KATA PENGANTAR. Yogyakarta, November Penulis

dokumen-dokumen yang mirip
Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

BAB VIII HIMPUNAN BILANGAN RASIONAL

BAB VIII HIMPUNAN BILANGAN RASIONAL

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

Pengantar Teori Bilangan

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN...

WOLFRAM-ALPHA PADA TEORI BILANGAN

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8.

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

Penulis : Rahmad AzHaris. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

BAB I INDUKSI MATEMATIKA

Pemfaktoran prima (2)

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian.

SISTEM BILANGAN BULAT

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

SISTEM BILANGAN REAL

BAB 2 LANDASAN TEORI

PENGANTAR PADA TEORI GRUP DAN RING

Diktat Kuliah. Oleh:

UNIVERSITAS GADJAH MADA. Bahan Ajar:

Sistem Bilangan Kompleks (Bagian Pertama)

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

KATA PENGANTAR. Rantauprapat,11 April Penyusun

Soal-soal Latihan Pra UTS MATDAS. 1. Periksalah apakah argumen berikut valid secara logis atau tidak? p q q. ( p)

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

Pembagi Persekutuan Terbesar dan Teorema Bezout

UNIVERSITAS GADJAH MADA. Bahan Ajar:

1 INDUKSI MATEMATIKA

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b =

PENGERTIAN RING. A. Pendahuluan

UNIVERSITAS GADJAH MADA. Bahan Ajar:

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

PERANGKAT PEMBELAJARAN

BAB III INDUKSI MATEMATIKA

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

BAB III INDUKSI MATEMATIKA

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

Lembar Kerja Mahasiswa 1: Teori Bilangan

Pengantar Teori Bilangan

BAB 2 LANDASAN TEORI

BAB VI BILANGAN REAL

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

Grup Permutasi dan Grup Siklis. Winita Sulandari

Bilangan Prima dan Teorema Fundamental Aritmatika

GLOSSARIUM. A Akar kuadrat

Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD:

BAB II TINJAUAN PUSTAKA

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

ALTERNATIF MENENTUKAN FPB DAN KPK

ORDER UNSUR DARI GRUP S 4

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA

1 SISTEM BILANGAN REAL

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc

Antonius C. Prihandoko

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

BAB V BILANGAN BULAT

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

BAB 4. TEOREMA FERMAT DAN WILSON

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

MAKALAH KRIPTOGRAFI CHINESE REMAINDER

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

BAB I PENDAHULUAN. Penyampaian pesan dapat dilakukan dengan media telephone, handphone,

Sumber: Kamus Visual, 2004

Relasi, Fungsi, dan Transformasi

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

DASAR-DASAR ALJABAR MODERN: TEORI GRUP & TEORI RING

Mata Kuliah : Peng. Logika Matematika dan Himpunan Hari/tanggal : Rabu, 31 Oktober 2012 Waktu : 120 menit Sifat : Buku Tertutup Dosen : Budi S.

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan

Jurnal Apotema Vol.2 No. 2 62

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal:

BIDANG MATEMATIKA SMA

Transkripsi:

KATA PENGANTAR Puji syukur penulis panjatkan kepada Alloh SWT atas anugrah yang diberikan sehingga penulisan Buku Diktat yang dilengkapi dengan Rencana Program Kegiatan Pembelajaran Semester (RPKPS) dan Rencana Kegiatan Pembelajaran Mingguan ini dapat terselesaikan dengan baik. Tidak lupa penulis mengucapkan terima kasih kepada Rektor UGM, Kepala P3 UGM, Dekan FMIPA UGM dan Ketua Jurusan Matematika yang telah memberikan kesempatan kepada penulis untuk ikut andil dalam pengembangkan mutu proses pembelajaran, dengan kegiatan ini. Rencana Program Kegiatan Pembelajaran Semester (RPKPS) dan Buku Diktat ini ditulis dengan tujuan agar proses persiapan dan proses pembelajaran dalam bidang Teori Bilangan sebagai dasar matematika analisis dan matematika diskrit bisa lebih optimal, yang pada akhirnya dapat menghasilkan lulusan matematika yang lebih berkualitas dan mampu berpikir sistematis dalam menyelesaikan masalah di dunia nyata. Untuk lebih menyempurnakan RPKPS dan Diktat ini penulis sangat mengharapkan kritik dan masukan dari sesama tenaga pengajar matematika dan para pembaca. Yogyakarta, November 2013 Penulis

DAFTAR ISI KATA PENGANTAR RENCANA KEGIATAN PEMBELAJARAN MINGGUAN DAFTAR ISI halaman i BAB I HIMPUNAN BILANGAN BULAT 1 1.1 Pendahuluan 1 1.2 Sistem Bilangan Asli 1 1.3 Relasi Urutab 4 1.4 Himpunan Bilangan Bulat 8 BAB II KETERBAGIAN 11 2.1 Pendahuluan 11 2.2 Keterbagian 11 2.3 Algoritma Pembagian 17 2.4 Bilangan Prima 17 BAB III FAKTORISASI PRIMA 24 3.1 Pendahuluan 24 3.2 Teorema Fundamental Aritmatik 24 3.3 Banyak Faktor 29 3.4 Jumlah Faktor 31 BAB IV FAKTOR PERSEKUTUAN DAN KELIPATAN PERSEKUTUAN 34 4.1 Pendahuluan 34 4.2 Faktor Persekutuan Terbesar 34 4.3 Algoritma Euclid 37 4.4 Identitas Bezout 38 4.5 Kelipatan Persekutuan Terkecil 40 BAB V KEKONGRUENAN 44 5.1 Pendahuluan 44 5.2 Kekongruenan 44 5.3 Kelas Residu 48 5.4 Teorema Kecil Fermat dan Teorema Euler 51 BAB VI PERSAMAAN LINEAR DIOPHANTINE 34 6.1 Pendahuluan 57 6.2 Persamaan Linear Diophantine 57 6.3 Teorema Frobenius 62 BAB VII SISTEM NUMERIK DAN FUNGSI TANGGA 66 7.1 Pendahuluan 66 7.2 Sistem Numerik 66 7.3 Kriteria Keterbagian pada Sistem Desimal 72 7.4 Fungsi Tangga 78 7.5 Pangkat Tertingi 84 ii ix

BAB VIII HHIMPUNAN BILANGAN RASIONAL 97 8.1 Pendahuluan 97 8.2 Konstruksi Sistem Bilangan Rasional 97 8.3 Relasi Urutan 103 CONTOH SOAL UJIAN TENGAH SEMESTER DAN UJIAN AKHIR 108 DAFTAR PUSTAKA 116

1.1 Pendahuluan BAB I HIMPUNAN BILANGAN BULAT Seiring dengan perkembangan budaya masyarakat dibutuhkan alat komunikasi yang bisa menjelaskan banyaknya benda-benda di kehidupan sehari-hari. Alat komunikasi tersebut tersimbolkan dalam bentuk angka-angka, yang menjabarkan konsep bilangan. Topik ini sangat bermanfaat bagi mahasiswa untuk mengenal salah satu dasar matematika yaitu bilangan dan ladasan pengkonstruksiannya. Setelah mempelajari topik bahasan pada pertemuan minggu ke-1 dan 2 yang meliputi 1. Konstruksi sistem bilangan asli 2. Sifat-sifat bilangan asli 3. Kontruksi sistem bilangan bulat ini secara tuntas diharapkan memiliki learning Outcomes berupa: 1. Mahasiswa mampu menjelaskan pengertian sistem bilangan asli 2. Mahasiswa mampu membuktikan sifat-sifat bilangan asli 3, Mahasiswa mampu mengkonstruksi sistem bilangan bulat sebagai perluasan sistem bilangan asli 1.2 Sistem Bilangan Asli Sebelum membicarakan sistem bilangan bulat, sebagai langkah awal terlebih dulu akan dipaparkan konsep bilangan asli. Definisi 1.2.1 Diketahui N himpunan yang memuat 1 dan dilengkapi operasi biner + pada N. Jika (N, +) memenuhi: 1. ( n N)n + 1 1 2. ( n, m N)(m + 1 = n + 1 m = n) 3. ( n, m N)(m + n) + 1 = m + (n + 1) 1

4. Untuk setiap G N, jika 4.1 1 G dan 4.2 n G n + 1 G, maka G = N, maka N disebut sistem bilangan asli (himpunan bilangan asli). Selanjutnya setiap n N disebut bilangan asli. Dari sistem aksioma di atas dapat dikonstruksi: 1 + N 1 := 2, (1+ N ) + N 1 := 3, ((1 + N 1) + N 1) + N 1 := 4,.... Teorema 1.1 3 2 Bukti: Dari definisi 3 3 = (1 + 1) + 1 1 + (1 + 1) = (1 + 1) + 1 Aksioma3 1 + 2 = 3 Definisi 2 dan 3 Latihan 1.1 Buktikan pernyataan-pernyataan berikut ini! 1. 4 2 2. 2 5 3. 3 + 1 = 4 4. 2 + 1 = 1 + 2 Berdasarkan aksiomatika dapat diturunkan teorema berikut ini. Teorema 1.2 Untuk setiap n N berlaku n + 1 n. Bukti: Dibentuk G = {n n N, n + 1 n}. jelas G N. Berdasar A (Aksioma) 1, 1+1 1, sehingga 1 G. Misalkan n G, yaitu n+1 n. Namun berdasarkan A2, (n + 1) + 1 n + 1, sehingga n + 1 G; dan sesuai A4, G = N. Akibatnya untuk semua n N berlaku n G. Jadi n + 1 n untuk setiap n N.. Sifat berikutnya yang dapat diturunkan berdasarkan sistem aksiomatika himpunan N beserta operasi + adalah sifat asosiatif. 2

Teorema 1.3 Untuk setiap x, y, z N memenuhi (x + y) + z = x + (y + z). Bukti: Diambil sebarang x, y N. Pembuktian dengan induksi matematika dikenakan pada z dengan membentuk G = {z z N, (x + y) + z = x + (y + z)} Berdasarkan A3, diperoleh z = 1 G. x + (y + z) = (x + y) + z. Dimisalkan benar untuk z G, yaitu x + (y + (n + 1)) = x + ((y + n) + 1) x + ((y + n) + 1) = (x + (y + n)) + 1 (x + (y + n)) + 1 = ((x + y) + n) + 1 x + (y + (n + 1)) = ((x + y) + n) + 1 ((x + y) + n) + 1 = (x + y) + (n + 1) x + (y + (n + 1)) = (x + y) + (n + 1) Akibatnya n+1 G. Sesuai A4, G = N, sehingga untuk setiap z N, (x+y)+z = x + (y + z) Sifat berikut yang berlaku terhadap operasi + adalah komutatif. Untuk itu diperlukan lemma berikut ini sebagai landasar. Lemma 1.4 Untuk setiap n N, n + 1 = i + n. Bukti: Dibentuk G = {n n N, n+1 = n+1}. Jelas G N. Karena 1+1 = 1+1, maka 1 G. Selanjutnya dimisalkan n G, yang berarti n + 1 = 1 + n. Akibatnya (n + 1) + 1 = (1 + n) + 1, sehingga n + 1 G; dan berdasarkan A4, G = N. Teorema 1.5 Untuk setiap n, m N berlaku n + m = m + n. Bukti: Diambil sebarang n N. Dibentuk G = {m m N, n+m = m+n}. Jelas G N. Selain itu menurut Lemma1.2.1, 1 G. Selanjutnya dimisalkan m G. Berarti n + m = m + n. (n + m) + 1 = (m + n) + 1 n + (m + 1) = m + (n + 1) = m + (1 + n) = (m + 1) + n 3

Akibatnya m + 1 G, sehingga menurut A4, G = N. Dengan kata lain untuk setiap m N, n + m = m + n.. Teorema 1.6 (Sifat Kanselatif) Dalam sistem bilangan N berlaku sifat kanselatif kiri dan kanan: 1. Untuk setiap x, y, z N, (x + z = y + z) (x = y) 2. Untuk setiap x, y, z N, (x + z = x + y) (z = y) Bukti: Hanya dibuktikan untuk 1. Sifat 2 dijadikan latihan. Bukti menggunakan kontraposisinya, yaitu x y x + z y + z Diambil sebarang x dan y N, dengan x y. Dibentuk G = {z z N, x + z y + z}. Karena x y jelas x + 1 y + 1 Dimisalkan z G, dengan kata lain x + z y + z. Akibatnya x + (z + 1) = (x + z) + 1 (y + z) + 1 = y + (z + 1) sehingga z + 1 G. Sesuai A4, dapat disimpulkan G = N, sehingga untuk setiap x, y N, jika x y, maka x + z y + z untuk setiap z N. Latihan 1.2 Untuk setiap x, y, z, w N buktikan: 1. x + y y 2. Teorema 1.6, bagian 2 3. (x + z) + (y + u) = (y + (x + u)) + z 1.3 Relasi Urutan Dalam sistem bilangan asli N dapat dikonstruksi relari urutan dengan menggunakan sifat-sifat operasi +. Untuk itu perlu dikaji terlebih dulu sifat elementer berikut ini. Teorema 1.7 Untuk masing-masing n N {1}, dapat ditemukan m N yang memenuhi n = m + 1. 4

Bukti: Dibentuk G = {1, n n N, ( m N)n = m + 1}. Jelas 1 G N. Dimisalkan n G, berarti n = 1 atau n = m + 1 untuk suatu m N. Jika n = 1, maka n + 1 = 1 + 1. Akibatnya n + 1 G, karena terdapat m = 1 sehingga n + 1 = m + 1. Jika n = m + 1 untuk suatu m N, maka n + 1 = (m + 1) + 1 Jelas m + 1 N, akibatnya n + 1 G. Sesuai A4, maka G = N.. Teorema 1.8 Untuk setiap x, y N, berlaku tepat satu pernyataan: 1. x = y 2. ( u N)x + u = y 3. ( u N)y + v = x Bukti: Untuk Latihan Berdasarkan Teorema 1.8 dapat diturunkan relasi urutan pada N. Definisi 1.3.1 Untuk setiap x, y N didefinisikan x < y ( u N)x + u = y Selanjutnya didefinisikan x > y jika dan hanya jika y < y. Contoh 1.3.2 2 < 2 + 1 = 3, 4 < 4 + 3 = 7, 1 < 1 + n Teorema 1.9 Untuk setiap x, y N berlaku tepat hanya satu x = y atau x < y atau x > y. Bukti: Langsung Teorema 1.8 Teorema 1.10 Untuk setiap x, y N berlaku 1. Jika x < y dan y < z, maka x < z 2. x x 5

3. x = 1 atau 1 < x 4. x < x + y 5. Jika x < y, maka x < y + z 1. Jika x + z < y, maka x < y Bukti: Hanya akan dibuktikan untuk 1. Diketahui x < y dan y < z. Maka dapat ditemukan u, v N, sehingga y = x + u dan z = y + v sehingga z = y + v = (x + u) + v = x + (u + v), dengan u + v N. Akibatnya x < z.. Sifat berikutnya yang dihasilkan dari relasi urutan pada N dinyatakan dalam teorema berikut ini. Teorema 1.11 Untuk setiap x, y, z N berlaku 1. Jika x < y, maka x + z < y + z 2. Jika x < y, maka z + x < z + y 3. Jika x + z < y + z, maka x < y 4. Jika z + x < z + y, maka x < y Bukti: Hanya akan dibuktikan untuk 1. No 2, 3, dan 4 dibuktikan di kelas menjadi bahan presentasi. Karena x < y, maka dapat ditemukan u N sehingga x + u = y. Akibatnya (x + z) + u = x + (z + u) = x + (u + z) = (x + u) + z = y + z Dengan kata lain x + z < y + z. Selanjutnya, dengan memanfaatka relasi < dapat didefinisikan operasi pengurangan antara dua bilangan asli yang berbeda. Meskipun operasi ini tidak berlaku untuk semua pasangan bilangan asli, namun fenomena yang muncul dari operasi tersebut sangat berperan dalam sistem yang lebih luas. 6

Definisi 1.3.3 Untuk setiap x < y di N terdapat dengan tunggal u N yang memenuhi x + u = y. Elemen tunggal yang memenuhi kondisi tersebut ditulis dengan u = y x. Contoh 1.3.4 Karena 4 < 6, dan 4 + 2 = 6, maka sesuai definisi 2 = 6 4. Sebaliknya karena 6 4, maka tidak dapat didefinisikan 4 6 di N. Teorema 1.12 Untuk setiap x, y N, 1. Jika x < y, maka y = x + (y x) 2. Jika z + y = x, maka y = x z 3. Jika z < x dan y = x z, maka y + z = x 4. Jika y < x, maka untuk setiap z < y berlaku y z < x Bukti: Hanya untuk 2. Untuk 1, 3, dan 4 digunakan untuk latihan. Karena z + y = x, berarti y < x. Menggunakan sifat 1, diperoleh x = z + (x z). Namun karena bilangan u N yang memenuhi z + u = x tunggal, maka y = x z. Selanjutnya akan dibahas operasi perkalian dua buah bilangan asli. Definisi 1.3.5 Pada himpunan bilangan asli N terdapat dengan tunggal pemetaan α : N N N yang memenuhi α(1, x) = x, α(x + 1, y) = f(x, y) + y untuk setiap x, y N. Untuk selanjutnya ditulis α(x, y) = xy. Contoh 1.3.6 Sebagai contoh diambil 4 5 = α(3 + 1, 5) = α(3, 5) + 5 = α(2, 5) + 5 + 5 = 5 + 5 + 5 + 5. Secara umum m n = n + n + + n sebanyak m suku. Teorema 1.13 Untuk setiap x, y N berlaku 1 y = y dan (x + 1)y = (xy) + y. 7

Bukti: Langsung dari definisi. Dengan mendasarkan pada sifat-sifat jumlahan dan perkalian bilangan asli, dapat diturunkan sifat-sifat bilangan asli yang selama ini telah dikenal baik mulai dari tingkat SD, SMP, dan SMA. Bebarapa sifat di antaranya sifat distributif kiri dan kanan antara jumlahan dan perkalian, sifat asosiatif dan komutatif terhadap perkalian, sifat kanselatif perkalian, compatible perkalian pada relasi urutan dan distributifitas perkalian terhadap pengurangan. Latihan 1.3 Dengan menggunakan sifat-sifat yang sudah dibuktikan dan pengetahuan SMA selesaikan soal-soal berikut ini 1. Buktikan Teorema 1.8 2. Buktikan Teorema 1.10 3. Buktikan Teorema 1.9 4. Buktikan sifat komutatif, asosiatif, dan kanselatif bilangan asli terhadap perkalian 5. Buktikan bahwa operasi perkalian compatible terhadap relasi urutan. 1.4 Himpunan Bilangan Bulat Solusi dari persamaan x + n = y untuk x, y N yang diberikan, belum tentu bisa diperoleh di N. Solusi n N, hanya bisa diperoleh untuk y > x. Untuk persamaan 5 + n = 3, solusi n bukan elemen N. Untuk itu diperlukan himpunan X yang merupakan perluasan N, sehingga persamaan tersebut selalu bisa ditemukan solusinya. Definisi 1.4.1 Diketahui N himpunan semua bilangan asli. Diambil N sebarang himpunan yang berbeda semua elementnya sehingga N N = dan σ : N N pemetaan bijektif. Jadi N = {σ(n) n N}. Selanjutnya diambil 0 N N. Z : Himpunan Z = {0} N N yang dilengkapi dengan operasi biner + Z dan 8

1. Untuk semua u, v Z, didefinisikan u + Z v salah satu dari; untuk masingmasing a, b N: 1.1 a + Z b = a + N b 1.2 σ(a) + Z σ(b) = σ(a + N b) 1.3 a + Z σ(b) = a N b, jika a > b, = σ(b N a), jika b > a = 0, jika b = a 1.4 σ(a) + Z b = b + Z σ(a) 1.5 u + Z 0 = u = 0 + Z u 2. Untuk semua u, v Z, didefinisikan u Z v salah satu dari; untuk masingmasing a, b N: 1.1 a Z b = a N b 1.2 σ(a) Z σ(b) = σ(a N b) 1.3 a Z σ(b) = σ(a N b) 1.4 σ(a) Z b = σ(a Z b) 1.5 u Z 0 = 0 = 0 Z u Berdasarkan definisi di atas dapat dipastikan bahwa (Z, + Z, Z) merupakan perluasan dari sistem bilangan asli (N, + N, N). Struktur Z merupakan struktur bilangan bulat yang sudah dikenal baik, sehingga semua sifat yang melekat pada sistem bilangan bulat menggunakan asiomatika tersebut di atas ekuvalen dengan sifat-sifat himpunan bilangan bulat yang klasik. Termasuk semua terminologi, seperti habis membagi, faktor persekutuan, algoritma pembagian, dan kongruensi. Latihan 1.4 Dengan menggunakan sistem aksiomatika bilangan bulat dan sifatsifat yang sudah di kenal dalam teori bilangan biasa selesaikanlah beberapa masalah berikut ini: 1. Buktikan sifat komutatif terhadap jumlahan dan perkalian berlaku. 2. Buktikan, bahwa sifat asositif berlaku untuk operasi jumlahan maupun perkalian 9

3. Terhadap operasi perkalian, buktikan bahwa operasi jumlahan bersifat distributi, 4. Jika didefinisikan relasi pada Z dengan definisi untuk setiap a, b Z, a b, jika dan hanya jika terdapat u N sehingga a + u = b, buktikan bahwa merupakan relasi urutan, yang memenuhi (, y Z)(x y x = y y x) berlaku tepat satu keadaan. Materi Pengayaan 1. Dapat di lihat pada website: http://www.imo-official.org 2. Untuk diskusi dengan anak-anak berbakat di bidang matematika silahkan akses http://www.olimpiade.org 10