MA1201 KALKULUS 2A Do maths and you see the world

dokumen-dokumen yang mirip
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d

Barisan dan Deret Agus Yodi Gunawan

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

MODUL RESPONSI MAM 4222 KALKULUS IV

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

TEKNIK PENGINTEGRALAN

Catatan Kuliah MA1123 Kalkulus Elementer I

Teknik Pengintegralan

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

LIMIT DAN KEKONTINUAN

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

FUNGSI-FUNGSI INVERS

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

BARISAN BILANGAN REAL

BAB I DERIVATIF (TURUNAN)

TUJUAN INSTRUKSIONAL KHUSUS

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio.

CNH2B4 / KOMPUTASI NUMERIK

Hendra Gunawan. 4 September 2013

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

2 BARISAN BILANGAN REAL

digunakan untuk menyelesaikan integral seperti 3

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

MA3231 Analisis Real

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Hendra Gunawan. 26 Februari 2014

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

3 LIMIT DAN KEKONTINUAN

Hendra Gunawan. 16 Oktober 2013

Matematika

MA3231 Analisis Real

Modul 1 : Barisan dan Deret Takhingga. Kegiatan Belajar 1 : Barisan Takhingga. Kegiatan Belajar 2 : Deret Takhingga.

Gambar 1. Gradien garis singgung grafik f

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

MA1201 MATEMATIKA 2A Hendra Gunawan

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) =

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Modul KALKULUS MULTIVARIABEL II

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

RPS MATA KULIAH KALKULUS 1B

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

Matematika Dasar FUNGSI DAN GRAFIK

: Pramitha Surya Noerdyah NIM : A. Integral. ʃ f(x) dx =F(x) + c

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

PENGANTAR ANALISIS REAL

Analisis Riil II: Diferensiasi

1 Sistem Bilangan Real

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

2 BARISAN BILANGAN REAL

MACLAURIN S SERIES. Ghifari Eka

16. BARISAN FUNGSI Barisan Fungsi dan Kekonvergenan Titik Demi Titik

BAB IV DERET FOURIER

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Pengantar Statistika Matematik(a)

RPKPS (Rencana Program Kegiatan Pembelajaran Semester) Program Studi : S1 Matematika Jurusan/Fakultas : Matematika/FMIPA

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

Pengintegralan Fungsi Rasional

BAB 1. PENDAHULUAN KALKULUS

Bagian 2 Matriks dan Determinan

10. TEOREMA NILAI RATA-RATA

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)

Jurusan Matematika FMIPA-IPB

INTERGRAL INTEGRAL TAK TENTU INTEGRAL SUBSTITUSI MENU

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

Matematika

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

Deret Taylor. dengan radius kekonvergenan positif. Maka, dengan menggunakan teorema turunan deret pangkat, (x a) + f 00 (a) 2! (x a) 2 + f 000 (a) 3!

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

3 LIMIT DAN KEKONTINUAN

BAB II LANDASAN TEORI

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

KONSEP DASAR PERSAMAAN DIFERENSIAL

SISTEM BILANGAN RIIL DAN FUNGSI

Transkripsi:

Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203

Catatan kuliah ini ditulis dengan banyak merujuk tulisan Bapak Koko Martono dan Bapak Warsoma Djohan MA20 Kalkulus 2A i K. Syuhada, PhD.

Daftar Isi Teknik Pengintegralan. Pengantar...............................2 Menentukan anti-turunan..................... 2.2. Metode substitusi...................... 2.2.2 Metode anti-turunan parsial................ 3.2.3 Metode substitusi yang merasionalkan.......... 4.3 Integral fungsi rasional....................... 5.4 Integral fungsi trigonometri.................... 7 2 Bentuk Tak Tentu dan Integral Tak Wajar 2. Pengantar.............................. 2.2 Bentuk Tak Tentu......................... 2 2.2. Bentuk tak tentu 0/0.................... 2 2.2.2 Bentuk tak tentu /.................. 2 2.2.3 Bentuk tak tentu 0................... 3 2.2.4 Bentuk tak tentu................. 4 2.2.5 Latihan........................... 5 2.3 Integral Tak Wajar......................... 6 2.3. Integral Pada Selang Hingga................ 6 2.3.2 Integral Pada Selang Tak Hingga............. 7 3 Deret Tak Hingga 3. Barisan Tak Hingga......................... 3.. Kemonotonan........................ 2 3..2 Kekonvergenan....................... 3 3.2 Deret Tak Hingga.......................... 4 3.3 Uji Kekonvergenan Deret Suku-suku Positif........... 6 3.3. Uji Integral......................... 6 3.3.2 Uji Banding......................... 7 3.4 Deret Berganti Tanda........................ 9 3.5 Deret Pangkat............................ 0 3.6 Deret Taylor dan Hampiran Taylor untuk Fungsi......... 3 ii

4 Irisan Kerucut dan Koordinat Polar MA20 Kalkulus 2A iii K. Syuhada, PhD.

BAB Teknik Pengintegralan. Pengantar Integral atau anti turunan adalah salah satu konsep (penting) dalam matematika disamping derivatif atau turunan. Perhatikan: y = f(x) = x 2, yang memiliki turunan y = f (x) = d f(x) = 2 x. dx Sekarang, jika diketahui f (x) = 2 x, maka f(x) = x 2 adalah salah satu anti-turunan yang sesuai. Secara umum, sering kita tuliskan f(x) = x 2 + C, dimana C konstanta. Contoh diatas memberikan informasi bagi kita bahwa anti-turunan bersifat tidak tunggal dan karenanya lebih sulit daripada turunan.

Perhatikan bahwa kita dapat menuliskan df(x) = f (x) dx. Atau, df(x) = f(x) + C = f (x) dx..2 Menentukan anti-turunan Bagaimana kita dapat menyelesaikan atau menentukan suatu anti-turunan? Gunakan keterampilan teknis Manfaatkan aturan dasar (Beberapa) aturan dasar anti-turunan:. k dx = k x + C 2. 3. x r dx = r + xr+, r e x dx = e x + C 4. dst... a x dx = ln a ax + C.2. Metode substitusi Metode substitusi merupakan salah satu metode/teknik/cara menyelesaikan integral atau mencari anti turunan. Kuncinya adalah menentukan pemisalan/substitusi MA20 Kalkulus 2A 2 K. Syuhada, PhD.

untuk suatu fungsi tertentu dengan tepat. Contoh: x 2 + x 2 dx mungkinkah kita memisalkan y = x 2? anti-turunan? atau y = x 2 dan mencari atau memisalkan y = x 2? Contoh lain, e x dx. 4 + 9 e2x Selesaikan dengan memisalkan y = e x ; y = e 2x ; y = 9 e x ; y = 9 e 2x ; y = 4 + 9 e x ; y = 4 + 9 e 2x ;?.2.2 Metode anti-turunan parsial Teknik lain mencari anti-turunan adalah dengan metode anti-turunan parsial atau integral parsial, dimana kita memanfaatkan konsep turunan dua fungsi. Contoh, selesaikan x cos x dx Misalkan u = f(x), v = g(x), d dx (u v) = u v + u v d(u v) = u v = Jadi, u dv = u v v du Untuk contoh x cos x dx, MA20 Kalkulus 2A 3 K. Syuhada, PhD.

misalkan atau u = x, u = cos x,? Nampak bahwa metode integral parsial mendorong kita untuk mencari substitusi yang tepat. Bagaimana dengan ln x dx, yang terlihat seperti hanya melibatkan satu fungsi?.2.3 Metode substitusi yang merasionalkan Metode ini dilakukan pada permasalahan mencari anti-turunan suatu fungsi yang memuat akar, seperti n (ax + b)m dx atau a2 x 2 dx, dimana kita ingin menghilangkan tanda akar tersebut. Merujuk namanya, metode/teknik ini mengharuskan kita melakukan pemisalan atau substitusi, seperti (ax + b) = u n, untuk mencari anti-turunan n (ax + b)m dx. Contoh, x 3 x 4 dx, MA20 Kalkulus 2A 4 K. Syuhada, PhD.

yang dapat diselesaikan dengan memisalkan atau (x 4) = u 3 x = u 3 + 4, sehingga anti-turunan diatas dapat diselesaikan sebagai (3u 6 + 2 u 3) du Untuk kasus mencari anti-turunan a2 x 2 dx, dapat digunakan substitusi x = a sin t, π/2 t π/2, sehingga diperoleh a2 x 2 = a cos t Perhatikan bahwa substitusi lain adalah x = a tan t, π/2 < t < π/2, atau x = a sec t, 0 t π, t π/2.3 Integral fungsi rasional Mencari anti-turunan berbentuk seperti 4x + x 3 + 5x dx, adalah salah satu kajian penting karena melibatkan polinom P (x) = 4x + MA20 Kalkulus 2A 5 K. Syuhada, PhD.

dan Q(x) = x 3 + 5x yang perlu diperhatikan derajat -nya. Perhatikan bahwa pada kasus diatas, derajat pembilang (satu) lebih kecil daripada derajat penyebut (tiga). Dengan demikian, dapat dituliskan 4x + x 3 + 5x = A x + Bx + C x 2 + 5 dimana derajat pembilang satu tingkat lebih rendah daripada derajat penyebut. Dengan manipulasi aljabar, diperoleh A = /5; B = /5; C = 4. Pada prinsipnya, kita ingin menguraikan fungsi rasional P (x)/q(x) menjadi jumlahan beberapa fungsi rasional dengan derajat pembilang satu tingkat lebih rendah dari derajat penyebut baik secara langsung, seperti Bx + C x 2 + 5, ataupun tidak langsung, seperti C (2x + 5) 2, dimana kata tidak langsung merujuk pada pemisalan y = 2x + 5 dengan turunan konstan. (untuk pandangan lain, lihat catatan kuliah W Djohan, 202) Diskusi: Bagaimana kita mencari anti-turunan x 2 x + 5 (x 2) 2 (x + ) dx? Apakah dengan menguraikan x 2 x + 5 (x 2) 2 (x + ) = A x 2 + B (x 2) + C 2 x +? MA20 Kalkulus 2A 6 K. Syuhada, PhD.

(dengan A = 2; B = ; C = 3) Atau, x 2 x + 5 (x 2) 2 (x + ) = B (x 2) + C 2 x +?.4 Integral fungsi trigonometri Kita ingin menyelesaikan anti-turunan fungsi trigonometri, sin n x dx, atau cos n x dx, untuk n genap atau ganjil. Atau, sin m x cos n x dx, pada beberapa kemungkinan nilai m dan n. Tentunya tidak dapat kita lupakan aturan dasar anti-turunan seperti berikut. sin x dx = cos x + C 2. cos x dx = sin x + C 3. sec 2 x dx = tan x + C 4. sec x tan x dx = sec x + C dst... MA20 Kalkulus 2A 7 K. Syuhada, PhD.

Contoh: Selesaikan sin m x dx, untuk m = 2, 3, 4. MA20 Kalkulus 2A 8 K. Syuhada, PhD.

BAB 2 Bentuk Tak Tentu dan Integral Tak Wajar 2. Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk it dengan nilai seolaholah : Contoh: dan 0 0 ; ; 0 ; ; 00 ; 0 ; x 0 x 4 sin x x x x 2, x 4 yang apabila kita substitusikan titik itnya, kita peroleh nilai 0 0. Pertanyaan: Berapakah nilai it diatas?

2.2 Bentuk Tak Tentu 2.2. Bentuk tak tentu 0/0 Kita akan menghitung dengan x c f(x) g(x), f(x) = 0 = g(x). x c x c Cara penyelesaiannya dengan mengubah bentuk f(x)/g(x) (menguraikan pembilang dan penyebut; merasional bentuk pecahan; menggunakan rumus trigonometri dll) sehingga sifat-sifat it fungsi dapat dipakai. Contoh : hitunglah x 0 sin x x Contoh 2: hitunglah Solusi: x 4 x 4 x x 2 x 4 x x 2 x 4 ( x 2)( x + ) = x 4 ( x 2)( x + 2) x + = x 4 x + 2 = 3/4 2.2.2 Bentuk tak tentu / Misalkan kita akan menghitung x f(x) g(x), MA20 Kalkulus 2A 2 K. Syuhada, PhD.

dengan f(x) = = g(x). x x Cara penyelesaiannya dengan mengubah bentuk f(x)/g(x) (merasional bentuk pecahan; memunculkan bentuk /x n dengan n bilangan asli dll) sehingga sifat-sifat it fungsi dapat dipakai. Contoh: hitunglah x x x 2 x 4 (Perhatikan bahwa jika kita substikan titik itnya, kita dapatkan nilai it berbentuk tak hingga per tak hingga) Solusi: x x x 2 x 4 ( x 2)( x + ) = x ( x 2)( x + 2) x + = x x + 2 x( + = x = = + + x( + 2 x ) x ) x x 2 x x 2.2.3 Bentuk tak tentu 0 Sekarang, pandang dengan f(x)g(x), x c f(x) = 0; g(x) =. x c x c MA20 Kalkulus 2A 3 K. Syuhada, PhD.

Kita dapat menghitung it diatas dengan cara mengubah bentuk f(x)g(x) menjadi bentuk f(x) /g(x) sehingga diperoleh bentuk 0/0, atau menjadi bentuk g(x) /f(x) dengan bentuk /. Contoh : hitunglah ( x π 4 Solusi: x π 4 x π 4 = x π 4 = = = /2 ) sec 2x ( x π ) sec 2x 4 x π 4 cos 2x Contoh 2: hitunglah ( sin ) x x x 2.2.4 Bentuk tak tentu Untuk menyelesaikan it berbentuk, dengan (f(x) g(x)), x f(x) = ; g(x) =, x x caranya penyelesaiannya dengan mengubah menjadi bentuk /. MA20 Kalkulus 2A 4 K. Syuhada, PhD.

Contoh: hitunglah ( x2 + 2x x) x Solusi: tuliskan x2 + 2x x = x 2 + 2x x x2 + 2x + x x2 + 2x + x = x2 + 2x x 2 x2 + 2x + x = = 2x x ( 2 + x) 2 + x 2x ) x ( + 2x + Jadi, ( x2 + 2x x) = x Dapatkah anda menghitung ( x2 3x + x) x? Solusi: 3/2 2.2.5 Latihan Hitung dan x x x2 + x 2x x2 + x 2x. Limit diatas berbentuk MA20 Kalkulus 2A 5 K. Syuhada, PhD.

Perhatikan bahwa kita dapat menuliskan x2 + x 2x = x ( ) 2 + x x ( ) 2 x dan untuk x berlaku sehingga untuk x berlaku sehingga Jadi, dan x x x 2 + x 2x = /2 x 2 + x 2x = /2. 2.3 Integral Tak Wajar 2.3. Integral Pada Selang Hingga Misalkan kita ingin menghitung dx. x Kita dapat (dengan mudah) menyelesaikannya dengan memisalkan y = x sehingga dx x = y /2 dy = 2y /2 + C = 2 x + C Namun, bagaimana jika kita ingin menghitung integral tentu 5 x dx? MA20 Kalkulus 2A 6 K. Syuhada, PhD.

Kita tahu bahwa fungsi f(x) = x kontinu pada selang (, 5] dengan =. x + x Apabila kita menghitung integral pada selang [, 5], maka tindakan yang dilakukan dikatakan sebagai perhitungan integral tak wajar. Jadi, 5 = c + x dx 5 ( c + = = 4 x 2 ) x 2.3.2 Integral Pada Selang Tak Hingga Pada bagian sebelumnya, kita melihat salah satu bentuk integral tak wajar dimana integran bernilai tak hingga. Sekarang kita lihat bentuk lain dimana integran kontinu dan terdefinisi di domainnya, namun integral yang kita hitung memiliki (salah satu) batas tak hingga. Contoh : hitunglah 0 + x 2 dx yang mana kita tahu fungsi f(x) = +x 2 kontinu dan terdefinisi di selang (, ). Solusi: 0 = a = a = a + x dx 2 0 = ( π/2) a + x dx 2 ( ) 0 tan x a ( ) tan a MA20 Kalkulus 2A 7 K. Syuhada, PhD.

Contoh 2: hitunglah 0 x(x + ) dx Solusi: Perhatikan bahwa fungsi f(x) = x(x+) kontinu pada selang (0, ) dengan f(x) =. x 0 + Selain itu, integral tak tentunya dx = 2 tan x + C x(x + ) Jadi, 0 x(x + ) dx = = π. Bagaimana dengan 0 sin x dx,? MA20 Kalkulus 2A 8 K. Syuhada, PhD.

BAB 3 Deret Tak Hingga 3. Barisan Tak Hingga Barisan adalah fungsi dengan daerah asal (domain) bilangan asli, f : N R, yang mana f(n) = a n, dikenal sebagai barisan bilangan real {a n }; a n disebut sebagai suku ke-n atau rumus umum suatu barisan. Contoh: atau a n = n, {, 2, 3,...} Diskusi: Mungkinkah ada rumus suku ke-n yang lain yang memberikan beberapa suku pertama barisan yang sama dengan diatas? Jawab: Ada! a = ; a n+ = a n + a n Perhatikan bahwa rumus suku ke-n suatu barisan tidak tunggal. Contoh: Tentukan rumus suku ke-n dari barisan-barisan berikut:. {,,,,...} 2. { 8, 5, 4,...} 2 2 2

Solusi:. a n = ( ) n+ ; a n = sin (n 2 )π 2. a n = + 3 n ; a n = 2 n2 3n + 3 2 Apa (lagi) yang bisa kita lakukan terhadap suatu barisan? Jawab: menyelidiki... ke-monoton-an ke-terbatas-an ke-konvergen-an 3.. Kemonotonan Ilustrasi: Selidiki kemonotonan barisan. a n = n+ 2n 2. a n = ( )n n 3. a n = n! 2 n Untuk no, suku-suku barisannya adalah, 3 4, 2 3, 5 8, 3 5,... yang cenderung mengecil (turun). Kita menduga bahwa barisan {a n } monoton turun. Apabila kita perhatikan secara teoritis rasio rumus suku ke-n + dan ke-n, a n+ a n = n2 + 2n n 2 + 2n + <, n N, maka a n+ < a n, n N. Sehingga {a n } merupakan barisan monoton turun. Definisi: Barisan bilang real {a n } dikatakan monoton turun, jika untuk setiap n N, a n+ < a n. (bagaimana definisi untuk barisan monoton tidak turun, naik, tidak naik? barisan tidak monoton?) MA20 Kalkulus 2A 2 K. Syuhada, PhD.

3..2 Kekonvergenan Definisi: Barisan bilang real {a n } dikatakan konvergen ke a R, jika a n = a. n Barisan {a n } yang tidak punya it dikatakan divergen; it barisannya,, atau beroskilasi. Contoh: Barisan a n = n+ 2n n n + 2n = 2. konvergen ke 2 karena Sedangkan barisan a n = ( ) n divergen karena n ( )n tidak ada (beroskilasi). Dapatkah anda menyelidiki kekonvergenan barisan c n = n2 2n + 3 sin π n? Solusi: Barisan diatas dapat ditulis menjadi perkalian dua barisan dengan a n b n a n = n sin π n, yang konvergen ke π; dan b n = n 2n + 3, yang konvergen ke 2. Dengan demikian barisan {c n} konvergen ke 2 n. Teorema: Misakan barisan {a n } konvergen ke a dan barisan {b n } konvergen ke b, maka barisan-barisan MA20 Kalkulus 2A 3 K. Syuhada, PhD.

{a n b n } konvergen ke ab { a n bn } konvergen ke a b, b 0 {a n + b n } konvergen ke a + b {a n b n } konvergen ke a b Teorema: Setiap barisan bilangan real yang konvergen selalu terbatas Setiap barisan bilangan real yang monoton dan terbatas selalu konvergen Latihan: Selidiki kekonvergen barisan-barisan berikut dengan memanfaatkan sifat kemonotonan dan keterbatasan, dan a n = b n = 2n n! 2n 3.2 Deret Tak Hingga Pandang barisan {a n }, lalu bentuklah barisan baru {s n } dengan s n = a + a 2 + + a n = n a k, k= atau jumlah n suku pertamanya. Barisan {s n } disebut sebagai deret (tak hingga) bilangan real. Notasi deret: a n = a + a 2 + n= Sedangkan s n = n a k, k= MA20 Kalkulus 2A 4 K. Syuhada, PhD.

disebut jumlah parsial ke-n dari deret Deret n= a n dikatakan konvergen jika barisan jumlah parsialnya mempunyai it; dikatakan divergen jika itnya tidak ada. Contoh: Deret n= n(n + ) dapat diselidiki kekonvergenannya dengan cara tulis rumus jumlah parsialnya hitung itnya Dengan demikian, dan s n = = n a k = k= n k= n k= ( k k + =... = n + k(k + ) ) ( s n = ) = n n n + Artinya, deret konvergen ke (konvergen dengan jumlah ). Latihan: Selidiki kekonvergenan deret-deret berikut. n= 2. n= 2n+ n 2 (n+) 2 n 3. n= ( )n+ (deret harmonik) Teorema: Jika deret n= a n konvergen maka a n = 0 n MA20 Kalkulus 2A 5 K. Syuhada, PhD.

3.3 Uji Kekonvergenan Deret Suku-suku Positif Menguji kekovergenan deret dengan suku-suku positif dapat dilakukan dengan cara antara lain. Uji integral 2. Uji banding 3. Uji akar* 3.3. Uji Integral Telah kita ketahui bahwa deret n= n = + 2 + 3 +... divergen. Namun, untuk kepentingan pengujian kekonvergenan deret dengan Uji Integral, maka kita anggap kita belum mengetahui bahwa deret tersebut divergen. Secara geometris, deret diatas memiliki arti luas persegipanjang dengan panjang alas dan tinggi, n =, 2,.... Jumlah luas persegipanjang ini lebih n besar dibandingkan luas daerah yang dibatasi oleh {x, 0 y }. Dengan kata x lain, n= n > x dx. Sekarang, kita hitung integral tak wajar pada selang tak hingga b dx = x b = b ( ln x = b ln b = divergen (karena lebih besar dari integral tak wa- Akibatnya, deret n= jarnya) n x dx ) b MA20 Kalkulus 2A 6 K. Syuhada, PhD.

Bagaimana dengan deret n= n 2? Teorema: Misalkan f fungsi kontinu, monoton turun, dan f(x) > 0 pada selang [, ). Jika integral tak wajar f(x) dx konvergen/divergen, maka deret n= f(n) konvergen/divergen Latihan: Selidiki kekonvergenan dari deret-deret berikut:. n= 2. n=2 2n+ n ln 2 n Solusi: Integral tak wajar sedangkan 2 2x + dx =, x ln 2 x dx = ln 2. 3.3.2 Uji Banding Teorema: Misalkan deret-deret a n= n dan b n= n adalah deret dengan suku-suku positif, Jika a n b n untuk semua n N dan b n= n konvergen, maka konvergen Jika a n b n untuk semua n N dan b n= n divergen, maka divergen n= a n n= a n Latihan: Selidiki kekonvergenan deret-deret berikut. n= 2 n + MA20 Kalkulus 2A 7 K. Syuhada, PhD.

2. n=2 ln n Teorema: Misalkan deret-deret a n= n dan b n= n adalah deret dengan suku-suku positif, Jika n a n b n = c, c > 0 maka kedua deret konvergen atau divergen Jika n a n b n = 0 dan n= b n konvergen maka n= a n konvergen Jika n a n b n = dan n= b n divergen maka n= a n divergen Latihan: Lakukan uji banding it dengan deret lain pada. n= 2. n=2 2 n + ln n untuk menyelidiki kekonvergenannya. Pengujian kekonvergenan dengan uji integral atau uji banding dengan deret lain seringkali tidak mudah; integral tak wajar sulit/tak dapat dihitung dan/atau tidak dapat dicari deret pembandingnya. Kita dapat menguji kekonvergenan suatu deret dengan suku deretnya sendiri. Teorema: Jika n= a n deret dengan suku-suku positif dan n a n+ a n = L maka deret konvergen jika 0 L < dan divergen bila L >. MA20 Kalkulus 2A 8 K. Syuhada, PhD.

Latihan: Selidiki kekonvergenan deret-deret berikut. n= 2. n=2 n+ n! 2 n n 3 3.4 Deret Berganti Tanda Deret (ber)ganti tanda berbentuk: ( ) n+ a n = a a 2 + a 3 a 4 +..., n= dimana suku-sukunya memiliki tanda positif negatif secara berselang-seling. Seperti sebelumnya, kajian utama kita adalah menguji kekonvergenan deret ganti tanda. Contoh:. n= ( )n+ = + +... 2. n= ( )n+ 2 n = 2 + 4 8 + Solusi: Divergen, Konvergen. Teorema: Jika barisan {a n } memiliki suku-suku (kesemua sukunya) positif, monoton turun dan n a n = 0, maka deret ( ) n+ a n n= konvergen. Selidiki kekonvergenan deret-deret berikut:. n= ( )n+ n 2. n= ( )n+ n ln n Definisi: Deret n= a n disebut konvergen mutlak jika deret a n n= MA20 Kalkulus 2A 9 K. Syuhada, PhD.

konvergen; disebut konvergen bersyarat jika deret a n n= divergen. Teorema: Jika deret n= a n konvergen mutlak maka deret n= a n konvergen. Selidiki kekonvergenan deret-deret berikut:. n= ( )n+ ( n+ 2n 2. n= sin 6 (2n )π n n 3. 3n n= ( )n n! ) n 3.5 Deret Pangkat Sejauh ini kita telah mempelajari deret yang jelas bentuk deretnya. Kini, kita akan melihat deret yang tidak jelas, yang dinyatakan dalam x, seperti x n = + x + x 2 +..., x < ; n=0 n! x n = + x + 2 x 2 + 6 x 3 +... ; n=0 n= ( ) n n2 n xn =. Catatan: Perhatikan himpunan x yang membuat deret konvergen/divergen. Definisi: Deret yang berbentuk a n (x c) n = a 0 + a (x x) + a 2 (x c) 2 +... n=0 MA20 Kalkulus 2A 0 K. Syuhada, PhD.

dikatakan sebagai deret pangkat dalam (x c) atau deret pangkat berpusat di c. Perhatikan bahwa deret diatas konvergen untuk x = c. Adakah nilai x yang lain yang menyebabkan deret tersebut konvergen? Contoh : deret n=0 n! xn Contoh 2: deret n=0 yang mana n = = 2 x ( ) n n2 n xn a n+ a n Artinya, deret akan konvergen mutlak untuk x < (atau x < 2) dan 2 divergen untuk x > (atau x > 2). Namun untuk x = 2, 2 n=0 ( ) n n 2 n 2n = + 2 3 + 4 +... konvergen; untuk x = 2, n=0 ( ) n n 2 n ( 2)n = + 2 + 3 + 4 +... divergen. Jadi, deret n=0 ( ) n n 2 n xn kovergen untuk 2 < x 2 atau ( 2, 2]. Catatan: Himpunan semua x dimana deret pangkat konvergen dikatakan sebagai selang kekonvergenan deret. MA20 Kalkulus 2A K. Syuhada, PhD.

Teorema: Jika deret pangkat n=0 a nx n konvergen di x 0, maka deret tersebut konvergen mutlak untuk x < x Jika deret pangkat n=0 a nx n divergen di x, maka deret tersebut divergen untuk x > x Teorema: Deret pangkat kovergen hanya untuk x = 0 Deret pangkat kovergen mutlak untuk setiap x R Terdapat suatu r > 0 sehingga deret pangkat konvergen mutlak untuk x < r dan divergen untuk x > r (r > 0 adalah jari-jari kekonvergenan) Latihan: Tentukan jari-jari dan selang kekonvergenan deret. n=0 ( ) n+ 2 n n 2 (x 3) n 2. n=0 ( )n+ (n + ) (x ) n Teorema: Misalkan deret pangkat a n x n n=0 memiliki jari-jari kekonvergenan r > 0. dapat diturunkan pada ( r, r) dengan Maka, fungsi f(x) = n=0 a n x n f (x) = n a n x n n=0 Teorema: Misalkan deret pangkat a n x n n=0 MA20 Kalkulus 2A 2 K. Syuhada, PhD.

memiliki jari-jari kekonvergenan r > 0. Maka, fungsi f(x) = n=0 a n x n dapat diintegralkan pada setiap selang bagian tertutup dari ( r, r) dan untuk setiap x ( r, r) berlaku x 0 f(t) dt = n a n n + xn+ n=0 Teorema Abel: Jika f(x) = n=0 a n x n, x < dan deret n=0 a n konvergen, maka n=0 a n = x f(x) dan n=0 ( ) n a n = x + f(x). 3.6 Deret Taylor dan Hampiran Taylor untuk Fungsi Ilustrasi: Perhatikan fungsi f(x) = e x yang dapat diuraikan menjadi e x = + x + x2 2 + x3 6 +..., x R, Bagaimana kita dapat menguraikan fungsi tersebut? Seberapa banyak (sampai berapa suku) kita harus menguraikannya? Deret pangkat f(x) = a 0 + a x + a 2 x 2 +... = a n x n n=0 dapat diturunkan suku demi suku sampai tingkat tak hingga, f (n) (x) = n!a n + 2.3... n(n + )a n+ x +..., untuk x < r. MA20 Kalkulus 2A 3 K. Syuhada, PhD.

Apabila kita mengambil x = 0, atau f(0) = a 0, f (0) = a, f (0) = 2!a 2. f (n) (0) = n!a n a 0 = f(0); a = f (0)! ; a 2 = f (0) ;... ; a n = f (n) (0) 2! n! Dengan demikian, deret pangkat dapat ditulis atau f(x) = f(0) + f (0)! x + f (0) 2! x 2 +... + f (n) (0) n! x n +..., f(x) = n=0 f (n) (0) n! x n, untuk x < r, r > 0 jari-jari kekonvergenan, dan f (0) (0) = f(0). Deret tersebut dikenal dengan nama Deret MacLaurin. Jika titik pusatnya digeser ke c, maka f(x) = n=0 f (n) (c) n! (x c) n, untuk x c < r, r > 0 jari-jari kekonvergenan dan f (0) (c) = f(c). Deret ini disebut Deret Taylor yang berpusat di c dari fungsi f. Latihan: Tentukan deret Taylor dan selang kekonvergenan dari fungsi f berikut di titik c,. f(x) = sin x di c = π 2. f(x) = ln x di c = e Seberapa banyak (sampai berapa suku) kita harus menguraikan deret Taylor di titik c? MA20 Kalkulus 2A 4 K. Syuhada, PhD.

Perhatikan bahwa kita dapat menuliskan deret Taylor sebagai f(x) = P n (x) + R n (x) dimana dan P n (x) = n k=0 f (k) (c) k! (x c) k R n (x) = f (n+) (ξ) (n + )! dengan ξ diantara c dan x. (x c)n+ Teorema: Misalkan fungsi f dapat diturunkan sampai tingkat tak hingga pada selang (c r, c + r). Misalkan barisan bilangan real {M n } konvergen ke nol. Jika untuk setiap n N, x, ξ (c r, c + r) berlaku f n (ξ) (x c) n M n n! maka fungsi f dapat dinyatakan sebagai Deret Taylor pada selang (c r, c+r). Latihan: Hitunglah,. e 2. ln 5 dengan ketelitian sampai 4 desimal MA20 Kalkulus 2A 5 K. Syuhada, PhD.

BAB 4 Irisan Kerucut dan Koordinat Polar Silakan merujuk Catatan Kuliah dari Bapak Warsoma Djohan seperti yang disampaikan di kelas