BAB I PENDAHULUAN. 1.1 Latar Belakang

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. 1.1 Latar Belakang"

Transkripsi

1 BAB I PENDAHULUAN 1.1 Latar Belakang Dalam ilmu matematika, banyak pembahasan di bidang analisis dan topologi yang memerlukan pengertian ruang Hilbert. Ruang Hilbert merupakan konsep abstrak yang mendasari teori persamaan diferensial parsial, mekanika kuantum, analisis Fourier, dan teori Ergodik. Ruang Hilbert H merupakan ruang Banach dengan norma x = x, x, untuk setiap x anggota ruang Hilbert H, dengan, menyatakan produk skalar pada ruang Hilbert H. Pada ruang Hilbert, operator dikenal sebagai fungsi yang memetakan antara dua ruang Hilbert. Teori operator merupakan bagian terpenting dalam analisis fungsional. Secara khusus, teori operator menjadi instrumen dasar dalam teori sistem dinamis, menjadi representasi dari grup dan aljabar, dan merupakan instrumen penting dalam matematika fisika dan mekanika kuantum. Operator juga terlibat dalam teori probabilitas. Operator pada ruang Hilbert H dikatakan linear kontinu jika operator tersebut linear dan kontinu. Koleksi semua operator linear kontinu A pada ruang Hilbert H, dinotasikan dengan L c (H), merupakan ruang Banach terhadap norma A = sup{ A(x) : x 1}. Jika diberikan operator linear kontinu dari suatu ruang Hilbert H ke ruang Hilbert K, maka ada tepat satu operator linear kontinu dari K ke H yang disebut dengan operator adjoint A. Operator linear kontinu U dari ruang Hilbert H ke ruang Hilbert K dikatakan uniter jika U U = UU = I. Operator linear kontinu A pada ruang Hilbert H dikatakan uniter ekuivalen (unitarily equivalent) dengan operator linear kontinu B pada ruang Hilbert K, jika terdapat operator uniter U dari H ke K sehingga berlaku B = UAU 1. Operator linear kontinu A pada ruang Hilbert H disebut operator 1

2 2 kontraksi jika untuk setiap x H berlaku A(x) x. Koleksi semua operator kontraksi pada H, dinotasikan dengan C t (H), merupakan ruang bagian dari L c (H). Setiap ruang Hilbert dan ruang Banach merupakan ruang topologis. Oleh karena itu, koleksi semua operator linear kontinu L c (H) merupakan ruang topologis. Pada L c (H) terdapat topologi konvergen titik demi titik (pointwise convergence topology / point-open topology). Untuk setiap x H dan U H, himpunan S(x, U) = {A L c (H) : A(x) U} merupakan anggota basis bagian untuk topologi konvergen titik demi titik. Topologi ini disebut topologi operator kuat (strong operator topology). Dalam hal ruang yang dimaksud adalah ruang operator, topologi operator kuat biasa disebut topologi kuat. Ruang topologis X disebut ruang Baire jika irisan sebanyak terhitung himpunan terbuka yang rapat (dense) di X merupakan himpunan yang rapat di X. Konsep mengenai ruang Baire merupakan alat yang penting dalam topologi dan analisis fungsional, sebab menyajikan gagasan mengenai himpunan bagian dari ruang topologis yang sangat kecil yang dikenal dengan himpunan kategori pertama (meager). Komplemen dari himpunan kategori pertama disebut himpunan residual (co-meager). Suatu himpunan dikatakan kategori pertama jika dapat dinyatakan sebagai gabungan sebanyak terhitung himpunan bagian yang tidak rapat dimanapun (nowhere dense). Suatu himpunan pada ruang topologis yang dapat dinyatakan sebagai irisan sebanyak terhitung himpunan terbuka disebut sebagai anggota G δ. Setiap ruang metrik lengkap merupakan ruang Baire dan setiap anggota G δ yang rapat di X merupakan himpunan residual (co-meager) di X. Diperhatikan bahwa terdapat suatu sifat yang dapat dipelajari di ruang Baire yang hanya berlaku pada himpunan yang bukan kategori pertama. Dengan kata lain, sifat tersebut hanya berlaku pada himpunan residual. Diberikan sebarang ruang Baire X dan sifat Φ pada titik di X. Sifat φ dikatakan tipikal pada X jika A = {x X : x memenuhi Φ} merupakan himpunan bagian residual dari X. Sifat tipikal memberi peranan di dalam perkembangan

3 3 ilmu pengetahuan, ada beberapa pengertian tipikal di matematika. Dalam teori ukuran, sifat tipikal merupakan sifat yang berlaku hampir dimana-mana (almost everywhere). Dalam teori probabilitas, sifat yang berlaku hampir dimana-mana merujuk pada himpunan dengan probabilitas 1. Selanjutnya, dalam topologi dan aljabar geometri, sifat tipikal merupakan sifat yang berlaku pada himpunan residual. Sifat tipikal telah diselidiki oleh beberapa peneliti, khususnya pada ruang topologis, diantaranya A. Bruckner, Tanja Eisner, dan Tamás Mátrai. Bruckner membahas tentang himpunan semua fungsi kontinu yang tidak terdiferensial dimanapun merupakan himpunan yang residual dari (C[0, 1], ). Tanja Eisner dan Tamás Mátrai membahas tentang sifat tipikal operator linear kontraksi pada ruang Hilbert berdimensi tak hingga atas C di beberapa topologi, diantaranya pada topologi lemah (weak topology) dan topologi kuat (strong topology). Koleksi semua operator kontraksi C t (H) dengan H ruang Hilbert separabel berdimensi tak hingga atau ruang Hilbert klasik (classical Hilbert space), merupakan ruang Baire. Dengan memandang pentingnya operator dan peranan sifat tipikal di dalam perkembangan ilmu matematika, muncul gagasan untuk menyelidiki sifat tipikal pada C t (H). Pada tesis ini, akan dipelajari dan diselidiki sifat tipikal operator kontraksi pada ruang Hilbert berdimensi tak hingga di topologi operator kuat yang dinotasikan dengan s-tipikal kontraksi. 1.2 Perumusan Masalah Seperti yang telah disampaikan di dalam latar belakang penelitian, permasalahan yang akan dibahas di dalam tesis ini adalah menyelidiki sifat s-tipikal pada operator kontraksi. Karena sifat tipikal dikerjakan pada ruang Baire dan koleksi semua operator kontraksi yang memenuhi sifat tersebut merupakan himpunan bagian residual dari C t (H), permasalahan yang dibahas di tesis ini disampaikan sebagai berikut. 1. Membuktikan bahwa koleksi semua operator kontraksi, dinotasikan C t (H), merupakan ruang Baire.

4 4 2. Menunjukkan bahwa sifat s-tipikal pada operator di C t (H) merupakan uniter ekuivalen dengan operator backward unilateral shift berdimensi tak hingga. 1.3 Tujuan dan Manfaat Penelitian Tujuan utama dari tulisan ini adalah mempelajari tentang sifat s-tipikal operator linear kontraksi pada ruang Hilbert klasik. Adapun manfaatnya, diharapkan dengan adanya tulisan ini pembahasan lebih lanjut tentang sifat s-tipikal operator kontraksi di dalam topologi operator kuat dapat diselidiki dengan meneliti sifat operator backward unilateral shift berdimensi tak hingga. 1.4 Tinjauan Pustaka Ruang Hilbert merupakan ruang pre-hilbert yang lengkap. Setiap ruang pre-hilbert yang berdimensi hingga selalu dapat ditemukan basis ortonormal sehingga setiap ruang pre-hilbert yang berdimensi hingga merupakan ruang Hilbert. Ruang Hilbert H yang separabel memiliki basis ortonormal. Sebarang ruang Hilbert separabel berdimensi tak hingga disebut ruang Hilbert klasik (Classical Hilbert Space). Pada saat dua buah ruang Hilbert diberikan, dapat didefinisikan operator linear dari satu ruang Hilbert ke ruang Hilbert. Di dalam konsep operator linear kontinu, dikenal beberapa jenis operator beberapa diantaranya adalah operator kontraksi dan operator Adjoint. Dari konsep operator adjoint dikenalkan operator uniter dan isometrik. Operator A dikatakan uniter ekuivalen dengan operator B jika terdapat operator uniter U sedemikian hingga B = UAU 1 (Berberian, 1961). Di dalam koleksi operator linear kontinu terdapat topologi. Dengan didasari oleh definisi basis dan basis bagian di dalam Munkres (2000) dan Hunter (1975), diperoleh pengertian basis bagian untuk topologi pada ruang operator. Salah satu topologi pada ruang operator adalah topologi konvergen titik demi titik. Alasan menyebut topologi konvergen titik demi titik adalah karena topologi tersebut berkorespondensi dengan konvergen titik demi titik yang pada ruang operator yang

5 5 dikenal dengan nama konvergen kuat. Oleh karena itu, topologi tersebut sering dikenal sebagai topologi operator kuat. Dari pengertian ruang topologis, dikenal konsep mengenai ruang Baire. Setiap ruang metrik lengkap merupakan ruang Baire dan suatu ruang topologis dikatakan ruang Baire jika irisan sebanyak terhitung himpunan terbuka yang rapat di dalamnya merupakan himpunan rapat (Royden, 1988). Suatu himpunan pada ruang topologis dikatakan anggota G δ apabila dapat dinyatakan sebagai irisan sebanyak terhitung himpunan terbuka. Setiap himpunan anggota G δ yang rapat di X merupakan himpunan yang residual. Hal tersebut dipergunakan untuk mendefinisikan sifat tipikal. Sifat Φ disebut sifat tipikal pada titik di ruang Baire X apabila koleksi titik-titik pada X yang memenuhi Φ merupakan himpunan bagian residual dari X (Kechris, 1994). Selanjutnya, akan diselidiki sifat tipikal operator linear kontinu pada ruang Hilbert klasik. Penelitian pertama yang dilakukan adalah menunjukkan bahwa koleksi operator kontraksi pada H merupakan ruang Baire, yaitu dengan menunjukkan bahwa C t (H) merupakan ruang yang completely metrizable. Pengertian tentang ruang topologis yang completely metrizable diperoleh dari Dugundji (1966). Penelitian berikutnya dilakukan terhadap sifat tipikal pada operator kontraksi yang diamati di dalam topologi operator kuat ditulis singkat s-tipikal kontraksi dan koleksi operator kontraksi yang memenuhi sifat s-tipikal kontraksi tersebut ditulis singkat koleksi s-tipikal kontraksi. Eisner dan Mátrai (2012) menunjukkan bahwa s-tipikal kontraksi adalah uniter ekuivalen dengan operator backward unilateral shift berdimensi tak hingga. Di dalam tulisannya, Eisner dan Mátrai tidak memberikan bukti dengan lengkap namun hanya secara garis besar alur pembuktiannya. Langkah untuk menunjukkan sifat s-tipikal kontraksi tersebut adalah melengkapi alur pembuktian yang ditulis oleh Eisner dan Mátrai. Dengan memanfaatkan teorema dekomposisi Wold (Nagy, 1970) akan dibahas bahwa operator s-tipikal kontraksi A uniter ekuivalen dengan jumlahan langsung operator uniter dan operator backward unilateral shift. Operator

6 6 kontraksi A dikatakan stabil kuat (strongly stable) jika s- lim n N A n = 0. Selanjutnya, akan ditunjukkan bahwa koleksi s-tipikal kontraksi tersebut bersifat stabil kuat sehingga bagian uniternya merupakan ruang bagian trivial (Kubrusly 2010). Langkah terakhir dalam penelitian ini adalah menunjukkan kernelnya berdimensi tak hingga. 1.5 Metodologi Penelitian Penulisan tesis ini menggunakan metode studi literatur yaitu mengkaji jurnal dan makalah terdahulu serta artikel terkait mengenai sifat s-tipikal operator pada ruang Hilbert. Paper "On Typical Properties of Hilbert Space Operator" oleh Tanja Eisner dan Tamás Mátrai dijadikan referensi utama dalam tesis ini dengan melengkapi pembuktian teorema di dalamnya. Terdapat beberapa tahap yang harus dilalui dalam penelitian ini. Pertama, dibuktikan terlebih dahulu bahwa koleksi operator kontraksi pada ruang Hilbert H merupakan ruang Baire dengan menunjukkan bahwa C t (H) merupakan ruang topologis yang completely metrizable dan terdapat metrik d s pada C t (H) sehingga (C t (H), d s ) merupakan ruang metrik lengkap yang separabel. Selanjutnya, dikenalkan definisi shift operator yang ditekankan pada pembahasan operator backward unilateral shift. Diberikan ruang Hilbert H = l 2 (N N) dan dinyatakan {e in : i, n N} adalah basis ortonormal kanonik dari H. Didefinisikan operator backward unilateral shift berdimensi tak hingga S C t (H) dengan S(e 1n ) = ˆ0 dan S(e {i+1}n ) = e in, untuk i, n N. Diberikan koleksi O(S) = {USU 1 : U uniter} adalah koleksi operator yang uniter ekuivalen dengan operator backward unilateral shift tersebut. Langkah berikutnya adalah membuktikan bahwa koleksi O(S) merupakan himpunan yang residual dari C t (H). Didefinisikan himpunan S koleksi operator kontraksi A yang stabil kuat, dan himpunan G koleksi operator kontraksi A yang memenuhi S H A[S H ] dengan S H = {x H : x = 1} dan dim ker A =. Himpunan S dan G merupakan himpunan bagian residual dari C t (H). Dalam menunjukkan G residual dibutuhkan lemma yang mengatakan bahwa setiap operator kontraksi yang terdefinisi pada

7 7 ruang bagian berdimensi hingga dari H dapat diperluas menjadi operator kontraksi yang surjektif dalam arti yang lebih kuat. Sedangkan untuk menunjukkan kernel A berdimensi tak hingga dibutuhkan lemma yang mengatakan bahwa s-tipikal kontraksi A konvergen ke nol pada ruang bagian Z sehingga untuk setiap n N, berlaku dim Z n. Himpunan O(S) merupakan himpunan yang residual dari C t (H) dapat terbukti dengan menujukkan untuk setiap A S G uniter ekuivalen dengan operator S. Untuk setiap A G berlaku AA = I dan A A merupakan proyeksi pada range A. Akan ditunjukkan bahwa A merupakan operator isometrik sehingga A merupakan operator co-isometrik dan A isometrik pada range A. Menggunakan teorema dekomposisi Wold, karena A operator isometrik, diperoleh H dapat didekomposisi menjadi jumlahan ortogonal H = H 1 H 2 sehingga H 1 dan H 2 mereduksi A, A H1 merupakan operator uniter, dan A H2 merupakan operator shift. Karena S merupakan himpunan bagian residual dari C t (H), sama artinya dengan mengatakan bahwa operator s-tipikal kontraksi A merupakan operator yang stabil kuat, yaitu s- lim n N A n = 0. Akibatnya, A shift sehingga bagian uniternya merupakan himpunan trivial, dengan kata lain H 1 = {ˆ0}. Dengan memanfaatkan kesamaan multiplisitas, Rosenblum dan Rovnyak (1985) mengatakan bahwa dua operator shift dikatakan uniter ekuivalen jika memiliki multiplisitas yang sama. Dengan demikian, karena dim ker A =, diperoleh operator shift A uniter ekuivalen dengan operator shift pada l 2 (N, ker A). Diperhatikan bahwa l 2 (N, ker A) isomorfik dengan l 2 (N N). Dengan demikian, operator s-tipikal kontraksi A uniter ekuivalen dengan operator adjoint dari operator shift pada l 2 (N N) yang merupakan backward unilateral shift pada l 2 (N N). Metodologi penelitian ini disampaikan dalam diagram berikut.

8 8. Koleksi semua operator Kontraksi Ruang Baire Koleksi operator kon- i. Himpunan G menyatakan koleksi operator kontraksi A yang memenuhi S H A[S H ] dan dim ker A = himpunan bagian residual dari C t (H), ii. untuk setiap A G, berlaku AA = I dan A A merupakan proyeksi pada range A, traksi yang stabil kuat merupakan himpunan iii. operator A merupakan operator isometrik pada range bagian residual dari A dan operator A merupakan operator isometrik. C t (H) Operator kontraksi A Bagian uniternya uniter ekuivalen dengan Teorema merupakan himpunan jumlahan langsung ope- dekomposisi trivial yaitu rator uniter dan operator Wold U[H] = {ˆ0} backward unilateral shift Setiap operator kontraksi yang stabil Koleksi operator kontraksi kuat yang memenuhi S H yang uniter ekuivalen dengan A[S H ] dan dim ker A = uniter operator backward unilateral ekuivalen dengan operator backward shift merupakan himpunan unilateral shift bagian residual dari C t (H). Gambar 1.1 Diagram Alur 1.6 Sistematika Penulisan Penelitian ini bertujuan untuk memaparkan pengertian tentang sifat tipikal kuat dari operator linear kontraksi pada ruang Hilbert separabel atas himpunan bilangan kompleks berdimensi tak hingga. Secara umum, sistematika penulisan tesis ini dibagi menjadi lima bagian. Bab I berisi tentang pendahuluan yang menjelaskan tentang latar belakang permasalahan yang dibahas dalam penelitian dan merumuskan permasalahan yang akan diteliti, tujuan dan manfaat dari penelitian ini, tinjauan pustaka, metode penelitian, dan sistematika penulisan disampaikan di dalam bab ini.

9 9 Bab II berisi tentang landasan teori yang memaparkan dasar-dasar teori yang diperlukan dalam penelitian. Landasan teori yang dimaksud meliputi konsep tentang ruang Hilbert dan beberapa sifat di dalamnya, operator linear kontinu pada ruang Hilbert, khususnya operator proyeksi, uniter, dan isometrik. Untuk mengenalkan definisi s-tipikal dalam bab selanjutnya, dipaparkan konsep tentang ruang topologis yang secara khusus lebih ditekankan pada basis dan basis bagian topologi, ruang Baire, dan teorema kategori Baire. Bab III dan bab IV berisi tentang hasil penelitian. Dalam bab III lebih ditekankan pada pengertian topologi konvergen titik demi titik atau dapat disebut topologi operator kuat (strong operator topology), uniter ekuivalen, operator kontraksi, dan karakteristik khusus pada operator kontraksi. Selanjutnya, pada bab IV dibahas mengenai sifat s-tipikal kontraksi, dekomposisi Wold, operator shift, dan pengertian operator backward unilateral shift, serta uniter ekuivalen antara operator s-tipikal kontraksi dan operator bakcward unilateral shift. Sebagai penutup, bab V berisi tentang kesimpulan dari seluruh rangkaian pembahasan sebelumnya.

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pemetaan linear merupakan salah satu jenis pemetaan yang dikenal dalam bidang matematika, khususnya dalam bidang matematika analisis. Diberikan ruang vektor

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teori titik tetap merupakan teori matematika yang sering digunakan untuk menjamin eksistensi solusi masalah nilai awal dan syarat batas persamaan diferensial

Lebih terperinci

Karakteristik Operator Positif Pada Ruang Hilbert

Karakteristik Operator Positif Pada Ruang Hilbert SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, salah satunya adalah ruang metrik. Ruang metrik merupakan suatu

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis BAB I PENDAHULUAN 1.1 Latar Belakang Analisis fungsional merupakan salah satu cabang dari kelompok analisis yang membahas operator, operator linear dan sifat-sifatnya. Sebuah pemetaan antar ruang bernorm

Lebih terperinci

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu struktur aljabar yang harus dikuasai oleh seorang matematikawan adalah grup yaitu suatu himpunan tak kosong G yang dilengkapi dengan satu operasi

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Pemetaan merupakan konsep yang tidak pernah terlepas dari bahasan matematika analisis. Pengaitan setiap anggota dari suatu himpunan dengan tepat satu

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci

TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH

TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH Annisanti Surachman, Rizky Rosjanuardi 1, Isnie Yusnitha 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: annisanti.surachman@student.upi.edu ABSTRAK.

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

OPERATOR PADA RUANG BARISAN TERBATAS

OPERATOR PADA RUANG BARISAN TERBATAS OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: ansomath@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, di antaranya ruang Hilbert. Banyak hal yang dapat dikaji di dalam ruang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu landasan di dalam pengembangan matematika karena mempunyai peran yang cukup mendasar dalam aplikasi berbagai cabang

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Permulaan munculnya analisis fungsional didasari oleh permasalahan pada kurang memadainya metode analitik klasik pada fisika dan astronomi matematika.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam matematika dikenal konsep fungsi naik monoton dan fungsi turun monoton. Jika f : R R merupakan fungsi naik monoton maka untuk setiap x, y R dengan x

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

dari ruang vektor berdimensi hingga V (dimana I adalah suatu himpunan indeks) disebut basis bagi V jika V = span(ψ) dan vektorvektor

dari ruang vektor berdimensi hingga V (dimana I adalah suatu himpunan indeks) disebut basis bagi V jika V = span(ψ) dan vektorvektor BAB 3 FRAME Sinyal kontinu dapat kita diskritisasi dengan menggunakan ekspansi vektor. Sifat yang paling esensial untuk melakukan hal tersebut adalah adanya operator yang menjamin bahwa ekspansi vektor

Lebih terperinci

yang Dibangun oleh Ukuran Bernilai Proyeksi

yang Dibangun oleh Ukuran Bernilai Proyeksi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Integral pada A - 3 yang Dibangun oleh Ukuran Bernilai Proyeksi Arta Ekayanti dan Ch. Rini Indrati. FMIPA Universitas Gadjah Mada arta_ekayanti@ymail.com

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu subjek yang menarik untuk dikaji karena memiliki banyak aplikasi dalam berbagai bidang. Selama kurun waktu sepuluh tahun

Lebih terperinci

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Oleh : Iswanti 1, Soeparna Darmawijaya 2 Iswanti, Jurusan Teknik Elektro, Politeknik Negeri Semarang, Semarang, Jawa

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Seiring dengan perkembangan zaman, banyak sekali topik matematika khususnya dalam bidang analisis fungsional yang mengalami perluasan, seperti: ruang vektor,

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal Jurnal Matematika Integratif Volume 12 No. 2, Oktober 2016, pp. 117-124 p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v12.n2.11928.117-124 Keterkaitan Grup Spesial Uniter dengan Grup Spesial Ortogonal

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan ilmu dasar yang digunakan di berbagai bidang. Teori titik tetap merupakan salah satu cabang dalam ilmu matematika, khususnya matematika

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konsep ruang metrik merupakan salah satu konsep dasar dalam matematika analisis. Selama bertahun-tahun, para peneliti mencoba mengembangkan konsep ruang metrik.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral tipe Stieltjes merupakan salah satu topik yang banyak dipelajari dalam matematika analisis. Beberapa di antaranya adalah integral Riemann-Stieltjes,

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu ilmu pengetahuan yang berperan penting dalam perkembangan teknologi. Ilmu Matematika juga merupakan ilmu dasar yang banyak

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari BAB II TEORI DASAR Pada skripsi ini, akan dipelajari perbedaan sifat grup fundamental yang dimiliki beberapa ruang topologi, yaitu 2 S, torus, 2 P dan figure eight. Ruang topologi adalah suatu himpunan

Lebih terperinci

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi PROYEKSI ORTOGONAL PADA RUANG HILBERT Skripsi Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna Memenuhi Gelar Sarjana

Lebih terperinci

KONSTRUKSI, SIFAT DAN DIMENSI HIMPUNAN CANTOR MIDDLE THIRD. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP

KONSTRUKSI, SIFAT DAN DIMENSI HIMPUNAN CANTOR MIDDLE THIRD. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP KONSTRUKSI, SIFAT DAN DIMENSI HIMPUNAN CANTOR MIDDLE THIRD Khoiroh Alfiana, Siti Khabibah, Robertus Heri S.U,, Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika

Lebih terperinci

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara PROYEKSI ORTHOGONAL PADA RUANG HILBERT ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara Pendahuluan Pada umumnya suatu teorema mempunyai ruang lingkup

Lebih terperinci

ANALISIS NUMERIK LANJUT. Hendra Gunawan, Ph.D. 2006/2007

ANALISIS NUMERIK LANJUT. Hendra Gunawan, Ph.D. 2006/2007 ANALISIS NUMERIK LANJUT Hendra Gunawan, Ph.D. 2006/2007 BAB I. RUANG LINEAR Pelajari definisi dan contoh: ruang linear (hal. 1-3); subruang (hal. 3); kombinasi linear (hal. 4); bebas/bergantung linear

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak SIFAT-SIFAT TOPOLOGI RUANG LINEAR Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo Abstrak Penulisan ini bertujuan menyelidiki sifat-sifat yang berlaku di dalam topologi

Lebih terperinci

BAB III FUNGSI UJI DAN DISTRIBUSI

BAB III FUNGSI UJI DAN DISTRIBUSI BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Himpunan fuzzy pertama kali diperkenalkan oleh Zadeh (1965). Himpunan fuzzy adalah suatu himpunan yang setiap anggotannya memiliki derajat keanggotaan. Derajat keanggotaan

Lebih terperinci

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang BAB 3 KONDISI SPECTRUM Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang diperoleh berdasarkan penjelasan - penjelasan yang telah dipaparkan pada bab - bab sebelumnya. Hasil

Lebih terperinci

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: Muhammadrifqyagustian@yahoo.co.id ABSTRAK. Diberikan ruang

Lebih terperinci

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T BAB I PENDAHULUAN. Latar Belakang dan Permasalahan Bidang ilmu analisis meruakan salah satu cabang ilmu matematika yang di dalamnya banyak membicarakan konse, aksioma, teorema, lemma disertai embuktian

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak.

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak. BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF Oleh: Rindang Kasih Program Studi Pendidikan Matematika FKIP UNIVET Sukoharjo Jl. Letjend Sujono Humardani No.1 Kampus Jombor Sukoharjo, e-mail: Rindang_k@yahoo.com

Lebih terperinci

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE)

HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 98 102 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HOMOLOGI DARI HIMPUNAN KUBIK YANG DIREDUKSI (ELEMENTARY COLLAPSE) RISCHA DEVITA Program Studi Matematika,

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB I PENDAHULUAN. Salah satu kajian menarik dalam analisis adalah teori himpunan.

BAB I PENDAHULUAN. Salah satu kajian menarik dalam analisis adalah teori himpunan. BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu kajian menarik dalam analisis adalah teori himpunan. Himpunan merupakan konsep dasar dari semua cabang matematika bahkan sudah diperkenalkan dalam pendidikan

Lebih terperinci

GEOMETRI ALJABARIK I: RUANG AFFINE DENIK AGUSTITO

GEOMETRI ALJABARIK I: RUANG AFFINE DENIK AGUSTITO GEOMETRI ALJABARIK I: RUANG AFFINE DENIK AGUSTITO Tulisan ini didukung oleh AJM (Arsip Jurnal Matematika), Indonesia Email: denikagustito@yahoo.co.id Selesai pada 28 Pebruari 2011 ABSTRAK. Terdapat sebuah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada abad ke-19, Teori Representasi secara umum dipelajari sebagai bagian dari Teori Grup. Himpunan semua endomorfisma invertibel dari ruang vektor V atas

Lebih terperinci

PRODUK SILANG ATAS SEMIGRUP ENDOMORFISMA

PRODUK SILANG ATAS SEMIGRUP ENDOMORFISMA PRODUK SILANG ATAS SEMIGRUP ENDOMORFISMA Ishma Fadlina Urfa, Rizky Rosjanuardi, Isnie Yusnitha Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding author: ishmafadlina@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, batasan masalah, maksud dan tujuan penulisan, tinjauan pustaka serta sistematika penulisan skirpsi ini. 1.1.

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

OPERATOR SELF ADJOINT PADA RUANG HILBERT

OPERATOR SELF ADJOINT PADA RUANG HILBERT OPERATOR SELF ADJOINT PADA RUANG HILBERT Gunawan Universitas Muhammadiah Purwokerto, gun.oge@gmail.om Abstrat. In this artile, will disuss definition, examples, algebra properties, and some harateristi

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

UNIVERSITAS INDONESIA SKRIPSI DANIEL SALIM FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK 2012

UNIVERSITAS INDONESIA SKRIPSI DANIEL SALIM FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK 2012 UNIVERSITAS INDONESIA SPEKTRUM DAN HIMPUNAN RESOLVENT DARI OPERATOR LINEAR TERBATAS DAN OPERATOR LINEAR SELF ADJOINT TERBATAS SKRIPSI DANIEL SALIM 0906511385 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n]

BAB 1 PENDAHULUAN. 1 ; untuk k = n 0 ; untuk k n. e [n] BAB 1 PENDAHULUAN 1.1. Latar Belakang Barisan bilangan real adalah suatu fungsi bernilai real yang didefinisikan pada himpunan N = 0, 1, 2,.... Dengan kata lain, barisan bilangan real adalah suatu fungsi

Lebih terperinci

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1 FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281

Lebih terperinci

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com

Lebih terperinci

OPERATOR FREDHOLM. Kartika Yulianti December 20, 2007

OPERATOR FREDHOLM. Kartika Yulianti December 20, 2007 OPERATOR FREDHOLM Kartika Yulianti 20106010 December 20, 2007 1 Orientasi De nition 1 Misalkan X, Y adalah ruang Banach. Sebuah operator A 2 B(X; Y ) disebut operator Fredholm dari X ke Y, jika : 1. (A)

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pada awalnya deret Fourier diperkenalkan oleh Joseph Fourier pada tahun 1807 untuk memecahkan model masalah persamaan panas pada suatu lempeng logam (Fourier, 1878).

Lebih terperinci

TOPOLOGI RUANG LINEAR

TOPOLOGI RUANG LINEAR TOPOLOGI RUANG LINEAR Nila Kurniasih Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Jalan KHA. Dahlan 3 Purworejo e-mail: kurniasih.nila@yahoo.co.id Abstrak Tulisan ini bertujuan

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI GRUP HINGGA

KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI GRUP HINGGA 1 Jurnal Scientific Pinisi, Volume 3, Nomor 1, April 2017, hlm. 1-9 KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI RUP HINA Restu Cahyaningsih dan Budi Surodjo

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum BAB 4 ORTOGONALISASI GRAM-SCHMIDT YANG DIPERUMUM Diberikan sebarang barisan hingga vektor di ruang Hilbert berdimensi hingga. Pada bab ini akan diberikan algoritma untuk menghitung frame Parseval pada

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

Sifat-sifat Ruang Banach

Sifat-sifat Ruang Banach Vol. 11, No. 2, 115-121, Januari 2015 Sifat-sifat Ruang Banach Muhammad Zakir Abstrak Tulisan ini membahas tentang himpunan operator (pemetaan) linier dari ruang vektor ke ruang vektor yang dilambangkan

Lebih terperinci

SIFAT-SIFAT PEMETAAN BILINEAR

SIFAT-SIFAT PEMETAAN BILINEAR SIFAT-SIFAT PEMETAAN BILINEAR Mustafa A.H. Ruhama Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT Let UU, VV and WW are vector

Lebih terperinci

PRODUK SILANG TEREDUKSI DARI ALJABAR- OLEH SEMIGRUP PADA AUTOMORFISMA

PRODUK SILANG TEREDUKSI DARI ALJABAR- OLEH SEMIGRUP PADA AUTOMORFISMA PRODUK SILANG TEREDUKSI DARI ALJABAR- OLEH SEMIGRUP PADA AUTOMORFISMA Nadia Shabilla, Rizky Rosjanuardi, Isnie Yusnitha Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

Pengaruh Waktu Tunda Yang Kecil Terhadap Stabilitas Eksponensial Seragam Suatu Sistem Persamaan Diferensial

Pengaruh Waktu Tunda Yang Kecil Terhadap Stabilitas Eksponensial Seragam Suatu Sistem Persamaan Diferensial SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pengaruh Waktu Tunda Yang Kecil Terhadap Stabilitas Eksponensial Seragam Suatu Sistem Persamaan Diferensial Aloysius Joakim Fernandez Fakultas

Lebih terperinci

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung e-mail: e.sumiaty@yahoo.com Abstrak Diketahui ruang fungsi klasik L (, ). Melalui oerator T ada ruang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci