Persamaan Diferensial Parsial CNH3C3

Ukuran: px
Mulai penontonan dengan halaman:

Download "Persamaan Diferensial Parsial CNH3C3"

Transkripsi

1 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan

2 1 Masalah Gelombang order dua 1D 2 Skema Numerik 3 Latihan 4 Algorithm 5 Next

3 Masalah Gelombang order dua 1D Governing equations Kita akan membahas PDP tipe hiperbolik yakni persamaan gelombang orde dua dimensi satu. Persamaan pengantur dari persamaan gelombang pada domain [0, L] diberikan sebagai berikut: 2 u(x, t) = t 2 c 2 2 u(x, t), x 2 x (0, L), t > 0, (1.1) u(0, t) = 0, u(l, t) = 0, t 0, (1.2) u(x, 0) = f (x), u(x, 0) = g(x), x [0, L]. (1.3) t dengan u(x, t) menyatakan gelombang elastis senar pada posisi x dan waktu t. Konstanta c meyatakan kecepatan gelombang. Karena persamaan (1.1) merupakan persamaan PDP orde dua terhadap waktu, maka pada masalah nilai batas membutuhkan dua buah kondisi awal (1.3).

4 Skema Numerik Partisi domain 1D Bentuk diskrit dari gelombang ( ) dengan menggunakan metode beda hingga skema eksplisit akan diberikan. Figure : Partisi domain perhitungan Ω satu-dimensi. Untuk mempermudah dan menyederhanakan masalah, misalkan domain spasial kita Ω = [0, 1] yaitu dengan panjang domain L = 1 dan domain waktu [0, T ]. Tahap pertama, diskrit dari domain spasial M = {1, 2, 3,, M 1} dibentuk dengan membagi domain Ω menjadi M buah partisi, dengan M Z + (lihat Gambar 1).

5 Skema Numerik Partisi domain 1D Tahap pertama, diskrit dari domain spasial dalam M = {1, 2, 3,, M 1} dibentuk dengan membagi domain Ω menjadi M buah partisi, dengan M Z + (lihat Gambar di atas). Untuk grid batas hanya ada dua yakni {0, M}, jadi diskrit domain keseluruhan dapat ditulis sebagai M + {0, M}. Tahap kedua, diskrit domain waktu didenisikan sebagai T = {0, 1, 2, 3,, T n }, dengan T n Z + adalah banyaknya partisi waktu.

6 Skema Numerik Partisi domain 1D Selanjutnya kita akan bertumpu pada lattice untuk mengampiri solusi secara numerik. Jika ukuran partisi/grid untuk spasial dan waktu seragam, maka ukuran grid dapat kita notasikan dengan x dan t berurutan.

7 Skema Numerik Partisi domain 1D Sehingga titik grid (x k, t n ) dapat dipilih sebagai: x k = k x, k M, x = 1 M, t n = n t, n T t = T T n,. Ganti notasi u(t, x) pada persamaan ( ) dengan notasi v(x k, t n ) = v n k untuk solusi numerik.

8 Skema Numerik Diskritisasi 1D wave Sehingga metode beda hingga skema eksplisit untuk persamaan (1.1) adalah v n+1 k 2v n k + v n 1 k t 2 = c 2 v n k+1 2v n k + v n k 1, x 2 k M, n T, (2.1) dengan v(x k, t n ) = v n k menyatakan solusi numerik untuk u(x, t).

9 Skema Numerik Diskritisasi 1D wave Akan tetapi, untuk memulai proses perhitungan, kita memerlukan nilai v pada dua level waktu pertama. Yaitu kita perlu mengetahui nilai {v 0 k }M k=0 dan {v 1 k }M k=0. Dengan jelas kita dapat menggunakan nilai untuk level waktu n = 0 dengan v 0 k = f (x k), k M + {0, M}. (2.2)

10 Skema Numerik Diskritisasi 1D wave Sedangkan, untuk mencari nilai pada level waktu n = 1, kita dapat menggunakan expansi Taylor orde dua terhadap waktu dan persamaan u t = g(x) pada (1.3) yaitu u(x, t) = u(x, 0) + ( t)u t (x, 0) + t2 2 u tt(x, 0) + O ( ( t) 3) = f (x) + ( t)g(x) + t2 2 f (x) + O ( ( t) 3). dengan f (x) dapat dicari melalui persamaan (1.1) yaitu u tt (x, 0) = u xx (x, 0) = f (x).

11 Skema Numerik Diskritisasi 1D wave Sehingga kita dapat menghitung nilai v 1 k u(x k, t) dengan untuk menghampiri v 1 k v 0 k t = g(x j ) + t 2 x 2 (v 0 k 1 2v 0 k + v 0 k 1 ), k M. (2.3)

12 Skema Numerik Diskritisasi nilai awal 1D wave Untuk n=0 v 0 k = f (x k), k M + {0, M}. (2.4) Untuk n=1 v 1 k v 0 k t = g(x j ) + t 2 x 2 (v 0 k 1 2v 0 k + v 0 k 1 ), k M. (2.5)

13 Latihan Latihan 1D wave Diberikan masalah nilai awal dan batas untuk persamaan panas seperti berikut: 2 u t = 2 c 2 2 u, x (0, 1), t > 0 x 2 u(x, 0) = f (x), u t (x, 0) = g(x), x [0, 1] u(0, t) = a(t), u(1, t) = b(t), t 0 dengan f (0) = a(0), dan f (1) = b(0). 1. Tentukan nilai v(k x, n t) untuk n = 0, 1, 2, 5, dengan f (x) = sin(2πx), g(x) = 0, a = b = 0, M = 10, c = 1, dan t = ! 2. Sama dengan pertanyaan (a), akan tetapi gunakan t = !

14 Algorithm Algorithm

15 Algorithm Problem 1D heat Demo Buatlah program dari Algoritma 1 menggunakan MATLAB! Gunakan nilai dan parameter pada masalah PDP di Home Work sebelumnya!

16 Algorithm Home Work! Diberikan PDP untuk memodelkan getaran senar gitar secara vertikal dengan nilai awal dan batas seperti berikut: 2 u t = 2 c 2 2 u, x (0, 1), t > 0 x 2 u(x, 0) = f (x), u t (x, 0) = g(x), x [0, 1] u(0, t) = a(t), u(1, t) = b(t), t 0 dengan f (0) = a(0), dan f (1) = b(0). Tentukan nilai v(k x, n t) untuk n = 0, 1, 2, 5, dengan f (x) = sin πx, g(x) = 0, a = b = 0, M = 20, c = 1, dan t = ! Bandingkan hasilnya dengan t = !

17 Next Coming up next! Siap-siap untuk tugas besar! Presentasi akan diadakan di minggu ke 14, jadwal dan lokasi akana ditentukan kemudian. Good luck, sampai ketemu di lain kesempatan.

18 End of presentation!

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 10: Finite Dierence Method for PDE Heat Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Persamaan

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Tim Ilmu Komputasi Week 6: Separasi Variabel untuk Persamaan Gelombang Orde dua dan Koesien Fourier Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 4: Separasi Variabel untuk Persamaan Panas Orde Satu Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Persamaan

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 3: Pengantar, konsep dasar dan klasikasi PDP Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Kontrak kuliah 2

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Review

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

Diterbitkan secara mandiri melalui Nulisbuku.com

Diterbitkan secara mandiri melalui Nulisbuku.com PENGANTAR PERSAMAAN DIFERENSIAL PARSIAL UNTUK SAINS DAN TEKNIK Komputasi Metode Beda Hingga untuk Tipe Parabolik dan Hiperbolik Menggunakan FreeMat/MATLAB Dr. Putu Harry Gunawan 26 Diterbitkan secara mandiri

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS PRESENTASI TUGAS AKHIR KI091391 SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS (Kata kunci:persamaan burgers,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN

METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Praktikum m.k Model dan Simulasi Ekosistem Hari / Tanggal : Nilai METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Nama : NIM : Oleh PROGRAM STUDI ILMU KELAUTAN FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

Contoh klasik dari persamaan hiperbolik adalah persamaan gelombang yang dinyatakan oleh

Contoh klasik dari persamaan hiperbolik adalah persamaan gelombang yang dinyatakan oleh APLIKASI PERSAMAAN DIFFERENSIAL PARSIAL Persamaan diferensial parsial dijumpai dalam kaitan dengan berbagai masalah fisik dan geometris bila fungsi yang terlibat tergantung pada dua atau lebih peubah bebas.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul

Lebih terperinci

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 4 Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method Yulian Fauzi 1, Jose Rizal 1, Fachri Faisal 1, Pepi

Lebih terperinci

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Aziskhan, Mardhika W.A, Syamsudhuha Jurusan MatematikaFMIPA Universitas Riau Abstract. The aim of this paper is to solve a heat equation

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal Bab 2 LANDASAN TEORI 2.1 Penurunan Persamaan Air Dangkal Persamaan air dangkal atau Shallow Water Equation (SWE) berlaku untuk fluida homogen yang memiliki massa jenis konstan, inviscid (tidak kental),

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pembahasan tentang persamaan diferensial parsial terus berkembang baik secara teori maupun aplikasi. Dalam pemodelan matematika pada permasalahan di bidang

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

BAB 1. KONSEP DASAR. d y ; 3x = d3 y ; y = 3 d y ; x = @u @z 5 6. d y = 7 y x Dalam bahan ajar ini pemba

BAB 1. KONSEP DASAR. d y ; 3x = d3 y ; y = 3 d y ; x =  @u  @z 5 6. d y = 7 y x Dalam bahan ajar ini pemba BAB 1 Konsep Dasar 1.1 Klasikasi Persamaan Difrensial Pada umumnya dikenal dua jenis persamaan difrensial yaitu Persamaan Difrensial Biasa (PDB) dan Persamaan Difrensial Parsial (PDP). Untuk mengetahui

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

SISTEM HUKUM KEKEKALAN LINEAR

SISTEM HUKUM KEKEKALAN LINEAR Bab 3 SISTEM HUKUM KEKEKALAN LINEAR 3.1 Sistem Linear Hiperbolik Sistem linear dalam pengertian Tugas Akhir ini adalah suatu sistem hukum kekekalan dengan bentuk umum, t u + d A α (t) xα u = 0 (3.1.1)

Lebih terperinci

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK ANALYTICALLY REVIEW ON ONE-DIMENSIONAL HEAT EQUATION Oleh: Ahmadi 1), Hartono 2), Nikenasih Binatari 3) Program Studi Matematika, Jurusan Pendidikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Persamaan Diferensial Parsial Suatu persamaan yang meliputi turunan fungsi dari satu atau lebih variabel terikat terhadap satu atau lebih variabel bebas disebut persamaan

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Sulistyono, Metode Beda Hingga Skema Eksplisit 4 APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Bambang Agus Sulistyono Program Studi Pendidikan Matematika FKIP UNP Kediri bb7agus@gmail.com

Lebih terperinci

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method Prosiding Matematika ISSN: 2460-6464 Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method 1 Maulana Yusri

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Design and Analysis of Algorithm

Design and Analysis of Algorithm Design and Analysis of Algorithm Week 3: Notasi Asymptotic dan Kelas Dasar Efisiensi Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I SIMULASI NUMERIK PERPINDAHAN PANAS 2 DIMENSI PADA PROSES PENDINGINAN TEMBAGA MURNI DENGAN VARIASI CETAKAN PASIR DAN MULLITE MENGGUNAKAN PENDEKATAN BEDA HINGGA SKRIPSI Diajukan sebagai salah satu syarat

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Pertemuan I Jurusan Pendidikan Matematika FMIPA UNY September 8, 2016 Skydiver Figure: Penerjun Payung Skydiver Asumsi untuk pergerakan skydiver 1 gaya gravitasi 2 gaya hambat karena atmosfer Hukum Newton

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY Jurnal Matematika UNAND Vol. VI No. 1 Hal. 97 104 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY YOSI ASMARA Program Studi Magister

Lebih terperinci

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika

Lebih terperinci

SIMULASI NUMERIK PADA ALIRAN AIR TANAH MENGGUNAKAN COLLOCATION FINITE ELEMENT METHOD

SIMULASI NUMERIK PADA ALIRAN AIR TANAH MENGGUNAKAN COLLOCATION FINITE ELEMENT METHOD E-Jurnal Matematika, Vol. 7 (1), Januari 2018, pp.5-10 DOI: https://doi.org/10.24843/mtk.2018.v07.i01.p177 ISSN: 2303-1751 SIMULASI NUMERIK PADA ALIRAN AIR TANAH MENGGUNAKAN COLLOCATION FINITE ELEMENT

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

PAM 573 Persamaan Diferensial Parsial Topik: Metode Beda Hingga pada Turunan Fungsi

PAM 573 Persamaan Diferensial Parsial Topik: Metode Beda Hingga pada Turunan Fungsi PAM 573 Persamaan Diferensial Parsial Topik: Metode Beda Hingga pada Turunan Fungsi Mahdhivan Syafwan Program Magister Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

Soal Ujian 2 Persamaan Differensial Parsial

Soal Ujian 2 Persamaan Differensial Parsial Soal Uian 2 Persamaan Differensial Parsial M. Jamhuri April 15, 2013 1 Buktikan bahwa ux,t) = πˆ 1 x e θ2 dθ merupakan solusi persamaan difusi u t = u xx untuk setiap x R,t > 0. Untuk x 0 tunukkan bahwa

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan salah satu topik dalam matematika yang cukup menarik untuk dikaji lebih lanjut. Hal itu karena banyak permasalahan kehidupan

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

BAB 4 Metode Crank-Nicolson Untuk European Barrier Option

BAB 4 Metode Crank-Nicolson Untuk European Barrier Option BAB 4. METODE CRANK-NICOLSON UNTUK EUROPEAN BARRIER OPTION 5 BAB 4 Metode Crank-Nicolson Untuk European Barrier Option 4. Persamaan Diferensial Parsial European Barrier Option Seperti yang telah dinyatakan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger) JURNAL TEKNIK POMITS Vol., No., (013) ISSN: 337-3539 (301-971 Print) B-316 Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger) Ahmad Zaini dan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial biasa (ordinary differential equations (ODEs)) merupakan salah satu alat matematis untuk memodelkan dinamika sistem dalam berbagai bidang ilmu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL PARTIAL NON LINIEAR DENGAN METODE BARU YANG LEBIH EFISIEN

PENYELESAIAN PERSAMAAN DIFFERENSIAL PARTIAL NON LINIEAR DENGAN METODE BARU YANG LEBIH EFISIEN PENYELESAIAN PERSAMAAN DIFFERENSIAL PARTIAL NON LINIEAR DENGAN METODE BARU YANG LEBIH EFISIEN Muhammad Khudzaifah Program Studi Pidikan Matematika STKIP PGRI Pasuruan Abstract: Fenomena alam sering kali

Lebih terperinci

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan 1 BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis ini. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis ini. Selain itu, literatur-literatur

Lebih terperinci

BAB III METODE BINOMIAL

BAB III METODE BINOMIAL BAB III METODE BINOMIAL Metode Binomial ialah metode sederhana yang banyak digunakan untuk menghitung harga saham. Metode ini berdasarkan pada percabangan pohon yang menerapkan aturan binomial pada tiap-tiap

Lebih terperinci

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan ABSTRAK SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Aliran panas pada pelat

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

PAM 252 Metode Numerik Bab 5 Turunan Numerik

PAM 252 Metode Numerik Bab 5 Turunan Numerik Pendahuluan PAM 252 Metode Numerik Bab 5 Turunan Numerik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Turunan Numerik Permasalahan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan (Pendahuluan) 1D untuk syarat batas Robin 2D dengan syarat batas Dirichlet Fisika Komputasi Jurusan Fisika Universitas Padjadjaran http://phys.unpad.ac.id/jurusan/staff/dharmawan email : dharmawan@phys.unpad.ac.id

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perhitungan cadangan merupakan sebuah langkah kuantifikasi terhadap suatu sumberdaya alam. Perhitungan dilakukan dengan berbagai prosedur/metode yang didasarkan pada

Lebih terperinci

BAB I PENDAHULUAN. Persamaan Diferensial Stokastik (PDS) telah memegang peranan yang

BAB I PENDAHULUAN. Persamaan Diferensial Stokastik (PDS) telah memegang peranan yang BAB I PENDAHULUAN 1.1 LATAR BELAKANG Stochastic Differential Equations (SDEs) yang disebut juga dengan Persamaan Diferensial Stokastik (PDS) telah memegang peranan yang penting dalam pemodelan di berbagai

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Solusi Numerik Distribusi Tekanan dengan Persamaan Difusi Dua Dimensi pada Reservoir Panas Bumi Fasa Air Menggunakan Skema Crank-Nicholson Numerical Solution for Pressure

Lebih terperinci

METODE BEDA HINGGA UNTUK PERSAMAAN DIFERENSIAL BIASA ORDE DUA LINEAR DENGAN SYARAT BATAS DIRICHLET GALUH MAHARANI

METODE BEDA HINGGA UNTUK PERSAMAAN DIFERENSIAL BIASA ORDE DUA LINEAR DENGAN SYARAT BATAS DIRICHLET GALUH MAHARANI METODE BEDA HINGGA UNTUK PERSAMAAN DIFERENSIAL BIASA ORDE DUA LINEAR DENGAN SYARAT BATAS DIRICHLET GALUH MAHARANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS Nafanisya Mulia 1, Yudhi Purwananto 2, Rully Soelaiman 3

Lebih terperinci

SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA

SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA Yasa SUPARMAN dkk Pusat Vulkanologi dan Mitigasi Bencana Geologi Badan

Lebih terperinci

METODA NUMERIK (3 SKS)

METODA NUMERIK (3 SKS) METODA NUMERIK (3 SKS) Dosen Dr. Julan HERNADI Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Masa Perkuliahan Semester Ganjil 2013/2014 Deskripsi dan Tujuan Perkuliahan Mata kuliah ini berisi

Lebih terperinci

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan Jurnal Matematika Integratif. Vol. 14, No. 1 (2018), pp. 51 60. p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v14.n1.15953.51-60 Penyelesaian Persamaan Diferensial Linier Orde Satu dan Dua disertai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. bersumber dari ledakan besar gunung berapi atau gempa vulkanik, tanah longsor, atau

BAB II TINJAUAN PUSTAKA. bersumber dari ledakan besar gunung berapi atau gempa vulkanik, tanah longsor, atau BAB II TINJAUAN PUSTAKA 2.1 Tsunami Tsunami biasanya berhubungan dengan gempa bumi. Gempa bumi ini merupakan proses terjadinya getaran tanah yang merupakan akibat dari sebuah gelombang elastis yang menjalar

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

SIMULASI GELOMBANG AIR DANGKAL UNTUK PEMBANGKIT ENERGI OSCILLATING WATER COLUMN

SIMULASI GELOMBANG AIR DANGKAL UNTUK PEMBANGKIT ENERGI OSCILLATING WATER COLUMN SIMULASI GELOMBANG AIR DANGKAL UNTUK PEMBANGKIT ENERGI OSCILLATING WATER COLUMN Eka Andhika Kurniawan 1,, Annisa Aditsania 2, P. H. Gunawan 3 1 Computational Science, School of Computing Telkom University

Lebih terperinci

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method)

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method) Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method) Tetti Novalina Manik dan Nurma Sari Abstrak: Dalam analisis akustik, kasus yang paling umum adalah menentukan

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL TUGAS AKHIR Diajukan untuk melengkapi persyaratan dalam menyelesaikan tahap sarjana pada

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci