Metoda Pembuktian: Induksi Matematika
|
|
|
- Sri Sumadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Metoda Pembuktian: 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo January 14, 011
2 ILUSTRASI Figure: Ilustrasi Induksi
3 Reaksi Berantai Pada ilustrasi di atas, kartu-kartu disusun dalam jarak tertentu. Agar terjadi reaksi berantai, yaitu jatuhnya sebuah kartu akan menyebabkan robohkan kartu-kartu setelahnya maka haruslah memenuhi syarat berikut Minimal 1 kartu didorong sampai roboh Tinggi kartu tidak kurang dari jarak antar kartu, yaitu x < h.
4 Fungsi proposisi dengan domain N Misalkan P(n) fungsi proposisi dengan n N 0 N: himpunan bilangan asli. Example P(n): n n. Perhatikan P(), P(3) dan P(4) TRUE, tetapi P(n) FALSE untuk n lainnya. Kes: P(n) tidak bernilai benar untuk setiap bil asli n. Perhatikan contoh berikut ini. Example P(n) : n = n (n + 1). Coba periksa P(1), P(), P(3), semua bernilai TRUE. Bagaimana kita dapat menyimpulkan bahwa P(n) TRUE untuk semua n N? Tidak mungkin dicoba satu per satu untuk semua bil asli.
5 Prinsip (PIM) Jika P(n 0 ) TRUE untuk suatu bilangan asli n 0 N. P(k) TRUE untuk sebarang k n 0 P(k + 1) TRUE maka P(n) TRUE untuk setiap n n 0. Example Buktikan n = n (n + 1) berlaku untuk setiap bil asli n. Proof. Di sini kita mempunyai P(n) : n = n (n + 1) n = 1 P(1) : 1 = 1 (1 + 1) 1 = 1 sehingga P(1) true. Asumsikan P(k) : k = k (k + 1) true. Untuk n = k + 1,
6 Lanj... P(k + 1) : k +(k }{{} + 1) = k (k + 1) + (k + 1) k (k+1) (k + 1) = (k + 1), yaitu P(k + 1) True. Kesimpulan: P(n) benar untuk setiap bil asli n. Perhatikan ketika membuktikan P(k + 1) salah satu ruas, mis ruas kiri dijabarkan sehingga sama dengan ruas kanan. Example Buktikan bahwa untuk setiap bil asli n, berlaku 1(1!) + (!) + + n(n!) = (n + 1)! 1
7 Lanj P(n) : 1(1!) + (!) + + n(n!) = (n + 1)! 1. Untuk n = 1, ruas kiri = 1(1!) = 1, dan ruas kanan= (1 + 1)! 1 = 1. Krn kedua ruas sama maka P(1) true. Skrg, asumsikan P(k) true untuk seb k; yaitu kita mempunyai 1(1!) + (!) + + k(k!) = (k + 1)! 1 Untuk n = k + 1, kita tunjukkan bahwa P(k + 1) true. Ruas kiri = 1(1!) + (!) + + k(k!) +(k + 1)(k + 1)! }{{} (k+1)! 1 = (k + 1)! 1 + (k + 1)(k + 1)! = (k + 1)!(1 + k + 1) 1 = (k + 1)!(k + ) 1 = (k + )! 1 = Ruas kanan
8 Prinsip Induksi Kuat Jika P(1) true P(1), P(),, P(k) true P(k + 1) true maka P(n) true untuk setiap bil asli n. Example Diberikan barisan yang didenisikan secara rekursif x 1 : = 1, x :=, x n+1 : = 1 (x n + x n 1 ) untuk n > 1 Buktikan 1 x n untuk setiap bil asli n.
9 Bukti... Proof. Di sini P(n) : 1 x n. Untuk n = 1, diperoleh x 1 = 1 sehingga P(1) true. Selanjutnya diasumsikan P(1), P(),, P(k) semuanya true, yaitu 1 x n untuk n = 1,,, n. Untuk n = k + 1 diperoleh x k + x k (x k + x k 1 ) 1 x k+1 yaitu berlaku P(k + 1).
10 Soal Latihan 1 Buktikan 7 n 1 selalu habis dibagi 6 untuk setiap bil asli n. Buktikan jika x > 1maka berlaku (1 + x) n 1 + nx untuk setiap bil asli n. 3 Buktikan n(n+1) = n n+1 untuk setiap bil asli n. 4 Buktikan bahwa ( 1) n+1 n = ( 1) n+1 n(n+1) untuk setiap bil asli n. 5 Berikan konjektur untuk rumus jumlah dari (n 1)(n+1), kemudian buktikan konjektur tsb dengan induksi matematika. 6 Buktikan n < n! untuk setiap n 4. 7 Buktikan n 3 n untuk setiap n 5. 8 Temukan bil asli terbesar m sehingga n 3 n dapat dibagi oleh m untuk setiap bil asli n.
11 Bukti Ekuvalensi (Dua arah) To prove a theorem that is a biconditional statement, that is, a statement of the form p q, we show that p q and q p are both true. The validity of this approach is based on the tautology (p q) [(p q) (q p)]. When we prove that a group of statements are equivalent, we can establish any chain of conditional statements we choose as long as it is possible to work through the chain to go from anyone of these statements to any other statement. For example, we can show that p 1, p and p 3 are equivalent by showing that p 1 p 3, p 3 p, and p p 1.
12 Contoh... Example Buktikan Teorema jika n bulat positif, maka n ganjil bila hanya bila n ganjil. Proof. Diketahui n bulat positif. Mis p : n ganjil dan q : n ganjil". Pertama, dibuktikan p q. Diketahui n ganjil, yaitu dapat ditulis n = k 1, k N. Diperoleh n = (k 1) = 4k 4k + 1 = (k k) +1 adalah ganjil. }{{} m Sebaliknya dibuktikan q p, yaitu n ganjil n ganjil. Ini dapat dibuktikan via kontraposisinya, yaitu n genap n genap. Tulis n = m maka diperoleh n = 4m juga genap. Terbukti p q.
13 Contoh Lanj... Example Buktikan p 1 p p 3 dimana p 1 : n genap, p : n 1 ganjil" dan p 3 : n genap. Proof. Cukup ditunjukkan dengan rute sbb: p 1 p, p p 3 dan p 3 p 1. Atau dengan menggunakan rute lainnya. Prinsipnya, subrute mudah dibuktikan dan semua terminal terakses. Terminal yang dimaksud adalah pernyataan.
14 Soal Latihan 1 Buktikan suatu bil bulat positif habis dibagi 9 bila hanya bila jumlah angka-angka pembangunnya habis dibagi 9. Prove that m = n if and only if m = n or m = n. 3 Show that these statements about the real number x are equivalent: 1 x is rational, x/ is rational, and 3 3x 1 is rational. 4 Show that these statements about the real number x are equivalent: 1 x is irrational, 3x + is irrational, 3 x/ is irrational. 5 Prove that these four statements about the integer n are equivalent: (i) n is odd, (ii) 1 n is even, (iii) n 3 is odd, (iv) n + 1 is even.
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo
1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
Pembuktian dengan Induksi Matematik
Pembuktian dengan Induksi Matematik Contoh Soal Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PIM September 2012 1 / 24 Example Dengan induksi matematik, buktikan bahwa
Induksi Matematika. Fitriyanti Mayasari
Induksi Matematika Fitriyanti Mayasari Pendahuluan Induksi Matematika merupakan salah satu cara yang dapat digunakan untuk membuktikan pernyataan-pernyataan yang menegaskan bahwa suatu p(n) adalah benar
LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U
1 INDUKSI MATEMATIKA
1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua
Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n
Logika Pembuktian. Matematika Informatika 3 Onggo
Logika Pembuktian Matematika Informatika 3 Onggo Wr @OnggoWr Metode Pembuktian 1. Metode Pembuktian Langsung (Direct Proof) 2. Metode Pembuktian Tak-Langsung (Indirect Proof) a. Proof by Contrapositive
matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA
K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan
EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo
Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 3 FONDASI MATEMATIKA Variasi bentuk implikasi Berangkat dari implikasi p q kita dapat membentuk tiga pernyataan implikasi relevan yang
BAB 4. TEOREMA FERMAT DAN WILSON
BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 24, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor
METODA PEMBUKTIAN DALAM MATEMATIKA
METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar
Contoh-contoh soal induksi matematika
Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah
Contoh : 1..Buktikan bahwa untuk semua bilangan bulat n, jika n adalah bilangan ganjil, maka n 2 adalah bilangan ganjil! Jawab :
PEMBUKTIAN LANGSUNG Untuk menunjukan pernyataan (p=>q) benar dapat dilakukan dengan menggunakan premis p untuk mendapatkan konklusi q. Metode pembuktian yang termasuk bukti langsung antara lain modus ponens,
BAB 4. TEOREMA FERMAT DAN WILSON
BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor
Teori Dasar Fungsi. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo
1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Misalkan A dan B himpunan. Sebuah fungsi f dari A ke B ditulis f : A B adalah aturan
2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika
Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun
INF-104 Matematika Diskrit
Teori Bilangan Jurusan Informatika FMIPA Unsyiah April 13, 2013 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi matematik merupakan teknik pembuktian yang baku
Teori Dasar Logika (Lanjutan)
Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah
Barisan Deret ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan. August 30, Yogyakarta. Krisnawan Pertemuan 1, 2, & 3
ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan August 30, 0 Yogyakarta Limit Monoton Pada bagian ini kita akan mencoba menebak bentuk umum dari suatu barisan. Limit Monoton Pada bagian ini
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 6 INDUKSI MATEMATIKA JUMLAH PERTEMUAN
CHAPTER 5 INDUCTION AND RECURSION
CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan
(Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: [email protected]. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang
METODA PEMBUKTIAN DALAM MATEMATIKA
METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan Hernadi julan [email protected] ABSTRAK Di dalam matematika, bukti adalah serangkaian argumen logis yang menjelaskan kebenaran suatu pernyataan. Argumen-argumen
1.6 RULES OF INFERENCE
1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir
CHAPTER 5 INDUCTION AND RECURSION
CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil
A. PRINSIP INDUKSI SEDERHANA
INDUKSI MATEMATIK Induksi matematik adalah merupakan teknik pembuktian yang baku di dalam Matematika. Induksi matematik digunakan untuk membuktikan pernyataan yang khusus menyangkut bilangan bulat positif.
Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan
METODA PEMBUKTIAN DALAM MATEMATIKA
METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar
BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT
BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur
n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai
Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11
5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION
5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut
Induksi 1 Matematika
Induksi 1 Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 3 DEFINISI DAN PERISTILAHAN MATEMATIKA (c) Hendra Gunawan (2015) 2 Ingat PROPOSISI Ini? Proposisi. Jika segitiga siku-siku XYZ dengan
ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan
ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,
INDUKSI MATEMATIKA PERTEMUAN KE- 4
INDUKSI MATEMATIKA PERTEMUAN KE- 4 DEFINISI Induksi Matematika adalah metode pembuktian untuk pernyataan perihal bilangan bulat Induksi matematik merupakan teknik pembuktian yang baku di dalam matematika
Induksi Matematik. Bahan Kuliah IF2120 Matematika Diskrit. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB
Induksi Matematik Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah
Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematik 1 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!
Induksi Matematika. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar
Bab 3 Induksi Matematika Kompetensi Dasar Dan Pengalaman Belajar Kompetensi Dasar 1.1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2.1. Menghayati perilaku disiplin, sikap kerjasama, sikap kritis
Induksi Matematik Program Studi Teknik Informatika STEI - ITB
Induksi Matematik Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah
BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN
BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب
TIF APPLIED MATH 1 (MATEMATIKA TERAPAN 1) Week 3 SET THEORY (Continued)
TIF 21101 APPLIED MATH 1 (MATEMATIKA TERAPAN 1) Week 3 SET THEORY (Continued) OBJECTIVES: 1. Subset and superset relation 2. Cardinality & Power of Set 3. Algebra Law of Sets 4. Inclusion 5. Cartesian
MAT 602 DASAR MATEMATIKA II
MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B
BAB I NOTASI, KONJEKTUR, DAN PRINSIP
BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing
5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION
5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut
1 SISTEM BILANGAN REAL
Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang
TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada
II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf
1 SISTEM BILANGAN REAL
Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang
1.6 RULES OF INFERENCE
1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir
Misal, dan diberikan sebarang, terdapat sehingga untuk setiap
PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit
BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak
BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi
R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY
R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik
BAB 4. TEOREMA FERMAT DAN WILSON
BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo May 25, 2014 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor
Strategi Pembuktian. Finding proofs can be a challenging business
Strategi Pembuktian Finding proofs can be a challenging business Matematikawan memformulasikan conjecture dan kemudian mencoba membuktikan bahwa conjecture tersebut benar atau salah. Ketika dihadapkan
MODUL IV Analisis Kasus/Pemilihan
MODUL IV Analisis Kasus/Pemilihan TUJUAN 1. Memberikan pemahaman tentang bagaimana suatu kasus dianalisis dan dibreak-down menjadi beberapa kasus kecil menurut domain permasalahannya. 2. Memberikan pengenalan
PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA
Penerapan Induksi Matematika Dalam Pembuktian.. PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA Miksalmina, S.Pd ABSTRAK Induksi matematika merupakan sebuah teknik pembuktian pernyataan yang berkaitan
LANDASAN TEORI. Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas
II. LANDASAN TEORI Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas dari Bilangan Fibonacci, Bilangan Lucas dan Bilangan Gibonaccci. 2.1 Bilangan Fibonacci dan Beberapa
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah
I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)
I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,
B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)
1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat
3 LIMIT DAN KEKONTINUAN
Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,
1 SISTEM BILANGAN REAL
Pertemuan Standar kompetensi: mahasiswa memahami cara membangun sistem bilangan real, aturan dan sifat-sifat dasarnya. Kompetensi dasar Memahami aksioma atau sifat aljabar bilangan real Memahami fakta-fakta
PERANAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA
PERANAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA Riani Rilanda NIM : 13505051 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung e-mail : [email protected]
Bundel Soal. Elektroteknik. Semester 3 Tahun 2013/2014. tambahan Matematika Diskrit (ET 2012)
Tim Penyusun Bundel Soal Elektroteknik Semester 3 Kementerian Kesejahteraan Anggota Kementerian Kewirausahaan Bundel Soal Elektroteknik Semester 3 Tahun 2013/2014 tambahan Matematika Diskrit (ET 2012)
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
Induksi Matematika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Induksi Matematika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Ingat proposisi? Sebuah proposisi mempunyai nilai. Benar
PEMECAHAN MASALAH MATEMATIKA
PEMECAHAN MASALAH MATEMATIKA Oleh: Kusnandi A. Pengantar Masalah dalam matematika adalah suatu persoalan yang siswa sendiri mampu menyelesaikannya tanpa menggunakan cara atau algoritma yang rutin. Maksudnya
Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR
Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205
BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional
BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan
Rekursif. Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri.
Rekursif Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri. Dalam dunia pemrograman, rekursi diimplementasikan dalam sebuah fungsi yang
Pengantar : Induksi Matematika
Pengantar : Induksi Matematika Analisis Real /2 SKS/ Ega Gradini, M.Sc Induksi Matematika adalah cara standar dalam membuktikan bahwa sebuah pernyataan tertentu berlaku untuk setiap bilangan asli. Pembuktian
II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep
II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian
G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.
2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,
SOAL EKSPLORASI. 1. Kita mempunyai tiga gambar yang dibentuk dari lima segitiga sama sisi yang digabungkan pada sisi-sisinya.
SOAL EKSPLORASI 1. Kita mempunyai tiga gambar yang dibentuk dari lima segitiga sama sisi yang digabungkan pada sisi-sisinya. Buat tiga gambar yang berbeda dengan cara menggabungkan sisi-sisi dari dua gambar
induksi matematik /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
Pengantar Analisis Real
Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus
2 BARISAN BILANGAN REAL
2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan
BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT
29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen
1 SISTEM BILANGAN REAL
1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita
Variabel, Operator Dan Ekspresi. Agus Priyanto, M.Kom
Variabel, Operator Dan Ekspresi Agus Priyanto, M.Kom Outline Materi Variabel Operator Ekspresi Variabel Variabel adalah suatu tempat untuk menampung suatu nilai pada memory komputer Untuk lebih mudah diakses,
BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR
BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif
A. B. C. D. Jika diberikan, maka nilai terbesar dari adalah A B. C. D.
Bagian 1 Pilihlah jawaban yang tepat! 1. Diberikan operasi # pada dan. Jika, maka hasil dari berdasarkan operasi di atas adalah. A. 13 B. 43 C. 61 D. 81 2. For each rational number and, given that, and.
BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.
BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan
Pembahasan Soal-Soal Latihan 1.1
Pembahasan Soal-Soal Latihan. Oleh : Fendi Alfi Fauzi Anda pasti masih ingat bagaimana memanipulasi bilangan, tetapi tidak ada salahnya untuk mengulang kembali sejenak. Dalam Soal-soal 0, sederhanakanlah
INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil
INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Email: [email protected] 3. Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil pertama? Jumlah dari n bilangan bulat ganjil positif pertama
1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.
Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan
Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK.
BAB II KETERBAGIAN PENDAHULUAN A. Deskripsi Singkat Mata Kuliah Mata kuliah ini dimaksudkan untuk memberikan kemampuan pada mahasiswa untuk belajar bukti matematika. Materi dalam mata kuliah ini sangat
Induksi Matematik. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematik Matematika Diskrit 1 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2.
PENGANTAR ANALISIS REAL
Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,
II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,
3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.
1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai
1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural
II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)
II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan
PERSAMAAN & FUNGSI EKSPONEN
PERSAMAAN & FUNGSI EKSPONEN M A T E M A T I K A D A S A R T E P - F T P - UB PENGERTIAN Persamaan Eksponen suatu persamaan yang pangkatnya (eksponen), bilangan pokoknya, atau bilangan pokok dan eksponennya
Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga
Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang
Pengertian Fungsi. MA 1114 Kalkulus I 2
Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat
Ruang Norm-n Berdimensi Hingga
Jurnal Matematika Integratif. Vol. 3, No. 2 (207), pp. 95 04. p-issn:42-684, e-issn:2549-903 doi:0.2498/jmi.v3.n2.986.95-04 Ruang Norm-n Berdimensi Hingga Moh. Januar Ismail Burhan Jurusan Matematika dan
Lembar Kerja Mahasiswa 1: Teori Bilangan
Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu
