KATA PENGANTAR. Assalamu alaikum Wr. Wb.
|
|
|
- Erlin Susanto
- 8 tahun lalu
- Tontonan:
Transkripsi
1 KATA PENGANTAR Assalamu alaikum Wr. Wb. Alhamdulillah.. Puji syukur kehadirat Allah SWT. atas segala rahmat dan hidayah-nya. Segala pujian hanya layak kita aturkan kepada Allah SWT. Tuhan seru sekalian alam atas segala berkat, rahmat, taufik, serta petunjuk-nya yang sungguh tiada terkira besarnya, sehingga penulis dapat menyelesaikan makalah yang penulis beri judul infersi,argument,aksioma,teorema,lemma,corollary. Dalam penyusuna makalah ini, penulis mendapat banyak bantuan dari berbagai pihak, oleh karena itu penulis mengucapkan rasa berterimakasih yang sebesar-besarnya kepada mereka, kedua orang tua dan segenap keluarga besar penulis yang telah memberikan dukungan, moril, dan kepercayaan yang sangat berarti bagi penulis. Berkat dukungan mereka semua kesuksesan ini dimulai, dan semoga semua ini bisa memberikan sebuah nilai kebahagiaan dan menjadi bahan tuntunan kearah yang lebih baik lagi. Penulis tentunya berharap isi makalah ini tidak meninggalkan celah, berupa kekurangan atau kesalahan, namun kemungkinan akan selalu tersisa kekurangan yang tidak disadari oleh penulis. Oleh karena itu, penulis mengharapkan kritik dan saran yang membangun agar makalah ini dapat menjadi lebih baik lagi. Akhir kata, penulis mengharapkan agar makalah ini bermanfaat bagi semua pembaca. Wassalamu'alaikum Wr. Wb.
2 DAFTAR ISI KATA PENGANTAR DAFTAR ISI BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah C. Tujuan BAB II PEMBAHASAN A. INFERSI B. ARGUMEN C. AKSIOMA D. TOREMA E. LEMMA F. COROLLARY BAB III KESIMPULAN DAFTAR PUSTAKA
3 A. Latar Belakang. BAB I PENDAHULUAN Salah satu karya Aristoteles adalah logika yang banyak berisiengertian, keputusan, pembuktian silogisme, dan lain-lain. Inti ajaran Aristoteles mengenai logika adalah Syllogismus, yaitu keputusan kedua yang tersusun sedemikian hingga melahirkan keputusan yang ketiga. Logika yang dikemukakan oleh Aristoteles dikenal sebagai logika tradisional, yang menjadi tonggak pemikiran logika. Pada abad ke-18 Masehi, G.W. Leibniz, seorang ahli matematika berkebangsaan Jerman, pertama kali mempelajari logika simbolik. Ahli matematika lainnya yang berjasa dalam pengembangan logika simbolik adalah George Boole, Leonard Euler, John Venn, dan Bertrand Russel. Secara etimologis, logika berasal dari kata Yunani logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga berarti ilmu pengetahuan (Kusumah, 1986). Dalam arti luas, logika adalah suatu cabang ilmu yang mengkaji penurunan-penurunan kesimpulan yang sahih (tidak valid). Proses berpikir yang terjadi di saat menurunkan atau menarik kesimpulan dari pernyataan-pernyataan yang diketahui benar atau dianggap benar itu biasanya disebut dengan penalaran. Melalui logika kita dapat mengetahui kebenaran suatu pernyataan dari suatu kalimat dan mengetahui apakah pernyataan pertama sama maknanya dengan pernyataan kedua. Misalkan, apakah pernyataan Jika sekarang adalah hari Minggu maka sekolah libur. sama artinya dengan Jika sekolah libur maka sekarang adalah hari Minggu.? Untuk menjawab pertanyaan ini tentu kita perlu mengetahui aturan-aturan dalam logika. Contoh lain, misalkan ada dua pernyataan Jika anak pandai maka ia berprestasi di kelas. Jika ia berprestasi di kelas maka ia disayangi guru-gurunya. Lalu, apakah dari dua pernyataan ini kita dapat menyimpulkan Jika ia anak pandai maka ia disayangi guru-gurunya.? Banyak hal yang perlu kita ketahui mengenai logika. Dengan logika, kita juga dapat mengetahui apakah suatu pernyataan bernilai benar atau salah. Hal terpenting yang akan didapatkan setelah mempelajari logika matematika adalah kemampuan atau keahlian mengambil kesimpulan dengan benar atau sah. Logika matematika memberikan dasar bagi sebuah pengambilan kesimpulan dan dapat digunakan dalam banyak aspek kehidupan.
4 B. Rumusan Masalah. Adapun masalah yang akan di bahas dalam makalah ini adalah 1. Apa yang dimaksud dengan infersi? 2. Apa saja kaedah infersi? 3. Apa yang dimaksud dengan argument? 4. Apa yang dimaksud dengan teorema? 5. Apa yang dimaksud dengan aksioma? 6. Bagaimana cara menarik kesimpulan? 7. apa yang dimaksud dengan lemma? 8. apa yang di maksud dengan corollary? C. Tujuan. Adapun tujuan penulisan makalah ini adalah untuk mengetahui nilai kebenaran dari suatu pernyataan, operasi-operasi yang terdapat dalam logika matematika, mengetahui konvers, invers dan kontraposisi dari suatu implikasi, mengetahui mengenai tautologi dan kontradiksi, pernyataan berkuantor serta cara pengambilan kesimpulan dalam logika matematika.
5 BAB II PEMBAHASAN A. INFERENSI Inferensi adalah proses penarikan kesimpulan dari beberapa proposisi. Beberapa kaidah inferensi : 1. Modus Ponen q Cara membacanya : Apabila diketahui jika p maka q benar, dan p benar, disimpulkan q benar. Contoh : : Jika saya belajar, maka saya lulus ujian (benar) : Saya belajar (benar) : Saya lulus ujian (T) Baris pertama dari tabel kebenaran kondisional (implikasi) menunjukkan validitas dari bentuk argumen modus ponen. Modus Tolen : q : ~ q : ~ p
6 Contoh : : Jika hari hujan maka saya memakai jas hujan (T) : Saya tidak memakai jas hujan (T) : Hari tidak hujan (benar) Perhatikan bahwa jika p terjadi maka q terjadi, sehingga jika q tidak terjadi maka p tidak terjadi. Silogisme Hipotesis: q r r Contoh : : Jika kamu benar, saya bersalah (T) : Jika saya bersalah, saya minta maaf (T) : Jika kamu benar, saya minta maaf (T) Silogisme Disjungtif Ú q : ~ q Jika ada kemungkinan bahwa kedua pernyataan p dan q dapat sekaligus bernilai benar, maka argumen di bawah ini tidak valid.
7 q _ : ~ p Tetapi jika ada kemungkinan kedua pernyataan p dan q tidak sekaligus bernilai benar (disjungsi eksklusif), maka sillogisma disjungtif di atas adalah valid. Contoh : 1. : Pengalaman ini berbahaya atau membosankan (T) : Pengalaman ini tidak berbahaya (T) _ : Pengalaman ini membosankan (T) 2. : Obyeknya berwarna merah atau sepatu : Obyek ini berwarna merah : Obyeknya bukan sepatu (tidak valid) Simplikasi ^ q Contoh : : Hamid adalah mahasiwa ITB dan Unes : Hamid adalah mahasiwa ITB Konjungsi
8 Λ q Artinya benar, q benar. Maka p Λ q benar. Tambahan (Addition) ν q Artinya benar, maka p ν q benar (tidak peduli nilai benar atau nilai salah yang dimiliki q). B. Argumen Argumen adalah suatu deret proposisi yang ditulis sebagai p 1 p 2 p 3.. p n yang dalam hal ini, p 1,p 2, p 3.. p n disebut hipotesis (premis), dan q disebut klonkusi. Argument hanya bernilai sahih (valid) dan palsu (invalid). Catatlah bahwa kata valid tidak sama maknanya denga kata benar(true). Contoh argument : jika air laut surut setelah gempa di laut, maka tsunami datang.air laut surut setelah gempa di laut. Karena itu tsunami datang.
9 Adalah sahih. Penyelesaian: Misalkan p adalah jika air laut surut setelah gempa di laut dan q adalah proposisi tsunami datang. Makadapat ditulis sebagai berikut : q C. Aksioma, teorema, lemma, corollary Aksioma adalah proposisi yang diasumsikan benar, aksioma tidak memerlukan pembuktian kebenaran lagi. Contoh aksioma : Untuk semua bilangan real x dan y, berlaku x + y = y + x (hukum komutatif penjumlahan) Teorema adalah proposisi yang sudah terbukti benar. Contoh teorema: Jika dua sisi dari sebuah segitiga sama panjang, maka sudut yang berlawanan dengan sisi tersebut sama besar. Lemma adalah teorema yang digunakan dalam pembuktian teorema lain. contoh lemma: jika n adalah bilangan bulat positif, maka n-1 bilangan positif atau n-1 = 0. Carollary adalah teorema yang mengikuti teorema lain. Contoh carollary: Jika sebuah segitiga sama sisi,maka segitiga tersebut sama sudut. Carolarry ini mengikuti teorema diatas.
EKSKLUSIF OR (XOR) DEFINISI
Logika Matematik EKSKLUSIF OR (XOR) DEFINISI : Misalkan p dan q adalah proposisi. Proposisi salah satu p atau q ditulis p q adalah proposisi yang bernilai benar jika tepat satu diantara p atau q BENAR,
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
PROPOSISI MAJEMUK. dadang mulyana
PROPOSISI MAJEMUK Perangkai logika digunakan untuk mengkombinasikan proposisi-proposisi atomik jadi proposisi majemuk Jangan ada ambiguitas (slah tafsir) Harus ada tanda kurung yang tepat Proposisi-proposisi
Program Studi Teknik Informatika STMIK Tasikmalaya
Materi Kuliah Logika Matematika Oleh: Dadang Mulyana Program Studi Teknik Informatika STMIK Tasikmalaya dadang mulyana 2013 1 Info Dosen Nama : Dadang Mulyana Alamat : Ciamis HP. :- E-mail tugas : [email protected]
Pertemuan 2. Proposisi Bersyarat
Pertemuan 2 Proposisi ersyarat Proposisi ersyarat Definisi 4 Misalkan p dan q adalah proposisi. Proposisi majemuk jika p, maka q disebut proposisi bersyarat (implikasi dan dilambangkan dengan p q Proposisi
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
LOGIKA. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).
Logika Matematik 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif yang bernilai
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
MATEMATIKA DASAR (Validitas Pembuktian)
MATEMATIKA DASAR (Validitas Pembuktian) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Validitas Pembuktian Jember, 2015 1 / 22 Outline 1 Premis
Argumen premis konklusi jika dan hanya jika Tautolog
INFERENSI LOGIKA Argumen adalah suatu pernyataan tegas yang diberikan oleh sekumpulan proposisi P 1, P 2,...,P n yang disebut premis (hipotesa/asumsi) dan menghasilkan proposisi Q yang lain yang disebut
Logika Matematik. Saripudin, M.Pd.
Logika Matematik Saripudin, M.Pd. 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Logika Klasik Matematika Diskret (TKE132107) - Program Studi Teknik
Pengantar Logika. Didin Astriani Prasetyowati, M.Stat UIGM
Pengantar Logika Didin Astriani Prasetyowati, M.Stat UIGM 1 BAB I PENGANTAR LOGIKA Konsep Logika Apakah logika itu? Seringkali Logika didefinisikan sebagai ilmu untuk berfikir dan menalar dengan benar
MateMatika Diskrit. Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T
MateMatika Diskrit Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak akan sulit belajar Bahasa Java. Jika
Bab 5 Proposisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM TEORI PENUNJANG
Bab 5 Proosisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM 1. Memahami tentang Inferensi 2. Memahami tentang Argumentasi dan roosisi 3. Memahami dan menyelesaikan ermasalahan Inferensi TEORI
Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB
Materi Kuliah IF2091 Struktur Diskrit Pengantar Logika Oleh: Rinaldi Munir Program Studi Informatika STEI - ITB 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti
Kuliah 2 1. LOGIKA (LOGIC) Matematika Diskrit. Dr.-Ing. Erwin Sitompul
Kuliah 2 1. LOGIKA (LOGIC) Dr.-Ing. http://zitompul.wordpress.com Solusi Pekerjaan Rumah (PR 1) Dua pedagang barang kelontong mengeluarkan semboyan dagang untuk menarik pembeli. Pedagang pertama mengumbar
KUANTOR. A. Fungsi Pernyataan
A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak akan sulit belajar Bahasa Java. Jika
PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.
BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang
Matematika Diskrit LOGIKA
Matematika Diskrit LOGIKA 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif
Logika Proposisi. Rudi Susanto
Logika Proposisi Rudi Susanto 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa
Materi Kuliah IF2120 Matematika Diskrit. Logika (logic) Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB
Materi Kuliah IF2120 Matematika Diskrit Logika (logic) Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak
PERTEMUAN KE 3 F T T F T F T F
PEREMUAN KE 3 E. DISJUNGSI EKSLUSI (Exclusive OR) Misalkan p dan q adalah proposisi. Exclusive or p dan q, dinyatakan dengan notasi, adalah proposisi yang bernilai benar bila hanya salah satu dari p dan
Materi Kuliah IF2120 Matematika Diskrit. Logika (logic) Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB
Materi Kuliah IF2120 Matematika Diskrit Logika (logic) Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Logika Logika adalah ilmu yang membantu kita dalam berpikir dan menalar (reasoning)
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.
LOGIKA. Logika Nilai kebenaran pernyataan majemuk Ingkaran suatu pernyataan Penarikan kesimpulan. A. Pernyataan, Kalimat Terbuka, Ingkaran.
LOGIKA Standar Kompetensi Lulusan (SKL) Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk, serta mampu menggunakan prinsip logika matematika dalam pemecahan
Materi Kuliah Matematika Komputasi. Oleh: Gembong Edhi Setyawan. Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya
Materi Kuliah Matematika Komputasi Oleh: Gembong Edhi Setyawan Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika
NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG
LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat
LOGIKA MATEMATIKA Talisadika Maifa
22 BAB II LOGIKA MATEMATIKA Talisadika Maifa A. PENDAHULUAN Pembahasan mengenai logika sudah ada sejak lama bahkan sebelum manusia mengenal istilah logika itu sendiri. Menilik kembali kepada sejarahnya,
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi
LOGIKA MATEMATIKA MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM Definisi Proposisi adalah suatu kalimat yang bernilai benar atau salah dan tidak keduanya Proposisi Kalimat Deklaratif Proposisi
PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.
Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
1. SET. Descrete Mathematics 1
1. SET 1 Discrete Mathematics 1. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon 7. Combinatorial 8. Discrete Probability UAS 2 SET (CONT..)
BAB III DASAR DASAR LOGIKA
BAB III DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2
BAB 6 LOGIKA MATEMATIKA
A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya
Logika Matematika. Cece Kustiawan, FPMIPA, UPI
Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan
MAKALAH KELOMPOK. Tentang Pernyataan Majemuk: Implikasi Dan Biimplikasi. Mata Kuliah: Matematika 1. Dosen Pembimbing: Danuri, M.Pd
MAKALAH KELOMPOK Tentang Pernyataan Majemuk: Implikasi Dan Biimplikasi Mata Kuliah: Matematika 1 Dosen Pembimbing: Danuri, M.Pd DISUSUN OLEH: NAMA: 1. LEGIYEM (14144600206) 2. SUTARNI (14144600185) 3.
BAB 1. Logika. Benteng kehidupan yang terkuat adalah kebenaran. (Anonim)
BAB 1 Logika Benteng kehidupan yang terkuat adalah kebenaran. (Anonim) Materi Matematika Diskrit di dalam buku ini dimulai dari pokok bahasan logika. Logika merupakan studi penalaran (reasoning). Dalam
LOGIKA DAN PEMBUKTIAN
BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
LOGIKA MATEMATIKA Menuju TKD 2014
LOGIKA MATEMATIKA Menuju TKD 2014 A. PERNYATAAN MAJEMUK Jenis-jenis pernyataan majemuk: 1. Konjungsi (^ = dan ) A: Hari ini Jowoki kampanye B: Hari ini Jowoki Umroh Konjungsi (A ^ B): Hari ini Jowoki kampanye
Logika Matematika BAGUS PRIAMBODO. Tautologi dan Kontradiksi Argumen 1/Penarikan kesimpulan yang valid: modus ponen, modus tolen.
Modul ke: 6 Logika Matematika Tautologi dan Kontradiksi Argumen 1/Penarikan kesimpulan yang valid: modus ponen, modus tolen Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id
Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.
Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa
6. LOGIKA MATEMATIKA
6. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
Keterampilan Berpikir Kritis dengan Prinsip Logika
Keterampilan Berpikir Kritis dengan Prinsip Logika Rahmi Yuwan (13510031) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali
Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika
Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan
Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya
- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat
LOGIKA Tujuan umum : - Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat Tujuan Khusus: - mahasiswa diharapkan dapat : 1. memahami pengertian proposisi,
ARGUMENTASI. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
ARGUMENTASI Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 1 + 2 = 3 b. Kuala
Matematika Diskrit. Nelly Indriani Widiastuti S.Si., M.T Prodi Teknik Informatika UNIKOM
Matematika Diskrit Nelly Indriani Widiastuti S.Si., M.T Prodi Teknik Informatika UNIKOM 1 Kontrak Belajar Prasyarat : Logika Matematika & Kalkulus II Jadwal: 3 SKS: 3 jam kuliah Toleransi keterlambatan??
DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit
DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi
Logika Proposisi. Adri Priadana ilkomadri.com
Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:
BAB 1 : DASAR-DASAR LOGIKA
BAB 1 : DASAR-DASAR LOGIKA 1.1 PENGERTIAN UMUM LOGIKA Filsafat dan matematika adalah bidang pengetahuan rasional yang ada sejak dahulu. Jauh sebelum matematika berkembang seperti sekarang ini dan penerapannya
PENARIKAN KESIMPULAN/ INFERENSI
PENARIKAN KESIMPULAN/ INFERENSI Proses penarikan kesimpulan dari beberapa proposisi disebut inferensi (inference). Argumen Valid/Invalid Kaidah-kaidah Inferensi Modus Ponens Modus Tollens Silogisme Hipotesis
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.
LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.
LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B
LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali
SATUAN ACARA PERKULIAHAN. ( Logika Informatika ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN LOGIKA INFORMATIKA
Pengesahan Nama Dokumen : LOGIKA INFORMATIKA No Dokumen : No ISO 91:28/IWA 2 1dari 6 Diajukan oleh Imelda Saluza, S.Si., M.Sc. (Dosen Pengampu) Diperiksa oleh Ir. Dedi Hermanto, MT (GPM) Disetujui oleh
ARGUMEN DAN METODE DEDUKSI. Cece Kustiawan, FPMIPA, UPI
ARGUMEN DAN METODE DEDUKSI Pengertian Argumen Argumen merupakan serangkaian pernyataan yang mempunyai ungkapan pernyataan penarikan kesimpulan. Dalam argumen terdapat kata-kata seperti : Jadi, maka, oleh
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.1.0.2009 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi -
MATEMATIKA DISKRIT LOGIKA
MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.
4. LOGIKA MATEMATIKA
4. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
Mahdhivan Syafwan. PAM 123 Pengantar Matematika
Mahdhivan Syafwan PAM 123 Pengantar Matematika APAKAH LOGIKA ITU PENTING? http://hukum.kompasiana.com/2012/03/31/dpr-menunda-sementara-kenaikan-bbm-bersubsidi-451248.html Pasal 7 Ayat 6 : Harga jual eceran
Bab 1 LOGIKA MATEMATIKA
LOGIKA MATEMATIKA ab 1 Dalam setiap melakukan kegiatan sering kita dituntut untuk menggunakan akal dan pikiran. Akal dan pikiran yang dibutuhkan harus mempunyai pola pikir yang tepat, akurat, rasional,
Logika Matematika BAGUS PRIAMBODO. Silogisme Silogisme Hipotesis Penambahan Disjungsi Penyederhanaan Konjungsi. Modul ke: Fakultas FASILKOM
Modul ke: 7 Fakultas FASILKOM Logika Matematika Silogisme Silogisme Hipotesis Penambahan Disjungsi Penyederhanaan Konjungsi BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Kemampuan
DE-ALGEBRAS, E-LOGIC DAN E-SET THEORY. Denik Agustito
DE-ALGEBRAS, E-LOGIC DAN E-SE HEORY Denik Agustito Pendidikan Matematika, Universitas Sarjanawiyata amansiswa Email: denikagustito@yahoocoid ABSRAK Dalam logika biasa, disjungsi yang digunakan dalam beberapa
RENCANA PELAKSANAAN PEMBELAJARAN
RENCANA PELAKSANAAN PEMBELAJARAN Materi Pelajaran : Matematika Kelas/ Semester : X / 2 Pertemuan ke : 1,2 Alokasi Waktu : 5 x 45 menit Standar Kompetensi : Menerapkan logika matematika dalam pemecahan
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
DASAR DASAR LOGIKA. Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2 + 2 = 4
KATA PENGANTAR UCAPAN TERIMA KASIH ABSTRAK DAFTAR ISI DAFTAR TABEL DAFTAR BAGAN
DAFTAR ISI KATA PENGANTAR...i UCAPAN TERIMA KASIH...ii ABSTRAK.iii DAFTAR ISI.iv DAFTAR TABEL.vi DAFTAR BAGAN ix DAFTAR GAMBAR...x DAFTAR LAMPIRAN.xi BAB I PENDAHULUAN... 1 A. Latar Belakang Masalah..
BAHAN AJAR LOGIKA MATEMATIKA
1 BAHAN AJAR LOGIKA MATEMATIKA DI SUSUN OLEH : DRS. ABD. SALAM,MM KELAS X BM & PAR SMK NEGERI 1 SURABAYA LOGIKA MATEMATIKA Standar Kompetensi : Menerapkan logika matematika dalam pemecahan masalah yang
TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P. Hasil Telaah
TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P Nama Matakuliah: Logika Matematika. SKS : 2 Semester : 7 Penulis : Drs. Mujono, M.Pd. I. Tinjauan matakuliah: tidak ada Hasil Telaah II. Sajian Materi: a. Relevansi
Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C
MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda
BAB VI. LOGIKA MATEMATIKA
BAB VI. LOGIKA MATEMATIKA Ingkaran, Disjungsi, Konjungsi, Implikasi, Biimplikasi : Konvers, Invers, Kontraposisi : Tabel Kebenaran : p q ~ p ~ q p q p q p q p q B B S S B B B B B S S B B S S S S B B S
Modul Matematika X Semester 2 Logika Matematika
Modul Matematika X Semester 2 Logika Matematika Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2014 2015 SMA Santa Angela Jl. Merdeka No. 24 Bandung LOGIKA MATEMATIKA A. Standar Kompetensi : Menggunakan
PENGANTAR LOGIKA INFORMATIKA
P a g e 1 PENGANTAR LOGIKA INFORMATIKA 1. Pendahuluan a. Definisi logika Logika berasal dari bahasa Yunani logos. Logika adalah: ilmu untuk berpikir dan menalar dengan benar ilmu pengetahuan yang mempelajari
LOGIKA MATEMATIKA. Modul Matematika By : Syaiful Hamzah Nasution
LOGIKA MATEMATIKA Logika matematika mempunyai peranan mendasar dalam perkembangan teknologi computer. Karena logika digunakan dalam berbagai aspek di bidang computer seperti pemrograman, ersitektur computer,
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata
BAB IV LOGIKA A. Pernyataan B. Operasi uner
BAB IV LOGIKA A. Pernyataan Pernyataan adalah kalimat matematika tertutup yang benar atau yang salah, tetapi tidak kedua-duanya pada saat yang bersamaan. Pernyataan biasa dilambangkan dengan p, q, r,...
PENALARAN INDUKTIF DAN DEDUKTIF
Unit 6 PENALARAN INDUKTIF DAN DEDUKTIF Wahyudi Pendahuluan U nit ini membahas tentang penalaran induktif dan deduktif yang berisi penarikan kesimpulan dan penalaran indukti deduktif. Dalam penalaran induktif
LOGIKA & PEMBUKTIAN. Anita T. Kurniawati, MSi LOGIKA
LOGIKA & PEMBUKTIAN Anita T. Kurniawati, MSi LOGIKA Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). 1 Definisi: Kalimat deklaratif
KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks
KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat
Dasar-dasar Logika. (Review)
Dasar-dasar Logika (Review) Intro Logika berhubungan dengan kalimat-kalimat dan hubungan antar kalimat. Tujuan: menentukan apakah suatu kalimat / masalah bernilai benar (TRUE) atau salah (FALSE) Kalimat
Latihan Materi LOGIKA MATEMATIKA. 1. Tentukan negasi dari pernyataan-pernyataan berikut ini.
Latihan Materi LOGIKA MATEMATIKA 1. Tentukan negasi dari pernyataan-pernyataan berikut ini. (a) Tarif dasar listrik naik. (b) 10 = 50 5 (c) Celana Dono berwarna hitam. (d) Semua jenis ikan bertelur. (e)
LOGIKA MATEMATIKA. Pernyataan
LOGIKA MATEMATIKA 1 PERNYATAAN DAN UKAN PERNYATAAN A Pengertian logika Matematika Logika adalah ilmu untuk berpikir dan menalar dengan benar. Logika matematika (logika simbolik) adalah ilmu tentang penyimpulan
Jadi penting itu baik, tapi jadi baik jauh lebih penting
LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari
