PARTISI BILANGAN p(5n + 4), p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11 ABSTRACT

Ukuran: px
Mulai penontonan dengan halaman:

Download "PARTISI BILANGAN p(5n + 4), p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11 ABSTRACT"

Transkripsi

1 PARTISI BILANGAN p(5n + 4), p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN 11 Abdul Akhyar 1, Syamsudhuha 2, Sri Gemawati 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya Pekanbaru 28293, Indonesia abdul.akhyar@yahoo.co.id ABSTRACT A partition of a positive integer is the representation of the positive integer its self or sums of the other positive integers, while the partition function is the number of partitions. This article disscusses a simple proof of partition numbers p(5n + 4), p(7n + 5) and p(11n + 6) consecutively congruent modulo 5, 7, and 11. The proof for modulo 5 and 7 are carried out via Jacobi identities, while for modulo 11 via Euler and Jacobi identities. Keywords: identities Partition number, modulo, generating function, Euler and Jacobi ABSTRAK Partisi dari bilangan bulat positif merupakan suatu cara menuliskan bilangan tersebut sebagai dirinya sendiri ataupun juga sebagai jumlah dari bilangan bulat positif lainnya, sedangkan fungsi partisi adalah banyaknya partisi yang dimiliki oleh suatu bilangan. Artikel ini membahas tentang bukti sederhana dari partisi bilangan p(5n + 4), p(7n + 5) dan p(11n + 6) secara berturut-turut kongruen pada modulo 5, 7 dan 11. Untuk pembuktian pada modulo 5 dan 7 melalui identitas Jacobi, sedangkan untuk modulo 11 melalui identitas Euler dan identitas Jacobi. Kata kunci: Partisi bilangan, modulo, fungsi pembangkit, identitas Euler dan identitas Jacobi 1. PENDAHULUAN Berbicara tentang matematika tidak akan bisa lepas dari hal yang disebut dengan bilangan. Berdasarkan keanggotaannya, bilangan dibagi menjadi beberapa macam, salah satunya adalah bilangan bulat. Bilangan bulat positif dapat ditulis sebagai dirinya sendiri ataupun sebagai jumlah dari bilangan bulat positif lainnya yang dikenal sebagai partisi bilangan. Fungsi partisi menyatakan jumlah atau banyaknya partisi yang bisa dimiliki oleh suatu bilangan. 1

2 Dalam [12] dinyatakan bahwa pada tahun 1917 P.A MacMahon menemukan barisan partisi bilangan hingga n = 200, kemudian Ramanujan mengamati barisan tersebut dan menemukan bahwa terdapat fungsi partisi bilangan dengan jarak yang sama kongruen dengan nol modulo 5, 7 dan 11, yaitu p(5n + 4) 0 (mod 5), p(7n + 5) 0 (mod 7) dan (p11n + 6) 0 (mod 11). Bukti untuk partisi bilangan (p11n + 6) 0 (mod 11) banyak ditemukan dalam banyak artikel diantaranya seperti dalam Atkin dan Swinnerton-Dyer[1], Ekin[6], Hardy et al.[7], Hirschhorn[9], [10], [11], tetapi pembuktian tersebut tidak sesederhana seperti yang ditulis disini. Karya tulis ini membahas tentang bukti partisi bilangan p(5n + 4) 0 (mod 5), p(7n + 5) 0 (mod 7) dan (p11n + 6) 0 (mod 11) yang dilakukan melalui identitas Jacobi dan identitas Euler dengan me-review artikel yang berjudul A Short and Simple Proof of Ramanujans Mod 11 Partition Congruence yang ditulis oleh Hirschhorn [12]. 2. TEORI PENDUKUNG Pada bagian ini dijelaskan mengenai partisi bilangan, fungsi partisi fungsi pembangkit partisi bilangan dan teorema binomial. Definisi 1 [3, h. 1] Partisi dari bilangan bulat positif n adalah barisan turun yang r terbatas dari bilangan bulat positif λ 1, λ 2,..., λ r sehingga λ i = n. λ i disebut bagian dari partisi. Definisi 2 [3, h. 2] Fungsi partisi p(n) menyatakan banyaknya partisi yang dimiliki oleh bilangan bulat n, atau disebut juga sebagai jumlah partisi dari n. Contoh 1 (4,2,2,1) adalah partisi dari 9 karena =9, sedangkan 1, 2 dan 4 disebut bagian partisi dari 9. Fungsi partisi untuk 9 adalah p(9) = 30 [8]. Teorema 3 Fungsi pembangkit untuk p(n) adalah p(n)q n = n=1 i=1 1, dimana q < 1. (1) 1 qn Bukti. Dapat dilihat pada [4, h. 5]. Jika dimisalkan E(q) = (1 q n ), maka persamaan (1) dapat ditulis menjadi n=1 p(n)q n = 1 E(q). (2) 2

3 Teorema 4 (Teorema Binomial)Misalkan x dan y adalah bilangan real dan n adalah bilangan bulat tak negatif, maka n ( ) n (x + y) n = x n i y i. i i=0 Bukti. Dapat dilihat pada [13, h. 167]. 3. IDENTITAS EULER DAN IDENTITAS JACOBI Pada bagian ini diberikan teorema mengenai identitas Euler dan identitas Jacobi sebagai berikut. Teorema 5 (Identitas Euler) Untuk q < 1 maka E(q) = n= ( 1) n q n(3n 1)/2. (3) Bukti. Dapat dilihat pada [2, h:177]. Dari persamaan (3) jika diuraikan dengan n = 0, 1, 1, 2, 2, 3,... maka diperoleh E(q) = 1 q q 2 + q 5 + q 7 q 12 q 15 ±. (4) Teorema 6 (identitas Jacobi) Untuk q < 1 maka E(q) 3 = ( 1) n (2n + 1)q (n2 +n)/2. (5) Bukti. Dapat dilihat pada [5, h:14]. Dari persamaan (5) jika diuraikan diperoleh E(q) 3 = 1 3q + 5q 3 7q 6 + 9q 10 11q q 21 15q q 36 19q 45 ±. (6) 3

4 4. PARTISI BILANGAN p(5n + 4), p(7n + 5) DAN p(11n + 6) SECARA BERTURUT-TURUT KONGRUEN MODULO 5, 7 DAN FUNGSI PARTISI BILANGAN KONGRUEN NOL MODULO 5 Pada bagian ini dibahas mengenai bukti dari partisi bilangan p(5n+4) 0 (mod 5) yang dilakukan melalui identitas Jacobi. Teorema 7 Untuk setiap bilangan bulat tak negatif n maka p(5n + 4) 0 (mod 5). Bukti. Perhatikan pangkat q dari deret E(q) 3 pada persamaan (6), yaitu 0, 1, 3, 6, 10, 15, 21, 28, 36, 45,.... Diperoleh bahwa bilangan - bilangan tersebut kongruen dengan 0, 1 atau 3 (mod 5). Jika dimisalkan i = 0, 1 atau 3, dan J i adalah suku - suku dimana pangkat dari q kongruen dengan i (mod 5) maka diperoleh E(q) 3 = J 0 + J 1 + J 3. (7) Tetapi karena (2n + 1) 0 (mod 5) jika (n 2 + n)/2 3 (mod 5), maka J 3 0 (mod 5), sehingga persamaan (7) menjadi Berdasarkan Teorema 4 diperoleh sehingga E(q) 3 J 0 + J 1. (1 q) 5 (1 q 5 ) (mod 5), E(q) 5 = (1 q) 5 (1 q 2 ) 5 (1 q 3 ) 5, (1 q 5 )(1 q 10 )(1 q 15 ) (mod 5), E(q) 5 E(q 5 ) (mod 5). (8) Dari persamaan (2) diperoleh bahwa Dari kekongruenan (8), diperoleh p(n)q n = 1 E(q) = (E(q)3 ) 3 (E(q) 5 ) 2. p(n)q n (E(q)3 ) 3 E(q 5 ) 2 (mod 5) = (J 0 + J 1 ) 3 E(q 5 ) 2 (mod 5) = J J 2 0 J 1 + 3J 0 J J 3 1 E(q 5 ) 2 (mod 5), (9) 4

5 dari pembilang N(q) = J J0 2 J 1 + 3J 0 J1 2 + J1 3 beberapa suku pertama sebagai berikut. pada persamaan (9) diperoleh J 3 0 = q , 3J 2 0 J 1 = q(9 + 21q ), 3J 0 J 2 1 = q 2 ( q ), J 3 1 = q 3 ( q ), sehingga diperoleh bahwa pangkat dari q dalam J0 3 kongruen 0 (mod 5), dalam 3J0 2 J 1 kongruen 1 (mod 5), dalam 3J 0 J1 2 kongruen 2 (mod 5), dalam J1 3 kongruen 3 (mod 5), dan tidak terdapat pangkat dari q yang kongruen dengan 4 (mod 5), sehingga koefisien q 5n+4 adalah 0 (mod 5). Dengan demikian maka p(5n + 4)q 5n+4 0 (mod 5), n 0 dan p(5n + 4) 0 (mod 5) FUNGSI PARTISI BILANGAN KONGRUEN NOL MODULO 7 Pada bagian ini dibahas mengenai bukti dari partisi bilangan p(7n+5) 0 (mod 7) yang dilakukan melalui identitas Jacobi. Teorema 8 Untuk setiap bilangan bulat tak negatif n maka p(7n + 5) 0 (mod 7). Bukti. Dengan memperhatikan kembali pangkat q dari suku-suku pada deret E(q) 3 dalam persamaan (6) diperoleh bahwa bilangan - bilangan pangkat tersebut kongruen dengan 0, 1, 3 atau 6 (mod 7). Jika dimisalkan i = 0, 1, 3 atau 6, dan J i adalah suku - suku dimana pangkat dari q kongruen dengan i (mod 7) maka diperoleh E(q) 3 = J 0 + J 1 + J 3 + J 6. (10) Tetapi karena (2n + 1) 0 (mod 7) jika (n 2 + n)/2 6 (mod 7), maka J 6 0 (mod 7), sehingga persamaan (10) menjadi Berdasarkan Teorema 4 diperoleh bahwa E(q) 3 J 0 + J 1 + J 3. (1 q) 7 (1 q 7 ) (mod 7), 5

6 sehingga E(q) 7 = (1 q) 7 (1 q 2 ) 7 (1 q 3 ) 7, (1 q 7 )(1 q 14 )(1 q 21 ) (mod 7), E(q) 7 E(q 7 ) (mod 7). (11) Dari persamaan (2) diperoleh bahwa Dari kekongruenan (11), diperoleh p(n)q n (E(q)3 ) 2 E(q 7 ) p(n)q n = 1 E(q) = (E(q)3 ) 2 E(q) 7. = (J 0 + J 1 + J 3 ) 2 E(q 7 ) (mod 7), (mod 7), = J J J J 0 J 1 + 2J 0 J 3 + 2J 1 J 3 E(q 7 ) (mod 7). (12) dari pembilang N(q) = J J J J 0 J 1 + 2J 0 J 3 + 2J 1 J 3 pada persamaan (12) diperoleh beberapa suku pertama debagai berikut. J 2 0 = q 21 +, J 2 1 = q 2 (9 + 66q 14 + ), J 2 3 = q 6 ( q 7 + ), 2J 0 J 1 = q( 6 22q 14 + ), 2J 0 J 3 = q 3 ( q 7 + ), 2J 1 J 3 = q 4 ( 30 54q 7 + ). Dapat dilihat bahwa pangkat dari q dalam J 2 0 kongruen 0 (mod 7), dalam J 2 1 kongruen 2 (mod 7), dalam J 2 3 kongruen 6 (mod 7), dalam 2J 0 J 1 kongruen 1 (mod 7), dalam 2J 0 J 3 kongruen 3 (mod 7), dalam 2J 1 J 3 kongruen 4 (mod 7), dan tidak terdapat pangkat dari q yang kongruen dengan 5 (mod 7), sehingga koefisien q 7n+5 adalah 0 (mod 7). Dengan demikian maka p(7n + 5)q 7n+5 0 (mod 7), dan p(7n + 5) 0 (mod 7). 6

7 4.3. FUNGSI PARTISI BILANGAN KONGRUEN NOL MODULO 11 Pada bagian ini dibahas mengenai bukti dari partisi bilangan p(11n + 6) 0 (mod 11). Pembuktian dilakukan melalui identitas Euler dan identitas Jacobi. Teorema 9 Untuk setiap bilangan bulat tak negatif n maka p(11n + 6) 0 (mod 11). Bukti. Dari persamaan (4) diperoleh bahwa bilangan pangkat q dari suku-suku pada deret E(q) kongruen dengan 0, 1, 2, 4, 5 atau 7 (mod 11). Jika dimisalkan i = 0, 1, 2, 4, 5 atau 6, dan E i adalah suku - suku dimana pangkat dari q kongruen dengan i (mod 11) maka diperoleh E(q) = E 0 + E 1 + E 2 + E 4 + E 5 + E 7, dan dari persamaan (6) diperoleh bahwa bilangan pangkat q dari suku-suku pada deret E(q) 3 kongruen dengan 0, 1, 3, 4, 6 atau 10 (mod 11). Jika dimisalkan i = 0, 1, 3, 4, 6 atau 10, dan J i adalah suku - suku dimana pangkat dari q kongruen dengan i (mod 11), diperoleh E(q) 3 = J 0 + J 1 + J 3 + J 4 + J 6 + J 10. (13) Tetapi karena (2n + 1) 0 (mod 11) jika (n 2 + n)/2 4 (mod 11), maka J 4 0 (mod 11), sehingga persamaan (13) menjadi Berdasarkan Teorema 4 diperoleh bahwa sehingga E(q) 3 = J 0 + J 1 + J 3 + J 6 + J 10. (1 q) 11 (1 q 11 ) (mod 11), E(q) 11 = (1 q) 11 (1 q 2 ) 11 (1 q 3 ) 11, (1 q 11 )(1 q 22 )(1 q 33 ) (mod 11), E(q) 11 E(q 11 ) (mod 11). (14) Dari persamaan (2) diperoleh bahwa Dari kekongruenan (14), diperoleh p(n)q n (E(q)3 ) 7 E(q 11 ) 2 p(n)q n = 1 E(q) = (E(q)3 ) 7 (E(q) 11 ) 2. = (J 0 + J 1 + J 3 + J 6 + J 10 ) 7 E(q 11 ) 2 (mod 11). (15) 7

8 Dari pembilang N(q) = (J 0 + J 1 + J 3 + J 6 + J 10 ) 7 pada persamaan (15) jika dicari pangkat dari q yang kongruen dengan 6 (mod 11) diperoleh dimana p(11n + 6)q 11n+6 = P E(q 11 ) 2, P 7J 6 0 J J 5 0 J J 4 0 J 1 J 6 J J 3 0 J 3 1 J 3 + 2J 3 0 J 1 J 2 3 J J 3 0 J 3 6 J J 2 0 J 2 1 J 3 J J 2 0 J 2 1 J 6 J J 2 0 J 2 3 J 2 6 J J 2 0 J 3 J 6 J J 2 0 J J 0 J J 0 J 4 1 J 3 J J 0 J 2 1 J 2 3 J 6 + 3J 0 J 2 1 J 2 3 J J 0 J 1 J 3 J J 0 J 1 J 3 6 J J 0 J 4 3 J 6 J J 0 J 3 3 J J 5 1 J J 3 1 J 3 J 2 6 J J 3 1 J 6 J J 2 1 J J 1 J 3 3 J J 1 J 2 3 J 2 6 J J 1 J 3 J 6 J J 1 J J 6 3 J J 3 J J 5 6 J 2 10, maka harus ditunjukkan bahwa P 0 (mod 11) sebagai berikut. Perhatikan bahwa sehingga (E(q) 3 ) 4 = E(q) 12 = E(q) 11 E(q) E(q 11 )E(q) E(q 11 )(E 0 + E 1 + E 2 + E 4 + E 5 + E 7 ), (J 0 + J 1 + J 3 + J 6 + J 10 ) 4 E(q 11 )(E 0 + E 1 + E 2 + E 4 + E 5 + E 7 ). (16) Di ruas kanan dari persamaan (16) diperoleh bahwa tidak terdapat suku - suku dimana pangkat dari q kongruen dengan 3, 6, 8, 9, dan 10 (mod 11), karena persamaan (16) kongruen maka hal ini juga terjadi diruas kiri. Sehingga jika ruas kirinya dikalikan atau diekspansikan, akan diperoleh lima polinomial berderajat empat yang kongruen dengan nol modulo 11. Sebagai contoh, 4J 3 0 J 3 + 4J 0 J J 0 J 1 J 3 J J 2 1 J J 1 J 2 6 J J 6 J (17) Jika persamaan (17) dikali 3, lalu dalam modulo 11 diperoleh J 3 0 J 3 + J 0 J J 0 J 1 J 3 J J 2 1 J J 1 J 2 6 J 10 + J 6 J (18) Dengan cara yang sama diperoleh J 3 0 J 6 + 7J 2 0 J J 0 J 1 J 6 J 10 + J 3 1 J 3 + 3J 1 J 2 3 J 10 + J 3 6 J 10 0, (19) 3J 0 J 2 1 J 6 + 6J 0 J 3 J 6 J 10 + J 0 J J 2 1 J J 1 J J 3 3 J 10 0, (20) 3J 2 0 J 3 J 6 + 7J 2 0 J J 0 J J 1 J 3 J 6 J 10 + J 3 1 J 6 + J 1 J , (21) J 3 0 J J 0 J 1 J 3 J 6 + 3J 0 J 1 J J 1 J J 3 J J 2 6 J (22) Jika kelima polinomial (18) sampai (22) secara berturut-turut dimisalkan sebagai Q 1, Q 2, Q 3, Q 4, Q 5, dan juga sudah diketahui bahwa P berderajat tujuh, maka akan 8

9 dicari pengali berderajat tiga katakanlah M 1, M 2, M 3, M 4, M 5 sedemikian hingga P M 1 Q 1 + M 2 Q 2 + M 3 Q 3 + M 4 Q 4 + M 5 Q 5. Karena suku-suku di P mengandung q yang pangkatnya kongruen dengan 6 (mod 11), maka pangkat dari q di suku-suku dalam M 1, M 2, M 3, M 4, M 5 haruslah kongruen dengan 3, 0, 9, 8 dan 7 (mod 11). Dengan demikian diperoleh M 1 = 7J 1 J 3 J J 2 0 J 3 + 7J 3 1, M 2 = 7J 0 J 1 J J 2 6 J J 3 0, M 3 = 7J 0 J 3 J 6 + 5J 0 J J 3 3, M 4 = 7J 3 J 6 J J 2 1 J 6 + 7J 3 10, M 5 = 7J 0 J 1 J 6 + 5J 1 J J 3 6, sehingga P 0 (mod 11). 5. KESIMPULAN Berdasarkan pembahasan yang telah diuraikan pada artikel ini, maka dapat disimpulkan bahwa fungsi partisi bilangan p(5n + 4), p(7n + 5) dan p(11n + 6) untuk bilangan bulat tak negatif n secara berturut-turut akan selalu kongruen pada modulo 5, 7 dan 11. Untuk fungsi partisi p(11n + 6) dibuktikan dengan menggunakan identitas Euler dan identitas Jacobi, sedangkan untuk fungsi partisi p(5n + 4) dan p(7n + 5) dapat dibuktikan hanya dengan menggunakan identitas Jacobi. DAFTAR PUSTAKA [1] A. O. L. Atkin dan P. Swinnerton-Dyer, Some properties of partitions, Proceedings of the London Mathematical Society, 3 (1953), [2] G. E. Andrews, Number Theory, W. B. Saunders Company, Philadelphia, [3] G. E. Andrews, The Theory of Partitions, Cambridge University Press, London, [4] Z. S. Aygin, Ramanujan s Congruences for the Partition Function, Tesis Magister, Bilkent University, [5] B. C. Berndt, Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, Rhode Island, [6] A. B. Ekin, Inequalities for the crank, Journal of Combinatorial Theory Series A, 83 (1998),

10 [7] G. H. Hardy, P. V. S. Aiyar dan B. M. Wilson, Collected papers of Srinivasa Ramanujan, Cambridge University Press, London, [8] A. Hassen dan T. J. Osler, Playing With Partitions On The Computer, pmathematics and Computer Education, 35 (2001), [9] M. D. Hirschhorn, A birthday present for Ramanujan, American Mathematical Monthly, 97 (1990), [10] M. D. Hirschhorn, A generalisation of Winquists identity and a conjecture of Ramanujan, Journal of the Indian Mathematical Society, 51 (1987), [11] M. D. Hirschhorn, Ramanujans partition congruences, Discrete Mathematics, 131 (1994), [12] M. D. Hirschhorn, Short and simple proof of Ramanujan s mod 11 partition congruence, Journal of Number Theory, 00 (2014), 1-4. [13] J. J. Siang, Matematika Diskrit dan Aplikasinya pada Ilmu Komputer, Andi, Yogyakarta,

MENENTUKAN TURUNAN DAN SIFAT-SIFAT TURUNAN DARI FUNGSI 1/f(x) DAN h(x)/f(x) ABSTRACT

MENENTUKAN TURUNAN DAN SIFAT-SIFAT TURUNAN DARI FUNGSI 1/f(x) DAN h(x)/f(x) ABSTRACT MENENTUKAN TURUNAN DAN SIFAT-SIFAT TURUNAN DARI FUNGSI 1/(x DAN h(x/(x Yuliana Saitri 1, Sri Gemawati 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematia 2 Dosen Jurusan Matematia Faultas Matematia dan

Lebih terperinci

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT Apriadi, Sri Gemawati 2, Musraini 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi 1*, Rolan Pane 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

SOLUSI BILANGAN BULAT SUATU PERSAMAAN DIOPHANTINE MELALUI BILANGAN FIBONACCI DAN BILANGAN LUCAS ABSTRACT

SOLUSI BILANGAN BULAT SUATU PERSAMAAN DIOPHANTINE MELALUI BILANGAN FIBONACCI DAN BILANGAN LUCAS ABSTRACT SOLUSI BILANGAN BULAT SUATU PERSAMAAN DIOPHANTINE MELALUI BILANGAN FIBONACCI DAN BILANGAN LUCAS Bona Martua Siburian 1, Mashadi, Sri Gemawati 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

FORMULA SELISIH DAN PENJUMLAHAN BARISAN BILANGAN k-fibonacci. Rini Adha Apriani ABSTRACT

FORMULA SELISIH DAN PENJUMLAHAN BARISAN BILANGAN k-fibonacci. Rini Adha Apriani ABSTRACT FORMULA SELISIH DAN PENJUMLAHAN BARISAN BILANGAN k-fibonacci Rini Adha Apriani Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Andri Ramadhan 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan

Lebih terperinci

HUBUNGAN BILANGAN SEMPURNA DAN BILANGAN PRIMA FIBONACCI ABSTRACT

HUBUNGAN BILANGAN SEMPURNA DAN BILANGAN PRIMA FIBONACCI ABSTRACT HUBUNGAN BILANGAN SEMPURNA DAN BILANGAN PRIMA FIBONACCI Revi Lestari 1, Sri Gemawati, M. Natsir 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

ISSN: X 19 MODIFIKASI PERKALIAN BERSUSUN UNTUK MENENTUKAN KOEFISIEN TRINOMIAL SERTA KONSTRUKSINYA PADA KERUCUT

ISSN: X 19 MODIFIKASI PERKALIAN BERSUSUN UNTUK MENENTUKAN KOEFISIEN TRINOMIAL SERTA KONSTRUKSINYA PADA KERUCUT ISSN: 2088-687X 19 MODIFIKASI PERKALIAN BERSUSUN UNTUK MENENTUKAN KOEFISIEN TRINOMIAL SERTA KONSTRUKSINYA PADA KERUCUT Jufri a, M.D.H Gamal b, Sri Gemawati c a Program Studi Teknik Informatika, FILKOM

Lebih terperinci

Yurnalis 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Yurnalis 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. SIFAT MULTIPLICATIVE PADA HIIMPUNAN SISA Yurnalis 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia

Lebih terperinci

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE APOTEMA: Jurnal Pendidikan Matematika Volume 2 Nomor 2 Juli 2016 p 63-75 ISSN 2407-8840 BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE Moh Affaf Prodi Pendidikan Matematika STKIP PGRI BANGKALAN

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 6

Pengantar Teori Bilangan. Kuliah 6 Pengantar Teori Bilangan Kuliah 6 Materi Kuliah Carl Friedrich Gauss Teori Dasar Kongruen 3/14/2014 Yanita FMIPA Matematika Unand 2 Carl Friedrich Gauss Hidup pada masa 1777 1855 Mengenalkan konsep Disquisitiones

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 1 (2015), hal 85 94 METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Sari Puspita, Evi Noviani, Bayu Prihandono INTISARI Bilangan prima

Lebih terperinci

SOLUSI PERSAMAAN DIOPHANTINE DENGAN IDENTITAS BILANGAN FIBONACCI DAN BILANGAN LUCAS. Ayu Puspitasari 1, YD Sumanto 2, Widowati 3

SOLUSI PERSAMAAN DIOPHANTINE DENGAN IDENTITAS BILANGAN FIBONACCI DAN BILANGAN LUCAS. Ayu Puspitasari 1, YD Sumanto 2, Widowati 3 SOLUSI PERSAMAAN DIOPHANTINE DENGAN IDENTITAS BILANGAN FIBONACCI DAN BILANGAN LUCAS Ayu Puspitasari 1, YD Sumanto 2, Widowati 3 1 Program Studi S1 Matematika, Departemen Matematika FSM Universitas Diponegoro

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Relasi Rekursi. Matematika Informatika 4. Onggo

Relasi Rekursi. Matematika Informatika 4. Onggo Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG

MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI

Lebih terperinci

Jurnal Apotema Vol.2 No. 2 62

Jurnal Apotema Vol.2 No. 2 62 Jurnal Apotema Vol.2 No. 2 62 Sudjana. 2005). Metoda Statistika. Bandung: Tarsito. Sugianto, D. 2014). Perbedaan Penerapan Model Pembelajaran Kooperatif Tipe Jigsaw Dan Sta Ditinjau Dari Kemampuan Penalaran

Lebih terperinci

Kajian Mengenai Syarat Cukup Polynomial Kromatik Graf Terhubung Memiliki Akar-Akar Kompleks

Kajian Mengenai Syarat Cukup Polynomial Kromatik Graf Terhubung Memiliki Akar-Akar Kompleks JURNAL SAINS DAN SENI POMITS Vol., No.1, (013) 337-350 (301-98X Print) 1 Kajian Mengenai Syarat Cukup Polynomial Kromatik Graf Terhubung Memiliki Akar-Akar Kompleks Yuni D. P. Sari, Darmaji, dan Soleha

Lebih terperinci

FUNGSI PEMBANGKIT. Ismail Sunni

FUNGSI PEMBANGKIT. Ismail Sunni FUNGSI PEMBANGKIT Ismail Sunni 3508064 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 0, Bandung If8064@students.if.itb.ac.id ismailsunni@yahoo.co.id ABSTRAK Fungsi Pembangkit

Lebih terperinci

MENDESAIN KERANGKA TEMPAT TIDUR GANDA DENGAN MENGGUNAKAN KONSEP MATEMATIKA ABSTRACT

MENDESAIN KERANGKA TEMPAT TIDUR GANDA DENGAN MENGGUNAKAN KONSEP MATEMATIKA ABSTRACT MENDESAIN KERANGKA TEMPAT TIDUR GANDA DENGAN MENGGUNAKAN KONSEP MATEMATIKA M. Husna 1, L. Deswita 2, A. Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

Penerapan Relasi Rekursif dan Matriks dalam Partisi Bilangan Bulat

Penerapan Relasi Rekursif dan Matriks dalam Partisi Bilangan Bulat Penerapan Relasi Rekursif dan Matriks dalam Partisi Bilangan Bulat Gilang Ardyamandala Al Assyifa (13515096) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,

Lebih terperinci

Pembagi Bersama Terbesar Matriks Polinomial

Pembagi Bersama Terbesar Matriks Polinomial Vol. 11, No. 1, 63-70, Juli 2014 Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 ABSTRAK Teori bilangan adalah cabang ilmu Matematika yang mempelajari

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

KARAKTER REPRESENTASI S n

KARAKTER REPRESENTASI S n Buletin Ilmiah Math, Stat, dan Terapannya (Bimaster) Volume 7, No. (28), hal 33-4. KARAKTER REPRESENTASI S n Megawati June, Helmi, Fransiskus Fran INTISARI Karakter merupakan trace pada setiap matriks

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

FAKTORISASI POLINOMIAL ALJABAR DENGAN MENGGUNAKAN METODE EUCLIDEAN DAN FAKTOR PERSEKUTUAN TERBESAR

FAKTORISASI POLINOMIAL ALJABAR DENGAN MENGGUNAKAN METODE EUCLIDEAN DAN FAKTOR PERSEKUTUAN TERBESAR FAKTORISASI POLINOMIAL ALJABAR DENGAN MENGGUNAKAN METODE EUCLIDEAN DAN FAKTOR PERSEKUTUAN TERBESAR Rora Oktafia 1*, Sri Gemawati 2, Endang Lily 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n Polorida 1, Asli Sirait, Musraini M. 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 24, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 200 MODUL BILANGAN DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir

Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir Relasi Rekursi *recurrence rekurens rekursi perulangan. Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir menuliskan definisi dari

Lebih terperinci

DEKOMPOSISI - -ANTIAJAIB SUPER PADA GRAF GENERALIZED PETERSEN

DEKOMPOSISI - -ANTIAJAIB SUPER PADA GRAF GENERALIZED PETERSEN Jurnal LOG!K@, Jilid 6, No. 2, 2016, Hal. 84-95 ISSN 1978 8568 DEKOMPOSISI - -ANTIAJAIB SUPER PADA GRAF GENERALIZED PETERSEN M. Irvan Septiar Musti, Nur Inayah, dan Irma Fauziah Program Studi Matematika,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan umur hingga habis, dan yang tersisa tinggal catatan

Lebih terperinci

Perluasan Segitiga Pascal

Perluasan Segitiga Pascal Perluasan Segitiga Pascal Untung Trisna S. ontongts@yahoo.com PPPPTK Matematika Yogyakarta 2011 The moving power of mathematical invention is not reasoning but imagination. Augustus De Morgan (27 Jun 1806

Lebih terperinci

Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan

Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan, adalah banyaknya cara menyusun partisi suatu himpunan dengan elemen ke

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN RATI MAYANG SARI Program Studi Matematika Fakultas Matematika

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

PERKONGRUENAN POLINOMIAL MODULO m

PERKONGRUENAN POLINOMIAL MODULO m PERKONGRUENAN POLINOMIAL MODULO m Nunung Fajar Kusuma Program Studi Pendidikan Matematika Pasca Sarjana Universitas Sebelas Maret Jl. Ir. Sutami 36A Kentingan Jebres Surakarta, e-mail: nfjar@yahoo.com

Lebih terperinci

PERSAMAAN DIOPHANTINE KUADRATIK QUADRATIC DIOPHANTINE EQUATION. Orgenes Tonga

PERSAMAAN DIOPHANTINE KUADRATIK QUADRATIC DIOPHANTINE EQUATION. Orgenes Tonga PERSAMAAN DIOPHANTINE KUADRATIK x 2 (t 2 + t)y 2 (6t + 4)x + (6t 2 + 6t)y = 0 (t ) QUADRATIC DIOPHANTINE EQUATION x (t + t)y (6t + 4)x + (6t + 6t)y = 0 (t ) Orgenes Tonga Pascasarjana Matematika, Universitas

Lebih terperinci

Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3

Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 1 Program Studi Matematika, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

Metoda Pembuktian: Induksi Matematika

Metoda Pembuktian: Induksi Matematika Metoda Pembuktian: 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo January 14, 011 ILUSTRASI Figure: Ilustrasi Induksi Reaksi Berantai Pada ilustrasi di atas, kartu-kartu disusun

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI Sandra Roza 1*, M. Natsir 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan

Lebih terperinci

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b =

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b = BAB II TEORI DASAR 2.1. Group Misalkan operasi biner didefinisikan untuk elemen-elemen dari himpunan G. Maka G adalah grup dengan operasi * jika kondisi di bawah ini terpenuhi : 1. G tertutup terhadap.

Lebih terperinci

Teorema Dasar Aljabar Mochamad Rofik ( )

Teorema Dasar Aljabar Mochamad Rofik ( ) Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program

Lebih terperinci

HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING

HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING E-Jurnal Matematika Vol 6 (2), Mei 2017, pp 116-123 ISSN: 2303-1751 HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING Pradita Z Triwulandari 1, Kartika Sari 2, Luh Putu Ida Harini 3 1 Jurusan

Lebih terperinci

Euis Hartini 1, Edi Kurniadi 2 ABSTRAK ABSTRACT

Euis Hartini 1, Edi Kurniadi 2 ABSTRAK ABSTRACT SUATU TINJAUAN TERHADAP POLINOMIAL SIKLOTOMIK Euis Hartini 1, Edi Kurniadi 2 1,2 Jurusan Matematika FMIPA Universitas Padjadjaran Jalan Raya Bandung Sumedang KM 21 Jatinangor 45363 1 euis_hartini@yahoocom,

Lebih terperinci

SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI ABSTRACT

SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI ABSTRACT SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI Aryan Zainuri 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

ALTERNATIF MENENTUKAN FPB DAN KPK

ALTERNATIF MENENTUKAN FPB DAN KPK ALTERNATIF MENENTUKAN FPB DAN KPK Welly Desriyati 1, Mashadi 2, Sri Gemawati 3 1 Mahasiswa Program Studi Magister Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau wellydesriyati@gmail.com

Lebih terperinci

Bab 4. Koefisien Binomial

Bab 4. Koefisien Binomial Bab 4. Koefisien Binomial Koefisien binomial merupakan bilangan-bilangan yang muncul dari hasil penjabaran penjumlahan dua peubah yang dipangkatkan, misalnya (a + b) n. Sepintas terlihat bahwa ekspresi

Lebih terperinci

TEKNIK MEMBILANG. b T U V W

TEKNIK MEMBILANG. b T U V W TEKNIK MEMBILANG Berikut ini teknik-teknik (cara-cara) membilang atau menghitung banyaknya anggota ruang sampel dari suatu eksperimen tanpa harus mendaftar seluruh anggota ruang sampel tersebut. A. Prinsip

Lebih terperinci

FUNGSI COMPUTABLE. Abstrak

FUNGSI COMPUTABLE.  Abstrak FUNGSI COMPUTABLE Ahmad Maimun 1, Suarsih Utama. 1, Sri Mardiyati 1 1 Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 ahmad.maimun90@gmail.com, suarsih.utama@sci.ui.ac.id, sri_math@sci.ui.ac.id

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan DIKTAT KULIAH ( sks) MX 17 Teori Bilangan (Revisi Terakhir: Juli 009 ) Oleh: Didit Budi Nugroho, S.Si., M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan. Nama : Teori bilangan Kode /SKS : MAT- / 2 sks Program Studi : Pendidikan Matematika Semester : IV (Empat) TEORI BILANGAN Oleh : RINA AGUSTINA, M.Pd. NEGO LINUHUNG, M.Pd Mata kuliah ini masih merupakan

Lebih terperinci

MENENTUKAN PRIMALITAS SEMUA BILANGAN YANG TERDAPAT PADA SELANG TERTENTU SECARA BRUTE FORCE

MENENTUKAN PRIMALITAS SEMUA BILANGAN YANG TERDAPAT PADA SELANG TERTENTU SECARA BRUTE FORCE MENENTUKAN PRIMALITAS SEMUA BILANGAN YANG TERDAPAT PADA SELANG TERTENTU SECARA BRUTE FORCE E.Z. Adnan Kashogi 13505094 Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Lebih terperinci

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA.

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. LECTURE NOTES MATEMATIKA DISKRIT Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA PONDOK CINA, MARET 2004 0 DAFTAR ISI DAFTAR ISI... 1 BAB I STRUKTUR ALJABAR...

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR Suci Dini Anggraini 1, Khozin Mu tamar 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

TERKECIL. Kata Kunci :Graf korona, graf lintasan, pelabelan total tidak teratur sisi, nilai total ketidakteraturan sisi.

TERKECIL. Kata Kunci :Graf korona, graf lintasan, pelabelan total tidak teratur sisi, nilai total ketidakteraturan sisi. PENENTUAN NILAI TES GRAF KORONA P m P n DENGAN SYARAT SISI-SISI Pm MEMILIKI BOBOT TERKECIL Novitasari Anwar *), Loeky Haryanto, Nurdin Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana

Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana M. Faisal Baehaki Jurusan Teknik Informatika Institut Teknologi Bandung, Bandung 40135 e-mail: faisal.baihaki@comlabs.itb.ac.id Intisari Metode untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

MODIFIKASI ARITMETIKA INTERVAL DAN PENERAPANNYA PADA SISTEM PERSAMAANINTERVAL LINEAR

MODIFIKASI ARITMETIKA INTERVAL DAN PENERAPANNYA PADA SISTEM PERSAMAANINTERVAL LINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 01, No. 1 (2012), hal 1 8. MODIFIKASI ARITMETIKA INTERVAL DAN PENERAPANNYA PADA SISTEM PERSAMAANINTERVAL LINEAR Mika Lasni Roha Saragih, Marisi

Lebih terperinci

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit

Lebih terperinci

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

Matematika Diskrit. Rudi Susanto

Matematika Diskrit. Rudi Susanto Matematika Diskrit Rudi Susanto Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah Kuliah kita.. Matematika

Lebih terperinci

Pengantar Matematika. Diskrit. Bahan Kuliah IF2091 Struktur Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG

Pengantar Matematika. Diskrit. Bahan Kuliah IF2091 Struktur Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Matematika Bahan Kuliah IF2091 Struktur Diksrit Diskrit RINALDI MUNIR Lab Ilmu dan Rekayasa

Lebih terperinci

Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan. Tak kenal maka tak sayang, tak sayang maka tak cinta

Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan. Tak kenal maka tak sayang, tak sayang maka tak cinta Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah 1 Dahulu namanya.. Matematika Diskrit 2 Mengapa

Lebih terperinci

Pengantar Matematika Diskrit

Pengantar Matematika Diskrit Materi Kuliah Matematika Diskrit Pengantar Matematika Diskrit Didin Astriani Prasetyowati, M.Stat Program Studi Informatika UIGM 1 Apakah Matematika Diskrit itu? Matematika Diskrit: cabang matematika yang

Lebih terperinci

PENGEMBANGAN SEGITIGA PASCAL UNTUK MEMUDAHKAN PENYELESAIAN PERSOALAN MATEMATIKA YANG BERKAITAN DENGAN PEMANGKATAN SUKU DUA

PENGEMBANGAN SEGITIGA PASCAL UNTUK MEMUDAHKAN PENYELESAIAN PERSOALAN MATEMATIKA YANG BERKAITAN DENGAN PEMANGKATAN SUKU DUA Bimafika, 2013, 5, 579 586 PENGEMBANGAN SEGITIGA PASCAL UNTUK MEMUDAHKAN PENYELESAIAN PERSOALAN MATEMATIKA YANG BERKAITAN DENGAN PEMANGKATAN SUKU DUA Zumrotus Syadiyah (1) ; Pepsen Hortison Perliang (2)

Lebih terperinci

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS Efriani Widya 1, Syamsudhuha 2, Bustami 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji *

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji * FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER Sangadji * ABSTRAK FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Dalam makalah ini dibahas fungsi-fungsi

Lebih terperinci

Induksi Matematika. Nur Hasanah, M.Cs

Induksi Matematika. Nur Hasanah, M.Cs Induksi Matematika Nur Hasanah, M.Cs Induksi matematik merupakan teknik pembuktian yang baku di dalam matematika. Induksi matematik dapat mengurangi langkah pembuktian bahwa semua bilangan bulat termasuk

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field.

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. BAB 2 LANDASAN TEORI Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. Hal ini dimulai dengan memberikan pengertian dari group

Lebih terperinci

PEWARNAAN PADA GRAF BINTANG SIERPINSKI. Siti Khabibah Departemen Matematika, FSM Undip

PEWARNAAN PADA GRAF BINTANG SIERPINSKI. Siti Khabibah Departemen Matematika, FSM Undip JMP : Vol. 9 No. 1, Juni 2017, hal. 37-44 PEWARNAAN PADA GRAF BINTANG SIERPINSKI Siti Khabibah Departemen Matematika, FSM Undip khabibah.undip@gmail.com ABSTRACT. This paper discuss about Sierpinski star

Lebih terperinci

IDEAL PRIMA FUZZY DI SEMIGRUP

IDEAL PRIMA FUZZY DI SEMIGRUP Vol 2 No 2 Bulan Desember 2017 Jurnal Silogisme Kajian Ilmu Matematika dan Pembelajarannya http://journal.umpo.ac.id/index.php/silogisme IDEAL PRIMA FUZZY DI SEMIGRUP Info Artikel Article History: Accepted

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Mathematics & Statistics Department, School of Computer Science, Binus

Lebih terperinci

DERAJAT VERTEKS GRAF TERHADAP HIMPUNAN VERTEKS

DERAJAT VERTEKS GRAF TERHADAP HIMPUNAN VERTEKS DERAJAT VERTEKS GRAF TERHADAP HIMPUNAN VERTEKS Fauziah Arani 1*, Rolan Pane 2, Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar 4 II. TINJAUAN PUSTAKA Untuk melakukan penelitian ini terlebih dahulu harus memahami konsep yang terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar yang menunjang dan disajikan

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci