SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

dokumen-dokumen yang mirip
SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

BAB 2 TINJAUAN PUSTAKA

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

PAM 573 Persamaan Diferensial Parsial Topik: Metode Beda Hingga pada Turunan Fungsi

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

Interpolasi dan Ekstrapolasi

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY

Perbandingan Model Black Scholes dan Brennan Schwartz untuk Menentukan Harga American Option

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

Interpolasi dan Ekstrapolasi

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

Persamaan Diferensial

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

Solusi Numerik Persamaan Transport dengan RBF

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

PAM 252 Metode Numerik Bab 5 Turunan Numerik

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

1.1 Latar Belakang dan Identifikasi Masalah

Penyelesaian Numerik Advection Equation 1 Dimensi dengan EFG-DGM

KONSEP DASAR PERSAMAAN DIFERENSIAL

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

UNNES Journal of Mathematics

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

Reflektor Gelombang 1 balok

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

1 BAB 4 ANALISIS DAN BAHASAN

Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter

Persamaan Diferensial Parsial CNH3C3

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

BAB 2 TINJAUAN PUSTAKA

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN :

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

PENYELESAIAN PERSAMAAN DIFFERENSIAL PARTIAL NON LINIEAR DENGAN METODE BARU YANG LEBIH EFISIEN

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline

BAB 5 Interpolasi dan Aproksimasi

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA.

Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Sidang Tugas Akhir - Juli 2013

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

PDP linear orde 2 Agus Yodi Gunawan

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI

Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER ABSTRACT

SOLUSI NON NEGATIF MASALAH NILAI AWAL DENGAN FUNGSI GAYA MEMUAT TURUNAN

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

BAB I PENDAHULUAN. 1.1 Latar Belakang

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

BAB IV PERSAMAAN INTEGRAL FREDHOLM BENTUK KEDUA

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

Persamaan Diferensial Parsial CNH3C3

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan

TUGAS AKHIR KAJIAN SKEMA BEDA HINGGA TAK-STANDAR DARI TIPE PREDICTOR-CORRECTOR UNTUK MODEL EPIDEMIK SIR

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November

OPTIMASI PROGRAM LINIER PECAHAN DENGAN FUNGSI TUJUAN BERKOEFISIEN INTERVAL

PENDAHULUAN METODE NUMERIK

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

BAB 2 LANDASAN TEORI

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

Transkripsi:

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS Nafanisya Mulia 1, Yudhi Purwananto 2, Rully Soelaiman 3 Teknik Informatika, Fakultas Teknologi Informasi, ITS email : na.fani.sya@gmail.com 1, yudhi@if.its.ac.id 2, rully@if.its.ac.id 3 ABSTRAKSI Persamaan Burgers merupakan persamaan differensial parsial non-linier yang terkenal. Persamaan ini telah dipelajari oleh banyak penelitian karena memiliki perilaku gelombang kejut ketika koefisien viskositas kinematik bernilai kecil. Banyak metode numerik dibangun untuk menyelesaikan persamaan ini. Namun solusi yang ada masih belum tepat untuk nilai viskositas yang kecil. Dengan menggunakan metode quasi-interpolant dengan cubic B-splines beserta perluasan asimtotik error yang diberikan multi-node higher order expansions dibangun sebuah skema numerik untuk menyelesaikan persamaan Burgers. Hasil uji coba pada tugas akhir ini menunjukkan bahwa tingkat akurasi dari metode Cubic B-spline Quasiinterpolant dan Multi-node Higher Order Expansions ini, jauh lebih itnggi dibandingkan dengan metode exactexplicit finite difference. Kata kunci: persamaan Burgers, metode numerik, cubic B-spline, quasi-interpolant, higher order expansion 1 PENDAHULUAN Persamaan Burgers merupakan persamaan differensial parsial fundamental dari mekanika fluida. Persamaan ini telah dipelajari oleh banyak peneliti karena beberapa alasan berikut: (1) mengandung bentuk yang paling sederhana dari nilai adveksi non-linier uu x dan nilai disipasi u xx /R untuk mensimulasikan fenomena fisika dari gerakan gelombang, (2) memiliki perilaku gelombang kejut ketika koefisien viskositas kinematik v (=1/R) bernilai kecil. Persamaan ini dapat dipecahkan secara tepat untuk kondisi awal dan kondisi batas yang berubahubah. Namun solusi yang ada, masih belum tepat untuk menyelesaikan persamaan Burgers ketika koefisien viskositasnya bernilai kecil. Sehingga banyak solusi numerik dibangun untuk memecahkan permasalahan tersebut. Untuk kecepatan u dan koefisien viskositas v (=1/R) yang diberikan, bentuk umum persamaan Burgers adalah. (1-1) Initial condition pada persamaan Burgers yaitu ketika t bernilai nol diberikan sebagai berikut: dan boundary condition sebagai berikut: (1-2) (1-3) Beberapa metode numerik yang dibangun untuk memecahkan persamaan Burgers tersebut diantaranya, cubic spline collocation, implicit finite difference schemes with cubic spline interpolating spatial derivatives, metode B-spline Galerkin, dan metode B-spline collocation. Selain itu, metode numerik yang menggunakan teknik quasiinterpolant dengan Multiquadratics juga dikembangkan untuk memecahkan persamaan Burgers. Namun, skema tersebut menghasilkan tingkat ketepatan yang rendah. Teknik quasi-interpolant juga digunakan untuk memecahkan persamaan Burgers berdasarkan tipe dari cubic B-spline quasi-interpolant yang hasilnya lebih tepat dibandingkan skema Multiquadratic quasi-interpolant. Dari metode-metode diatas, didapatkan bahwa metode spline dan quasi-interpolant adalah metode yang sederhana dan efektif untuk memecahkan persamaan Burgers dan metode Cubic B-Spline Quasi-Interpolant yang sebelumnya telah digunakan untuk memecahkan persamaan Burgers menghasilkan tingkat keakuratan hasil yang lebih tinggi dibandingkan metode-metode sebelumnya. Maka dari itu, dalam tugas akhir ini digunakan teknik quasi-interpolant dengan cubic B-spline yang dimodifikasi menggunakan ide dari Multi-node Higher Order Expansions untuk mendapatkan solusi terbaik dalam memecahkan persamaan Burgers. Multinode higher order expansions merupakan pendekatan polinomial numerik yang sangat berguna untuk suatu fungsi agar turunan tertingginya dapat diperoleh secara mudah. Jika metode ini digabungkan dengan metode quasi-interpolant, maka dapat menghasilkan tingkat keakuratan yang lebih tinggi. 1

2 METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS Univariate Spline Quasi-interpolant didefinisikan sebagai berikut: dan. dimana Maka perkiraan rumus diferensialnya adalah (2-7) (2-1) dimana merupakan basis B-spline dari beberapa ruang di spline dan d menunjukkan derajat dari quasiinterpolant. Koefisien merupakan koefisien fungsional dengan tipe diskrit, maka dari itu merupakan kombinasi linier dari nilai diskrit f pada beberapa titik di sekitar daerah. Untuk quasi-interpolant dengan derajat tiga (kubik),, (2-2) koefisien fungsionalnya diberikan sebagai berikut:, dimana f i = f(x i )(0 i n)., (2-3) Gabungan antara cubic B-spline dengan quasi-interpolant dapat menghasilkan solusi yang lebih optimal. Diberikan persamaan berikut:,, dimana derivasi matriks D 1, D 2 ϵ R (n+1)(n+1) merupakan matriks yang berisi koefisien-koefisien turunan pertama dan turunan kedua pada H rq. Matriks D 1 didapatkan dari turunan pertama, sedangkan matriks D 2 dari turunan kedua H rq. Matriks D 1 dan D 2 didefinisikan sebagai berikut: Dengan h dan τ merupakan ukuran langkah seragam dalam arah ruang dan waktu, maka x i = ih (0 i n), t k = kτ (0 k K), dan. Dari hasil diatas dapat diberikan skema numerik berikut: dimana (2-8) (2-9) dan adalah komponen ke-(i + 1) dari vektor dan. Dengan kondisi awal dan kondisi batas sebagai berikut: (2-10) (2-11) Dengan demikian, didapatkan solusi numerik Persamaan Burger dengan menggunakan langkah (2-8) sampai dengan (2-11). (2-) Persamaan diatas memiliki hasil yang tepat pada ruang π d+r, maka H r f merupakan multi-node higher order expansions untuk f. Berdasarkan hasil diatas didapat cubic B-spline yang dimodifikasi sebagai berikut: dimana kesalahan estimasi error sebagai berikut: (2-5) Dengan (2-6) Dengan memberikan nilai r dan mengganti turunan pertama dengan turunan pembagian awal yang pertama dalam H rq, maka didaptkan koefisien-koefisien turunan ( Jika dan 2

D 1 = -25/12 8/12-36/12 16/12-3/12 0 0... 0-3/12-10/12 18/12-6/12 1/12 0 0... 0 7/1-71/1-50/1 16/1-37/1 5/1 0... 0........................... 0... 0 7/1-71/1-50/1 16/1-37/1 5/1 0... 0 0 7/1-71/1-50/1 11/1-27/1 0... 0 0 0 1/12-8/12 1/12 6/12 0... 0 0 0-1/12 6/12-21/12 16/12 D 2 = 35/12-10/12 11/12-56/12 11/12 0 0... 0 11/12-20/12 6/12 /12-1/12 0 0... 0-3/2 37/2-70/2 2/2-7/2 1/2 0... 0........................... 0... 0-3/2 37/2-70/2 2/2-7/2 1/2 0... 0 0-3/2 37/2-70/2 1/2-5/2 0... 0 0 0-1/12 16/12-29/12 1/12 0... 0 0 0-1/12 /12-5/12 2/12 3 METODE EXACT_EXPLICIT FINITE DIFFERENCE Metode ini didasarkan pada solusi finite-difference. Pendekatan standerd explicit finite-difference pada persamaan (1-1) dengan kondisi batas (1-3) dimana, diberikan sebagai berikut: (3-1a) (3-1b) (3-1c) untuk j = 0, 1,..., J, dimana J merupakan jumlah node hasil diskritisasi waktu (t) dan n merupakan node hasil diskritisasi ruang (x), dengan truncation error dari O(k) + O(h 2 ). Pada persamaan diatas, r = kv/h 2 dan θ i,j mendenotasikan pendekatan finite-difference terhadap solusi eksak u(x i, t j ) pada titik (x i, t j ). Diasumsikan bahwa persamaan finite-difference (3-1b) memiliki solusi dari bentuk berikut: (3-2) dimana f i hanya bergantung pada i (atau x) dan g j hanya bergantung pada j (atau t). Substitusi dari persamaan (3-2) ke dalam persamaan (3-1b), menghasilkan persamaan berikut: (3-3) Karena ruas sebelah kiri pada persamaan (2-0) bergantung pada j dan ruas sebelah kanan bergantung pada i, maka kedua ruas pada persamaan (2-0) harus disamadengankan dengan konstanta c, sehingga menghasilkan dua buah persamaan difference homogen untuk f i dan g j, yang diberikan sebagai berikut: (3-) (3-5) Bentuk solusi umum dari persamaan (2-1) diberikan sebagai berikut: (3-6) dimana A merupakan sembarang konstanta. Karena solusi dari persamaan (2-1) bersifat periodik di x, solusi dar persamaan (2-2) juga bersifat periodik di i. Dengan demikian, maka : (3-7) dimana B dan C mendenotasikan sembarang konstanta, dan 3

(3-8) Kondisi batas (2-3) pada x = 0 dan x = 1 diberikan sebagai berikut: (untuk semua j) (3-9) (untuk semua j) (3-10) Dengan menerapkan persamaan (3-9) dan (3-10) pada persamaan (3-2) dan memanfaatkan persamaan (3-7), maka diperoleh: dan (3-11) Karena solusi dari permasalahan diatas dianggap sepele, maka sin(nα) = 0 dengan α = sπ/n, s = 0, 1, 2,.... sehingga persamaan difference (3-7) menjadi sebagai berikut: (3-18) Ketika r = kv/h 2, solusi exact-explicit finite difference (3-18) berkumpul pada solusi Fourier untuk nilai terhingga dari waktu (t). IMPLEMENTASI Secara umum, sistem perangkat lunak ini mengimplementasikan metode cubic b-spline quasiinterpolant dan multi-node higher order expansions. Diagram alir perancangan sistem secara umum diberikan sebagai berikut: Mulai dan dari persamaan (3-8) diperoleh: (3-12) (3-13) Initial condition & Boundary condition persamaan Burgers Diskritisasi domain ruang dan waktu Substitusi pada persamaan (3-6), (3-12), dan (3-13) menghasilkan persamaan : Komputasi Solusi persamaan Burgers dimana D = AB. (3-1) Karena persamaan (3-1b) linier di θ i,j, penjumlahan dari solusi yang berbeda merupakan solusi dari persamaan (3-1b). Sehingga diberikan bentuk sebagai berikut: (3-15) Dengan menggunakan kondisi awal (1-2) pada persamaan (3-15), menghasilkan dimana : dan, s = 1, 2, 3,.... (3-16) Dengan menggunakan transformasi Hoph-Cole [6] yang diberikan sebagai berikut: (3-17) maka diperoleh solusi exact-explicit finite difference untuk permasalahan non-linier yang diberikan sebagai berikut: u(x,t) Selesai Gambar 1 Diagram alir garis besar sistem Langkah-langkah untuk mendapatkan solusi dari persamaan Burgers diatas adalah sebagai berikut: 1. Mendapatkan boundary condition dan initial condition persamaan Burgers, serta parameter lain yang dibutuhkan, seperti bilangan Reynolds, jarak diskritisasi ruang dan waktu (h dan τ), serta domain waktu (t) yang diinginkan. 2. Proses diskritisasi domain ruang (x) dan waktu (t) menjadi n node ruang dan K node waktu. Jarak antar node ruang dinotasikan dengan h, sedangkan jarak antar node waktu dinotasikan dengan τ. 3. Proses komputasi menggunakan solusi persamaan Burgers. Ada tiga buah solusi yang digunakan dalam aplikasi ini, yaitu solusi eksak, solusi numerik dengan metode cubic B-spline quasi-interpolant dan solusi numerik dengan metode exact-explicite finite difference sebagai solusi pembanding.. Dari tiga buah solusi diatas akan didapatkan hasil komputasi u(xi,tk). Nilai solusi selanjutnya akan digunakan untuk menghitung nilai error.

5 UJI COBA DAN EVALUASI Pada bagian ini akan ditampilkan data uji coba dengan beberapa example, nilai R, τ, h, dan t untuk menguji keakuratan solusi dari metode yang digunakan 5.1 Example 1 Pada uji coba ini, boundary condition dan initial condition yang digunakan, diambil dari example 1. Nilai R yang digunakan adalah 1, nilai h adalah 0.05. Sedangkan nilai t atau waktu yang digunakan adalah 0.1 dengan nilai τ 0.00001. 5.2 Example 2 Pada uji coba ini, boundary condition dan initial condition yang digunakan, diambil dari example 2. Nilai R yang digunakan adalah 1, nilai h adalah 0.0125. Sedangkan nilai t atau waktu yang digunakan adalah 0.1 dengan nilai τ 0.00001 Gambar Kurva metode yang diajukan Gambar 2 Kurva metode yang diajukan Gambar 5 Kurva metode pembanding Tabel 2 Hasil perhitungan example 2 x Gambar 3 Kurva metode pembanding Tabel 1 Hasil perhitungan example 1 Solusi eksak Metode yang Diajukan Metode Pembanding 0 0 0 0 0.1 0.1095 0.1095 0.1098 0.2 0.2098 0.2098 0.2102 0.3 0.2919 0.2919 0.2925 0. 0.379 0.379 0.386 0.5 0.3716 0.3716 0.3723 0.6 0.359 0.359 0.3597 0.7 0.3099 0.3099 0.3105 0.8 0.2278 0.2278 0.2282 0.9 0.1207 0.1207 0.1209 1.80E-17 0 0 x Solusi eksak Metode Diajukan yang 0 0 0 0 Metode Pembanding 0.1 0.1129 0.1129 0.1129 0.2 0.2163 0.2162 0.2163 0.3 0.301 0.301 0.301 0. 0.3589 0.3588 0.3589 0.5 0.383 0.383 0.3835 0.6 0.3707 0.3706 0.3707 0.7 0.3201 0.3201 0.3201 0.8 0.235 0.235 0.235 0.9 0.127 0.127 0.127 1.96E-17 0 0 5

5.3 Example 3 Boundary condition dan initial condition yang digunakan, diambil dari example 3. Nilai R yang digunakan adalah 100, nilai h adalah 0.025. Sedangkan nilai t atau waktu yang digunakan adalah 1 dengan nilai τ 0.001. pertama dengan example 1 serta nilai h = 0.05, t = 0.1, τ = 0.00001, dan R = 1. 2. Semakin besar nilai R yang diberikan, maka akan mempengaruhi kurva serta tingkat akurasi yang dihasilkan. 3. Boundary condition dan intial condition mempengaruhi solusi yang dihasilkan. Menurut hasil uji coba, boundary condition dan intial condition pada example 1 memiliki tingkat akurasi yang lebih timggi.. Metode cubic B-spline quasi-interpolant dan multinode higher order expansions menghasilkan tingkat akurasi yang lebih tinggi dibandingkan dengan metode exact-explicit finite difference. REFERENSI Gambar 6 Kurva metode yang diajukan Tabel 3 Hasil perhitungan example 3 x Solusi eksak Metode yang Diajukan 0 1 1 0.1 1 1 0.2 1 1 0.3 1 1 0. 1 1 0.5 0.9999 0.9999 0.6 0.996 0.9951 0.7 0.788 0.7977 0.8 0.2379 0.2383 0.9 0.2007 0.2006 1 0.2 0.2 [1] Min Xu, Ren-Hong Wang, Ji-Hong Zhang, Qin Fang, 2010, A novel numerical scheme for solving Burger s equation, Elsevier Applied Mathematics and Computation ScienceDirect. [2] X.H. Han, Multi-node higher order expansions of a function, J. Approx. Theory 12 (2003) 22 253. [3] P. Sablonnière, Univariate spline quasi-interpolants and applications to numerical analysis, Rend. Sem. Mat. Univ. Pol. Torino 63 (2005) 211 222. [] C. de Boor, An asymptotic expansion for the error in a linearmap that reproduces polynomials of a certain order, J. Approx. Theory 13 (2005) 171 17. [5] S. Kutluay, A.R. Bahadır, A. Ozdes, Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference method, J. Comput. Appl. Math. 103 (1999) 251 261. [6] E.L. Miller, Predictor-correetor studies of Burger's model of turbulent flow, M.S. Thesis, University of Delaware, Newark, Delaware, 1966. 6 KESIMPULAN Pada bab ini dijelaskan mengenai kesimpulan akhir yang didapat setelah melakukan serangkaian uji coba pada bab sebelumnya 1. Pemilihan nilai h dan τ berpengaruh terhadap solusi aproksimasi yang dihasilkan. Semakin kecil jarak diskritisasi ruang (h) yang digunakan, aproksimasi yang dihasilkan semakin mendekati nilai solusi eksak dan kurva yang dihasilkan akan semakin halus. Begitu pula jarak diskritisasi waktu yang digunakan (τ), semakin kecil τ yang digunakan maka kurva yang terbentuk semakin stabil Pada uji coba dapat dilihat bahwa skenario yang menghasilkan solusi aproksimasi terbaik didapatkan dari nilai skenario 6