BAB 2 TEORI DASAR pada ANTENA MIKROSTRIP

dokumen-dokumen yang mirip
Prosiding SPMIPA; pp: 1-9; 2006 ISBN:

LAMPIRAN I GREEK ALPHABET

8.1 NILAI EIGEN DAN VEKTOR EIGEN

Catatan Teknik (Technical Notes) Pengerjaan Metoda Inversi Integral pada Perumusan Persamaan Muka Air Gelombang Air Nonlinier

SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret

Megenal Sifat Material I. Pendahuluan 7/24/2013 I S I. Perkembangan Konsep Atom

Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga

( α = 0, 05 ) rumus yang digunakan untuk menentukan jumlah anggota sampel adalah:

BAB 2 (Minggu ke 4) MEKANIKA NEWTON. GERAK LURUS PARTIKEL. Setelah mengikuti kuliah ini, mahasiswa diharapkan :

Sudaryatno Sudirham ing Utari. Mengenal. 2-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

FUNGSI RASIONAL DAN EKSPANSI FRAKSI PARSIAL (EFP)

BAB 3 PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA

4.3 Sampling dari distribusi normal dan estimasi likelihood maksimum

PROSIDING ISSN:

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel

BAB III MODEL MATEMATIKA KEPENDUDUKAN

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z

SISTEM PENGOLAHAN ISYARAT. Kuliah 7 Transformasi Fourier Cepat

Outline. Oleh : Nachwan Mufti Adriansyah, ST, MT

PENSIUN NORMAL MENGGUNAKAN MODEL TINGKAT BUNGA COX INGERSOLL ROSS

Pengembangan Model. Gambar 4.1 Strategi Layanan Yang Diusulkan. Penggantian. W waktu

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Vektor

INTERFERENSI DAN DIFRAKSI

BAGIAN 2 TOPIK 5. andhysetiawan

Leli Deswita ABSTRACT. Keywords: Maxwells equations, Electromagnetic Waves, Cylindrical coordinates, and The magnetic field.

BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Adapun bentuk yang sederhana dari suatu persamaan diferensial orde satu adalah: di dt

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n.

BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu

INTERFERENSI DAN DIFRAKSI. Mata Kuliah: Gelombang & Optik Dosen: Andhy Setiawan

Interferensi cahaya menghasilkan suatu pola interferensi (terang-gelap)

HANDOUT KULIAH OPTIK NONLINIER. Oleh: DR. Ayi Bahtiar, M.Si.

Aplikasi Metode Matrix Cascade Pada Perhitungan Koefisien Pantul Gelombang Suara Bawah Air Untuk Dasar Laut Miring

Antena Array 4 Patch Mikrostrip Sirkular Pada Frekuensi MHz

BAB IV SIMULASI MODEL

BAB II TEORI DASAR ANTENA

SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t}

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.

KUNCI JAWABAN UJI KOPETENSI SEMESTER 1 A.

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai

Kata kunci: Persamaan Dirac, Potensial Rosen Morse Hiperbolik terdeformasi q, Metode Iterasi Asimtotik, Pendekatan Pekeris, Spin Simetri.

Analisis Rangkaian Listrik Di Kawasan s

BAB III POWER MESIN TEKUK YANG DIBUTUHKAN UNTUK PROSES PENEKUKAN ACRYLIC

PREMI ASURANSI JIWA BERJANGKA NAIK DENGAN MENGGUNAKAN HUKUM DE MOIVRE

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN

Rumus-rumus yang Digunakan

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB

ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA

GEOMETRI BAB II BANGUN RUANG SISI LENGKUNG

RANK DARI MATRIKS ATAS RING

Solusi khusus dari masalah nilai awal tersebut dapat ditulis dalam bentuk integral Fourier, yaitu:

Percobaan PENYEARAH GELOMBANG. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY)

RENTANG NUMERIK UNTUK FUNGSI EKSPONENSIAL MATRIKS

BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE TIGA.

Ringkasan Materi Kuliah PEMETAAN LAPLACE

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi

Sistim Komunikasi 1. Pertemuan 5 Konversi Analog ke Digital

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) . Definisi L.2 (Kejadian lepas )

ENERGI LISTRIK Tujuan : Menentukan faktor faktor yang mempengaruhi besar energi listrik

B. DESKRIPSI SINGKAT MATA KULIAH

Dari DFT menjadi FFT

TEKNIK FUNGSI PEMBANGKIT MOMEN

Eksistensi Solusi Persamaan Lyapunov pada Sistem Linear Waktu Diskrit atas Ring Komutatif

Bab 5: Discrete Fourier Transform dan FFT

MACAM-MACAM TEKNIK MEMBILANG

Gambar 3.1Single Channel Multiple Phase

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

Ukuran Dispersi Multivariat

Bab 6: Analisa Spektrum

Hukum Gauss. f = fluks listrik = jumlah garis gaya yang menembus luas A E r = medan listrik = elemen luas q i

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro

Integral dan Persamaan Diferensial

Transformasi Fourier Sinyal Waktu Kontinyu. oleh: : Tri Budi Santoso DSP Group, EEPIS-ITS

4. VALIDITAS DAN RELIABILITAS DALAM MEMBUAT EVALUASI

Bab III. Menggunakan Jaringan

Oleh : Danny Kurnianto; Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER

METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

Prosiding SPMIPA; pp: 43-49; 2006 ISBN:

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. Sumber Daya Alam (SDA) yang tersedia merupakan salah satu pelengkap alat

BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LAPORAN PRAKTIKUM EKSPERIMEN FISIKA 1

Transformasi Fourier Waktu Diskrit

Transkripsi:

BAB TEOI DASA pada ANTENA MIKOSTIP. Aa Miosip Sgimpa Aa miosip mmilii bu dasa yag dii dai lm oduo padiasi (pach) yag dica pada salah sau sisi subsa da bagia paaha pada sisi laiya. Elm padiasi dapa disiasi olh salua asmisi oasial, salua miosip, aau oplig lomagi. Dalam mgaalisa aa miosip dapa bbapa mod. Mod yag diguaa dalam pulisa ii adalah mod caviy. Mod caviy mmplaua uag aaa lm padiasi aa miosip da bidag paaha sbagai sbuah caviy yag dibaasi olh sbuah didig li pada bagia aas da bawah, da didig magi spajag pmuaa sisi lm padiasi. Modl caviy mmilii bbapa asumsi, yaiu [9] :. Mda lisi E dii aas ompo z da mda mag H haya mmilii ompo asvs pada uag caviy.. Mda pada uag caviy ida bvaiasi hadap z. 3. Kompo agsial H spajag pi lm padiasi diabaia. 4. Kbadaa mda pi diphiuga dga mmppajag pi lm padiasi... Dimsi Elm Padiasi Dalam macag suau aa miosip, hal-hal yag dilaua adalah mua fusi opasi aa, mmilih ilai osaa laif dili subsa. Uua lm padiasi aa miosip sgimpa adalah pajag da lba lm sgimpa di aas subsa. Pada Gamba. dapa diliha ofiguasi dai aa miosip sgimpa. 7

Gamba. Kofiguasi aa miosip sgimpa [9] Dga mgapliasia mod caviy pada aa miosip sgimpa, fugsi ig ooomalisasi dapa dipolh dga umus [9]: m mx y, (.) m x y dimaa m da adalah ids mod pada aah x da y, m (m) adalah si dph pada aah m da, sdaga da (m) adalah dimsi fif dga mmphiuga mda pi aa, yag dipolh dga pdaa sbagai biu.. Pada mod TM, ( ) ( ) ( ) (.). Pada mod TM, (.3) (.4) dimaa: ( ) ( ) ( ) (.5).64( ) x ( x).88.758 l. 88 x (.6) x (.7) x 8

adalah osaa dili fif subsa, adalah osaa dili laif subsa da (m) adalah bala subsa... Fusi soasi Dalam mghiug bsaya fusi soasi, plu diahui ilai igya, dimaa ilai ig dapa dipolh dga umus [9]: m m shigga fusi soasi mjadi: (.8) m f m (.9) (Hy/m) adalah pmiabilias udaa...3 Mda isi Mda lisi pada mod caviy dapa diuua mjadi [9]: dimaa: E z V m mx y, (.) m m x y Amm x, y V m jc m mxq y q I q / jm g m q (.) dga C (Faad) adalah apasiasi, m (Hy) adalah iduasi, da gm (Sims) adalah oduasi, igaya mupaa paam agaia ival uu mod TMm, sdaga (xq,yq) adalah posisi ii cau pada aa, (b/m) adalah vo magi posial, V m (Vol) adalah gaga da Iq (Amp) adalah aus masua. A m 9

..4 Pola adiasi Pach Sgimpa Pola adiasi aa miosip sgimpa dapa diumusa sbagai biu [9]:, E j m j j m m V. m (.), E j m j j m m V m (.3) (m ) adalah osaa popagasi di uag hampa. Uu mod od dah, yaiu m = da =, pola adiasi pada bidag-e adalah [9]: 9, / j j o V j E 9, o E (.4) da pola adiasi pada bidag-h adalah:, o E, / j j o V j E (.5)

..5 Diciv Gai (U) da Efisi adiasi Diciv Gai (U) uu θ = adalah [9]: θ E θ E θ φ U (.6) 6P sdaga uu fisi adiasi dibia olh umus: η P Pc Pd P (.7) dimaa P c (a) adalah P coducac yag disbaba olh mda mag, P d (a) adalah P dilcic (a) yag disbaba olh ugi-ugi dili, da P (a) adalah P adiad yag disbaba olh ugi-ugi adiasi. Dga: P c s π N (l) (l) δ s A ω ma (.8) l P d ω ε ε N (l) aδ A l ω aδ l (.9) dimaa: da N (l) (l) P A P l μ ma H H V x y 4 l o 4 V E z dv yag mupaa gi wau aa-aa li da magi. dv (.) (.) (.)..6 Fao Kualias Fao ualias mujua ugi-ugi yag dialami aa. Ada bbapa ip fao ualias, yaiu : adiasi, oduasi (ohmic), dili, da ugi-ugi glombag pmuaa. Shigga, oal fao ualias Q dga dipgauhi olh smua ugiugi sbu, scaa umum dapa diulisa sbagai biu []:

(.3) Q Q ad Q c Q d Q sw dimaa: Q Q ad Q c Q d Q sw : oal fao ualias : fao ualias yag dipgauhi olh ugi-ugi adiasi (spac wav) : fao ualias yag dipgauhi olh ugi-ugi oduasi (ohmic) : fao ualias yag dipgauhi olh ugi-ugi dili : fao ualias yag dipgauhi olh glombag pmuaa (sufac wav) Uu subsa yag saga ipis, ugi-ugi yag diaibaa olh glombag pmuaa (sufac wav) saga cil shigga dapa diabaia. Namu uu subsa yag lbih bal, ugi-ugi ii diphiuga. Dga mgguaa mod caviy ugi-ugi ii dapa dihilaga. Uu subsa yag saga ipis (h<< λ ) dga bu yag smbaag (masu sgimpa) dapa umusa pdaa uu mpsasia fao ualias, yaiu: Q h c πfμσ (.4) Q d (.5) a ωε Q ad (.6) G h dimaa a δ mupaa loss ag dai baha subsa, σ mupaa oduivias G dai oduo, mupaa oal oduasi p saua pajag dai bidag adiasi apu. aa E da (.7) pim E d..7 Facioal Badwidh Facioal badwidh aa adalah fusi dga ag u dimaa VS pada mial masua sama aau lbih cil dga ilai masimum yag diigia dga asumsi VS bilai sau pada fusi dsai. Scaa mamais facioal badwidh bbadig bali dga oal fao ualias Q, yaiu

Δf f VS Q VS (.8) Scaa umum facioal badwidh sbadig dga volum, dimaa uu aa miosip sgimpa pada fusi soasi dapa dispsia sbagai psama biu: B volum luasdaah iggi pajag lba iggi ε ε (.9) ε ε shigga badwidh bbadig bali dga aa dai osaa dili dai subsa.. Salua Miosip Salua asmisi miosip susu dai dua oduo, yaiu sbuah gais oduo dga lba w da bidag paaha, duaya dipisaha olh suau subsa yag mmilii pmiivias laif dga iggi h spi diujua pada Gamba.. Paam uama yag pig uu diahui pada suau salua asmisi adalah impdasi aaisiya Z. Impdasi aaisi Z dai salua miosip diua olh lba (w) da iggi subsa (h). w subsa h bidag paaha Gamba. Gomi salua miosip... Kaaisi Salua Miosip Uu w/h < [8] Kosaa dili fif.4 w ff (.3) h / w h Impdasi aaisi Z 6 l 8h w ff 4 w h (.3) 3

.. Kaaisi Salua Miosip Uu w/h > [8] Kosaa dili fif ff (.3) h / w Impdasi aaisi Z w / h / ff.393 / 3 l( w / h.44) (.33) Ti pcaua dga salua miosip mmilii uuga da ugia. Kuugaya aaa lai dapa bsifa moolihic yaiu aaa lm pcau da lm padiasi bada dalam sau lay da mmilii polaisasi yag bai []. Namu pcaua dga salua miosip juga mmilii ugia diaaaya adalah mucula spuious adiaio / adiasi palsu da uu mcapai mach impdac haus mgguaa is aau asfom []..3 Ti Pcaua Salua Miosip.3. Salua Miosip Mgguaa Is uu Elm Tuggal Uu mgopimala machig pada pcaua yag lagsug pach padiasi diguaa i is. Pada Gamba.3 dapa diliha bu is, da paam yag dibuuha. yo Gamba.3 Aa miosip sgimpa dga pcau salua amisi mgguaa is Uu mmpolh ilai dalama is yo diplua ilai soa ipu sisac, yag mupaa ompo al dai impdasi masua pach. Nilai yo dapa dipolh dga umus biu []: 4

i ( y yo ) i ( y ) yo (.34) Dimaa ilai i (y = yo) bgaug pada bsa sisasi pada ompo pcau, dalam hal ii 5 Ohm..3. Salua Miosip Mgguaa Tasfom λ/4 uu Elm Susu Sdaga, uu mgopimala machig pada pcaua uu susu dua lm aau susu mpa lm, scaa sluuha diguaa asfom λ/4. Pada pcaua lm susu mgguaa susua paall dga uua pah yag simbag mmbia badwidh yag lbih bsa dibadig susua si, amu di sisi lai dapa mmucula ugi-ugi yag lbih bsa da hal ii dapa mmbaasi gai yag dicapai []. Pada Gamba.4 dapa diliha bu pcaua dga asfom λ/4 yag diguaa. a b Pajag= λ/4, Zas c d Gamba.4 Aa miosip sgimpa susu dua dga pcau salua amisi mgguaa asfom λ/4 Dapa ia liha pada gamba uu sism pcaua aa susu dua lm, ada bbapa bagia salua asmisi, yaiu a, b, c, d. Bagia a mmilii ilai Z sbsa 5

5 Ohm, bagia c mmilii ilai Z sbsa 5 Ohm. Pada bagia b yag mupaa asisi dai 5 Ohm 5 Ohm iilah diguaa asfom λ/4. Impdasi dai asfom λ/4 dapa dipolh dga umus biu: Zas Zi Zou / (.35) Bagia d mmilii ilai Z sbsa 5 Ohm, aa pcaua paall maa ilai Z sbsa 5 Ohm pada bagia c aa bagi mjadi dua sama bsa, mag-mag 5 Ohm..4 Mod Pigaa Badwidh da Gai Pada Aa Miosip.4. Mod Fusi Gada Pada Aa Miosip Aa fusi gada mghasila dua fusi soasi dai sbuah lm padiasi, yag bopasi dga paam aa yag idi bai dalam hal pola adiasi maupu impdasi machig dai dua fusi yag bbda sbu. Scaa umum i uu mghasila fusi gada pada aa miosip dibagi mjadi iga macam [], yaiu :. Twi-mod dual-fqucy Mod ii dilaua dga mmbua dua mod soa dalam sau pach, bai mgguaa sau fd/cau aau dua fd/cau.. Muli-pach dual- fqucy Mod ii mghasila fusi gada dga mgguaa lm pach lbih dai sau, siap lm pach dibia aus yag ua da madiasi pada sau soasi 3. Miscllaous-loadd dual- fqucy Mod ii adalah mod yag palig popul dalam mghasila fusi gada. Mod ii mgguaa caa pambaha bba aif pada pach padiasi. Pada sis ii diguaa mod iga yaiu Miscllaous-loadd dual- fqucy, aa laif mudah da mmugia bbagai vaiasi ofiguasi. Biu dibahas lbih mdalam ag mod sbu. Ti Miscllaous-loadd dual- fqucy mghasila fusi gada adalah dga mambaha bba pada lm padiasi uggal. Bba sbu dapa bupa: sub (miip li), och, pi, apasio, slo aau gabuga []. Diaaaya spi diujua pada Gamba.5. Bba sbu diambaha scaa 6

husus pada salah sau dai pi padiasi (adiaig dg) uu mghasila pajag soasi (soa lgh) yag lbih jauh, dimaa pajag soasi ii baia dga pmbagia fusi soasi dua. coaxial miip is spuli (a) (b) pi capasio slo da pi slo (c) (d) Gamba.5 Miscllaous loadig dga (a) sub (b) och (c) pi da apasio (d) slo Pada pulisa sis ii bba yag dipilih adalah bba sub bupa salua miosip. Pgguaa salua miosip sbagai bba dalam mghasila fusi gada lah dimbaga sblumya olh Davidso, S.E., da ichads,.f. Pgguaa salua miosip sbagai bba yag dilaa di gah da ga luus hadap pach padiasi dapa mghasila fusi gada [3]. Adapu dsai aa miosip yag dibua dalam pliia sbu adalah spi pada Gamba.6. Gamba..6 Aa miosip sgimpa fusi gada dga bba salua miosip [3] 7

Pada pliia pulis sblumya [7], yag mupaa pigaa dai pliia sbu, didapaa bbapa aaisi yag mujua bahwa polha fusi gada u dapa dilaua dga mubah uua da aau posisi bba. Dsai aa dapa diliha pada Gamba.7. Gamba..7 Aa miosip sgimpa fusi gada dga bba salua miosip, dga pcau salua miosip dga is [7].4. Mod Palaa Pada Aa Miosip Sifa diala adalah odisi dimaa dua aau salah sau fusi soaya dapa digs aau bubah-ubah ilaiya. Mod uu mghasila sifa diala ada bbagai caa aaa lai Vaaco diods, shoig pis, opically coolld pi diods, adjusabl ai gap [3]. Kmpa caa ii laif umi da mmbua aa mjadi ompls. Slai mod sbu, mgacu pada pliia sblumya yag dilaua olh pulis, dimaa i palaa dilaua dga caa yag lbih mudah, yaiu dga mgubah-ubah posisi bba sub yag buua ap, ga luus hadap pach padiasi. Posisi sbu mmbu iga odisi yaiu mmbu jaa dga pach padiasi, pa myuh pach padiasi, da sbagia bba sub bumpu dga pach padiasi. Adapu odisi dai iga posisi bba sub di aas dapa diaggap mjadi dua odisi, yaiu mmbu jaa aau bumpu. Pada odisi pama bba sub bpa sbagai lm paasii. Pgguaa lm paasii adalah mupaa salah sau mod uu migaa badwidh, id dasaya adalah mambaha lm soao ambaha uu mghasila dua aau lbih fusi soasi yag pisah [6]. Pada odisi ii 8

haya pach padiasi saja yag dicau, da bba sub yag bpa sbagai lm soao. Pada odisi dua bba sub bpa sbagai pala da soao [4], yag mupaa salah sau fugsi dai apliasi bba sub iu sdii. a cau aa ap, da pada dasaya odisi bumpu yag jadi haya mghasila pubaha pajag dai bba sub. Kodisi pmisaha aaa dua fusi soasi dapa didalia dga migaa ilai impdasi aaisi dai bba sub, mubah pajag aau dalama dai posisi bba [4]. Pada pliia sblumya yag dilaua olh pulis, pgdalia dilaua dga mgubah posisi bba yag solah-olah mgubah pajag bba. Biu adalah gamba uu bba sub yag bfugsi sbagai pala da soao dga agaia ivalya da umus uu ilai-ilai paamya, Gamba.8 [5]. Kofiguasi Sub / Op Cicuid agaia C ival umus uu ofiguasi sub sbu [5] : o C Y (.36) Zo C (.37) G Yo (.38) Q (.39) Gamba.8 agaia ival uu soao bupa salua miosip 9

Dimaa paam o adalah fusi soasi agula, Yo (Sims) adalah admiasi, Zo (Ohm) adalah impdasi aaisi, (Hy) adalah iduasi, C (Faad) adalah apasiasi, G (Sims) adalah oduasi, (Np/m) adalah auasi, (m) adalah pajag bba sub, Q adalah fao ualias..4.3 Mod Pigaa Badwidh da Gai dga Mod Sagg pada Aa Miosip Aay/Susu Uu migaa badwidh pmbaga mod yag mdomiasi adalah dga mgguaa pisip vaiasi gomi da mmbia gaggua uu mmucula mulipl soac da juga ipu impdac machig [4]. Pgguaa bba sub mupaa mod yag bsifa mmbia gaggua uu mimbula mulipl soac. Sdaga dalam hal pigaa gai, caa yag sdhaa uu mwujudaya adalah dga mod susu/aay [6], api badwidh mjadi baas spi halya badwidh uu lm uggal. Badwdih dapa miga jia loss pada sism cuup sigifia amu hal ii bpgauh hadap fisi. Nilai gai pada aa susu dapa dihiug mgguaa umus biu: G _ aay Guggal log (.4) Pada sis ii dilaua ombiasi dua mod sbu yaiu mmbia bba sub pada aa miosip sgimpa susu mpa lm dga odisi sagg /biga. Kodisi sagg/biga sdii dapa diapa pada dua hal:. Pada uua lm pach padiasi yag dibua sdii bbda sau sama lai uu mghasila badwidh yag lbih bsa [6].. Pada posisi bba sub yag dapa mubah polha fusi iap lmya, dga pbdaa yag saga cil shigga dapa mghasila badwidh yag lbih bsa. Hal ii mmbia vaiasi acaga yag cuup baya. Dga sagg ii dihaapa mampu mmbua siap lm uggal dai sluuha lm aa susu ii bja dga fusi soasi yag saga bdaa, shigga pigaa lba pia yag sigifia dapa dicapai. Kaa fusi-fusi soasi yag salig bdaa sbu mghasila ag fusi sula da mmbu suau ag fusi yag lbih lba. Ilusasi dapa diliha pada Gamba.9. Pada sis ii diguaa odisi sagg yag dua.

Gamba.9. Ilusasi pigaa lba pia..5 Mod yag Diguaa Dalam Pliia Tlah dipapaa dalam bbapa sub bab sblumya, yaiu bbagai modmod yag diguaa/dipilih dalam pliia ii. Mod yag dipilih bujua uu mghasila sbuah acaga aa miosip sgimpa yag mgalami pigaa badwidh dga mgguaa mod yag mampu mmbagia fusi gada, da mgguaa mod susu yag dapa migaa gai da dalam odisi u juga mampu migaa badwidh. Shigga acaga aa yag dibua dalam pliia ii adalah aa miosip sgimpa susu mpa lm, dga pcaua paall yag simis mgguaa salua miosip yaiu dga asfom λ/4 da is, da diambaha bba sub yag dilaa di gah-gah salah sau/dua/siap lm pach padiasi dga posisi sjaja aau sagg/bsusu.