat positif Dalam CONTOH 31 kita melihat bahwa g(16, 17) = 16 2 + 16 + 17 = 17 2 Kita juga dapat mengamati bahwa g(1, 2) = 1 2 + 1 + 2 = 4 = 2 2 g(2, 3) = 2 2 + 2 + 3 = 9 = 3 2 g(5, 6) = 5 2 + 5 + 6 = 36 = 6 2 g(12, 13) = 12 2 + 12 + 13 = 169 = 13 2 Pada basis dari contoh-contoh ini (menggunakan penalaran induktif) kita dapat membentuk konjektur n q(n) di mana q(n) adalah

pernyataan g(n, n + 1) = (n + 1) 2 Konjektur kita saat ini adalah benar, dan kita dapat membuktikannya dengan menggunakan hukum aljabar familiar, diperoleh g(n, n + 1) = n 2 + n + (n + 1) [definisi g(n, n + 1)] = n 2 + 2n + 1 [karena n + n = 2n] = (n + 1)(n + 1) [dengan memfaktorkan] = (n + 1) 2 [definisi (n + 1) 2 ] Karena penalaran kita pada masing-masing langkah tidak bergantung pada n yang merupakan setiap bilangan bulat khusus, kita menyimpulkan bahwa n, q(n) benar Kini kita telah membuktikan pernyataan umum n, q(n), kita dapat menggunakannya untuk setiap kasus khusus Jadi, kita mengetahui bahwa g(124, 125) = 125 2 tanpa melakukan setiap komputasi Ini merupakan suatu contoh penalaran deduktif: menggunakan suatu prinsip umum kepada suatu situasi khusus Sebagian besar bukti yang dihadapi dalam matematika berdasarkan pada tipe penalaran ini CONTOH 33: Dalam cara apa penalaran deduktif digunakan untuk membuktikan n, q(n)? Solusi: Aturan umum tentang memfaktorkan polynomial digunakan untuk polynomial khusus n 2 + n + (n + 1) Sebagian besar tipe biasa dari teorema matematis dapat disimbolisasikan sebagai p q, di mana p dan q adalah pernyataan majemuk Untuk

menyatakan bahwa p q adalah suatu teorema adalah dengan mengklaim bahwa p q adalah suatu tautology; yaitu, selalu benar Dari Bagian 1 kita mengetahui bahwa p q benar kecuali kalau p adalah benar dan q adalah salah Sehingga untuk membuktikan bahwa p mengakibatkan q kita tunjukkan bahwa apabila p adalah benar q juga harus benar Apabila suatu implikasi p q diidentifikasi sebagai suatu teorema, biasanya p sebagai hipotesis dan q sebagai konklusi Konstruksi dari suatu implikasi p q dapat merupakan gagasan membangun suatu jembatan pernyataan logis untuk menghubungkan hipotesis p dengan konklusi q Untuk membangun blok ke dalam jembatan memuat lima jenis pernyataan: asumsi atau aksioma atau postulat, definisi, teorema, corollary, dan lemma Asumsi atau aksioma atau postulat dan definisi diakui benar; teorema sebelumnya ditetapkan benar Demikian juga corollary dan lemma Tentu, jika secara aktual membangun jembatannya tidak semua merupakan blok yang jelas untuk menggunakan atau dalam urutan apa, bagaimana, dan mengapa menggunakannya Ini memerlukan pengalaman; sabar, teliti, tekun, intuisi, dan penalaran Dalam membangun suatu jembatan dari hipotesis p ke konklusi q, sering berguna untuk memulai, selama, dan akhir dari suatu proses pengerjaan Yakni, dimulai dengan pertanyaan: Apa yang harus Saya ketahui untuk menyimpulkan bahwa q adalah benar? Sebut Ini q 1 Kemudian bertanya: Apa yang harus Saya ketahui untuk Menyimpulkan bahwa q 1 benar? Sebut ini q 2 Secara kontinu proses ini dilakukan selama produktif, sehingga memperoleh suatu barisan implikasi q 2 q 1 q Kemudian lihat pada hipotesis p dan bertanya, Apa yang dapat Saya simpulkan dari p yang berperan terhadap q? Sebut ini p 1 Kemudian bertanya: Apa yang dapat Saya simpulkan dari p 1? secara kontinu proses ini dilakukan selama produktif, sehingga diperoleh

p p 1 p 2 Harapannya, tentu pada suatu pengertian bagian dari jembatan membiarkan p dapat berhubungan dengan bagian yang kembali pada q, membentuk suatu rentangan lengkap: p p 1 p 2 q 2 q 1 q CONTOH 34: Kita kembali kepada hasil yang dibuktikan dalam CONTOH 32 untuk ilustrasi proses yang baru saja digambarkan Kita mulai dengan menulis teorema itu dalam bentuk p q Salah satu cara melakukan ini adalah sebagai berikut: Jika g(n, m) = n 2 + n + m, maka g(n, n + 1) = (n + 1) 2 Secara simbolis, kita identifikasi hipotesis p: g(n, m) = n 2 + n + m dan konklusi q: g(n, n + 1) = (n + 1) 2 CONTOH 35: Dalam menanyakan pernyataan apa yang mengakibatkan q, ada tentu banyak jawaban Salah satu jawaban sederhana adalah dengan menggunakan definisi dari suatu kuadrat dan misalkan q 1 : g(n, n + 1) = (n + 1)(n + 1) dengan mengalikan hasilkali (n + 1)(n + 1), diperoleh q 2 : g(n, n + 1) = n 2 +2n + 1 Kini tentu q 2 q 1 q, tetapi tidak jelas bagaimana kita dapat kembali selanjutnya Sehingga kita kembali ke hipotesis p dan bertanya apa yang dapat kita simpulkan Karena kita ingin untuk mengetahui sesuatu tentang g(n, n + 1), langkah pertama adalah

dengan menggunakan definisi dari g Yakni, misalkan p 1 : g(n, n + 1) = n 2 + n + (n + 1) Ini jelas bahwa p 1 q 2, sehingga jembatan lengkap, dan kini berbentuk: p p 1 q 2 q 1 q Ini secara esensial merupakan apa yang tertulis dalam CONTOH 32 Berkaitan dengan suatu implikasi p q ada suatu implikasi ~ q ~ p, disebut kontrapositif Ini mudah dilihat menggunakan suatu tabel kebenaran bahwa suatu implikasi dan kontrapositifnya adalah ekuivalen secara logis Jadi, salah satu cara membuktikan suatu implikasi adalah dengan kontrpositifnya CONTOH 36: (a) Gunakan suatu tabel kebenaran untuk membuktikan bahwa p q dan ~ q ~ p adalah ekuivalen secara logis Diserahkan kepada pembaca sebagai latihan (b) Apakah p q ekuivalen secara logis q q? Solusi: (b) p q tidak ekuivalen secara logis dengan q p Bentuk q p disebut konvers dari p q atau sebaliknya p q disebut konvers dari q p CONTOH 37: Kontrapositif dari teorema Jika 7m adalah suatu bilangan ganjil, maka m adalah suatu bilangan ganjil adalah Jika m adalah bukan suatu bilangan ganjil, maka 7m adalah bukan suatu bilangan ganjil atau secara ekuivalen, Jika m adalah suatu bilangan genap, maka 7m adalah suatu bilangan genap (Ingat bahwa suatu bilangan m adalah genap jika dapat

ditulis sebagai 2k untuk suatu bilangan bulat k Jika suatu bilangan adalah tidak genap maka ia ganjil Ini untuk dimengerti di sini bahwa kita berbicara tentang bilangan bulat) Menggunakan kontrapositif, kita dapat konstruk suatu bukti dari teorema itu sebagai berikut: Hipotesis: m adalah suatu bilangan genap 2m = 2k untuk suatu bilangan bulat k [definisi] 7m = 7(2k) [sifat perkalian diketahui] 7m = 2(7k) [sifat perkalian diketahui] 7k adalah suatu bilangan bulat [karena k suatu bilangan bulat] Konklusi: 7m adalah suatu [karena 7m adalah 2 kali bilangan genap bilangan bulat 7k] Ini sangat mudah daripada mencoba untuk menunjukkan secara langsung bahwa 7m adalah ganjil mengakibatkan m ganjil CONTOH 38: Tulis kontrapositif dari masing-masing implikasi sebagai berikut (a) Jika n adalah suatu bilangan bulat, maka 2n adalah suatu bilangan genap (b) Kontinuitas adalah suatu kondisi perlu untuk diferensibilitas Solusi: (a)jika 2n adalah suatu bilangan ganjil, maka n adalah bukan suatu bilangan bulat (b) Jika suatu fungsi adalah tidak kontinu, maka tidak diferensiabel

Dalam CONTOH 36 (b) kita melihat bahwa p q adalah tidak ekuivalen secara logis dengan q p yang disebut konvers dari p q Ini memungkinkan untuk suatu implikasi adalah salah, sedangkan konversnya benar Jadi, kita tidak dapat membuktikan p q dengan menunjukkan q p CONTOH 39: Implikasi Jika m 2 > 0, maka m > 0 adalah salah, tetapi konversnya Jika m > 0, maka m 2 > 0 adalah benar CONTOH 310: Tulis konvers dari masing-masing implikasi dalam CONTOH 38 Solusi: (a) Jika 2n adalah suatu bilangan genap, maka n adalah suatu bilangan bulat (b) Jika suatu fungsi adalah kontinu, maka diferensiabel Implikasi lain yang dengan teliti berkaitan dengan p q adalah invers ~ p ~ q Implikasi invers adalah tidak ekuivalen secara logis dengan p q, tetapi ekuivalen secara logis dengan konves Kenyataan, invers adalah kontrapositif dari konvers CONTOH 311: Gunakan suatu tabel kebenaran untuk menunjukkan bahwa invers dan konvers dari p q adalah ekuivalen secara logis Diserahkan kepada pembaca sebagai latihan Melihat pada bentuk kontrapositif dari suatu implikasi merupakan suatu alat berguna dalam membuktikan teorema Karena ini merupakan suatu sifat dari struktur logis dan tidak bergantung pada materi pelajaran, yang dapat digunakan dalam setiap setting yang meliputi suatu implikasi Ada banyak lagi tautology

yang dapat digunakan dalam cara yang sama Beberapa di antaranya disajikan dalam CONTOH 312 CONTOH 312: Tautology berikut berguna dalam mengonstruksi bukti Dua pertama menyatakan, misalnya, bahwa suatu teorema jika dan hanya jika p q dapat dibuktikan dengan menentukan p q dan konversnya q p, menunjukkan p q dan inversnya ~ p ~ q Huruf c digunakan untuk menyatakan suatu pernyataan yang selalu salah Pernyataan seperti ini disebut suatu kontrdiksi Sedangkan daftar tautology ini tidak perlu dihafalkan, ini dapat berguna jika masing- masing tautology dipelajari dengan hati-hati untuk melihat apakah tepat mengatakannya (a) (p q) [(p q) (q p)] (b) (p q) [(p q) ( ~ p ~ q)] (c) (p q) ( ~ q ~ p) (d) p ~ p (e) (p ~ p) c (f) ( ~ p c) p (g) [(p ~ q) c] (p q) (h) [p (p q)] q (i) [ ~ q (p q)] ~ p (j) [ ~ p (p q)] q (k) (p q) p (l) [(p q) (q r)] (p r) (m) [(p 1 p 2 ) (p 2 p 3 ) (p n-1 p n )] (p 1 p n (n) [(p q) r] [p (q r)] (o) [(p q) (r s) (p r)] (q s) (p) [p (q r)] [(p ~ q) r] (q) [(p r) (q r)] [(p q) r]

LATIHAN 3 1 Tulis kontrapositif dari masing-masing implikasi (a) Jika bunga mawar adalah merah, maka bunga violet biru (b) H adalah normal jika H tidak regular (c) Jika K tertutup dan terbatas, maka K adalah kompak 2 Tulis invers dari soal nomor 1 3 Tentukan suatu contohtandingan dari masing-masing pernyataan (a) Untuk setiap bilangan real x, jika x 2 > 4 maka x > 2 (b) Untuk setiap bilangan bulat positif n, n 2 + n + 41 adalah prim (c) Setiap segitiga adalah suatu segitiga siku-siku] 4 Misalkan f adalah fungsi dengan f(x) = 3x 5 Gunakan implikasi kontrapositif untuk membuktikan: Jika x 1 x 2, maka f(x 1 ) f(x 2 ) 5 Dalam masing-masing bagian, suatu daftar hipotesis diberikan Dengan menggunakan tautology dari CONTOH 312 anda menentukan konklusi

yang diinginkan Tentukan tautology mana yang anda gunakan untuk menjustifikasi masing-masing langkah (a) Hipotesis: r ~ s, t s Konklusi: r ~ t (b) Hipotesis: r, ~ t, (r s) t Konklusi: ~ s (c) Hipotesis: r ~ s, t u, s Konklusi: r u t