OPERATOR SELF ADJOINT PADA RUANG HILBERT

Ukuran: px
Mulai penontonan dengan halaman:

Download "OPERATOR SELF ADJOINT PADA RUANG HILBERT"

Transkripsi

1 OPERATOR SELF ADJOINT PADA RUANG HILBERT Gunawan Universitas Muhammadiah Purwokerto, Abstrat. In this artile, will disuss definition, examples, algebra properties, and some harateristi of self-adjoint operators on Hilbert spae. In the Hilbert spae there are tpes of bounded linear operators suh as adjoint operators and self-adjoint operators. To investigate harateristi of self-adjoint operator required onepts of Hilbert spae, operators on Hilbert spaes, Riesz representation theorem, and adjoint operators on Hilbert spae. It then takes a thought to investigate the harateristi of self-adjoint operators. Disussion of self-adjoint operators more emphasis on understanding the definition, algebra properties, and harateristi of self-adjoint operators on Hilbert spae. The results obtained are algebra properties of self-adjoint operators suh as addition, subtration, salar multipliation, and multipliation of self-adjoint operators. In addition, some harateristi assoiated with self-adjoint operators on Hilbert spae. Kewords : Riesz representation theorem, adjoint operators, self adjoint operators, Hilbert spae. Abstrak. Pada artikel ini akan dibahas mengenai definisi, ontoh, sifat- sifat aljabar, dan beberapa karakteristik operator self adjoint pada ruang Hilbert. Pada ruang Hilbert terdapat jenis-jenis operator linear terbatas diantarana operator adjoint dan operator self adjoint. Untuk menelidiki karakteristik operator self adjoint diperlukan konsep ruang Hilbert, operator pada ruang Hilbert, Teorema representasi Riesz, dan operator adjoint pada ruang Hilbert. Hal tersebut kemudian membawa pemikiran untuk menelidiki karakteristik operator self adjoint. Pembahasan mengenai operator self adjoint lebih ditekankan pada memahami definisi, sifat- sifat aljabar, dan karakteristik operator self adjoint pada ruang Hilbert. Hasil penelitian ang diperoleh adalah sifatsifat aljabar operator self adjoint diantarana sifat penjumlahan, pengurangan, perkalian dengan skalar, dan perkalian operator self adjoint. Selain itu, beberapa karakteristik ang berkaitan dengan operator self adjoint pada ruang Hilbert. Kata kuni: teorema representasi Riesz, operator adjoint, operator self adjoint, ruang Hilbert. 1 Pendahuluan Di dalam analisis khususna analisis fungsional, beberapa ruang ang sering dibiarakan adalah ruang linear, ruang bernorma, ruang Banah, ruang pre- Hilbert, dan ruang Hilbert. Ruang pre-hilbert merupakan ruang linear X ang dilengkapi dengan fungsi ang memetakan setiap anggota X X ke suatu bilangan kompleks dan memenuhi aksioma-aksioma tertentu. Fungsi inilah ang kemudian dikenal dengan produk skalar (inner produt) pada X. Ruang pre- Hilbert ang lengkap disebut ruang Hilbert. Pemetaan dari suatu ruang linear ke ruang linear ang lain atau dari suatu ruang linear ke ruang linear ang sama disebut operator. Diberikan ruang Hilbert X dan Y atas lapangan ang sama, aitu F. Lapangan F ang dimaksud pada tulisan ini adalah atau. Operator T : X Y dikatakan linear jika untuk setiap x, X dan F berlaku T ( x ) T ( x) T ( ) dan T ( x) T ( x). Operator linear T : X Y dikatakan 1

2 terbatas jika terdapat konstanta M 0 sehingga T ( x) Unisda Journal Mathematis and Computer Siene M x untuk setiap x X. Himpunan semua operator linear terbatas dari X ke Y ditulis B X, Y. Lebih B X X dituliskan B X atau BY. lanjut, dalam hal X = Y,, Diberikan ruang Hilbert H atas lapangan F, himpunan semua operator linear terbatas dari H ke H ditulis BH, dan T B( H ). Lapangan F ang dimaksudkan di tulisan ini adalah (bilangan kompleks). Operator linear kontinu T ang memiliki sifat T T dengan T adjoint operator T disebut sebagai operator positif. Pada ruang Hilbert terdapat jenis-jenis operator linear terbatas diantarana operator adjoint dan operator self adjoint. Untuk menelidiki karakteristik operator self adjoint diperlukan konsep ruang Hilbert, operator pada ruang Hilbert, teorema representasi Riesz, dan operator adjoint pada ruang Hilbert. Hal tersebut kemudian membawa pemikiran untuk menelidiki karakteristik operator T ang memiliki sifat T T dengan T adjoint operator T. Pembahasan mengenai karakteristik operator self adjoint pada tulisan ini, lebih ditekankan pada memahami definisi, sifat- sifat aljabar, dan karakteristik operator self adjoint pada ruang Hilbert. Rumusan masalah ang dibuat adalah bagaimana karakteristik atau sifat-sifat operator self adjoint. Dalam penelitian ini hana dibatasi pada ruang Hilbert. Tujuan penelitian ini adalah untuk memberikan pemahaman dan pengetahuan mengenai sifat- sifat dan karakteristik operator self adjoint pada ruang Hilbert. Pembahasan mengenai operator self adjoint pada ruang Hilbert bermanfaat membantu mengembangkan ilmu matematika dan aplikasina, khususna analisis fungsional. Pembahasan tentang operator self adjoint pada ruang Hilbert diawali dengan pendefinisian teorema representasi Riesz, operator adjoint, dan operator self adjoint, kemudian dilanjutkan dengan pembahasan mengenai karakteristik operator self adjoint pada ruang Hilbert. Dalam pendefinisian operator adjoint diperlukan penjelasan mengenai teorema representasi Riesz. Untuk pembahasan tentang konsep ruang Hilbert, operator adjoint, dan operator self adjoint diau dari buku [3], [4], dan [1]. Selanjutna, dalam pembahasan mengenai operator pada ruang Hilbert diperlukan penjelasan mengenai konsep konsep pemetaan linear kontinu pada ruang bernorma diau dari buku [3] dan [4]. Selanjutna, [1] dalam bukuna seara lengkap membahas tentang operator pada ruang Hilbert. Pembahasan mengenai karakteristik operator self adjoint pada ruang Hilbert diau dari buku [] dan [4]. Hasil dan Pembahasan Pada bab ini dibahas tentang definisi, ontoh, sifat-sifat aljabar, dan karakteristik operator self adjoint pada ruang Hilbert. Untuk menelidiki karakteristik operator self adjoint pada ruang Hilbert, terlebih dahulu akan disampaikan mengenai teorema representasi Riesz, operator adjoint, dan beberapa sifat operator self adjoint pada ruang Hilbert.

3 .1 Operator Adjoint Pada Ruang Hilbert Unisda Journal Mathematis and Computer Siene Untuk dapat mendefinisikan operator adjoint, dalam sub-bab berikut terlebih dahulu dibahas mengenai eksistensi representasi Riesz. Selain itu, dalam sub-bab berikut dipahami bahwa BH adalah himpunan semua operator linear terbatas pada ruang Hilbert H. Teorema 1 (Teorema Representasi Riesz). Diketahui H ruang Hilbert. Jika T sebarang fungsional linear terbatas pada H maka terdapat dengan tunggal H sehingga T( x) x,, x H. Diketahui T sebarang fungsional linear terbatas. Misalkan A N( T) x H : T ( x) 0. Diperoleh A ruang bagian tertutup H. Karena A ruang bagian tertutup dari H, maka H A A. Selanjutna, 1) Jika T = O maka diambil sehingga teorema terbukti. ) Jika T O maka A H. Karena jika A = H maka untuk sebarang x H berakibat T = O. Oleh karena itu, A H maka A. Jadi, dapat diambil \. Karena A A z A diperoleh : T( z). z T( z) z, z, z, z T( z). z z T( z). z maka T() z. Dibentuk A, z Untuk A, maka, T( ). Untuk x H, x dapat ditulis sebagai T ( x) T ( x) T ( x) x x, dengan x A, sebab T ( ) T ( ) T ( ) T ( x) T ( x) x = T ( x) T ( ) 0. T ( ) T ( ) T( x) Karena x orthogonal terhadap, maka : T( ) T( x) x, 0 T( ) T( x) x,, 0 T( ) T( x) x,, T( ) x, T ( x) 3

4 Unisda Journal Mathematis and Computer Siene Diperoleh T( x) x,, x H. Selanjutna akan dibuktikan tunggal. Diambil sebarang ' setiap x H diperoleh: x, x, ' x, x, ' 0 x, ' 0 ' 0 ' H maka T( x) x, ', x H. Karena T ( x) x, maka untuk Jadi, tunggal. Dengan demikian T( x) x,, x H. Teorema. Diketahui H dan K ruang Hilbert. Untuk setiap T : H K operator linear kontinu, maka terdapat dengan tunggal operator linear kontinu T : K H sehingga untuk setiap x H dan K, berakibat T ( x), x, T ( ). Diambil sebarang T L ( H, K) dan K. Dibentuk fungsional pada H dengan ( x) T( x),, x H. Fungsional merupakan fungsional linear kontinu pada H sebab: 1) Untuk setiap x1, x H dan skalar diperoleh: x x T( x x ), T( x ), T( x ), ( x ) ( x ) dan x T( x ), T ( x ), ( x ) ) Untuk setiap x H diperoleh: ( x) T( x), T ( x) T x Karena untuk setiap K, merupakan pemetaan linear kontinu pada H, maka menurut Teorema 1, terdapat dengan tunggal ' H sehingga untuk setiap x H berlaku ( x) x, '. Berarti jelas bahwa untuk setiap K menentukan dengan tunggal ' H. Jadi terdapat operator T ( ) ', K. Oleh karena itu diperoleh : x T x x x T ( ) ( ),, ', ( ) T : K H dengan Jelas bahwa T tunggal. Selanjutna, operator T linear dan kontinu, sebab : 1) Untuk setiap 1, K, x H, dan, skalar diperoleh: x T T x, ( 1 ) ( ), 1 ) Untuk setiap x H diperoleh: = T ( x), T ( x), 1 = T ( x), T ( x), 1 = x, T ( ) x, T ( ) x, T ( ) x, T ( ) 1 1 4

5 Unisda Journal Mathematis and Computer Siene a. Jika x maka, 0 T ( ) T ( ), T ( ), TT ( ) T T ( ) 0. b. Jika x maka, T ( x) T ( x), T ( x) x, TT ( x) T x T ( x) T x T x ( ). Diambil M T. Diperoleh M 0, sehingga T ( x) M x. Jadi, T terbatas. Dengan demikian, terbukti bahwa untuk setiap T L ( H, K) terdapat dengan tunggal T L (, ) K H sehingga: T( x), x, T ( ), x H dan K. Definisi 1. Operator linear kontinu disebut operator adjoint dari T. T seperti ang dijelaskan pada Teorema. Setelah disampaikan mengenai operator adjoint, berikut ini akan dibahas sifatsifat operator adjoint pada ruang Hilbert. Teorema 3. Diketahui H dan K ruang Hilbert. Jika S, T L H, K maka pernataan- pernataan berikut ini berlaku. a. T ( ), x, T ( x), untuk setiap xh, K b. S T S T T T. d. T T dan λ skalar, a. Diambil sebarang xh, K. T x x T T x T x ( ),, ( ) ( ),, ( ). b. Diambil sebarang x H ( S T) ( x), x x,( S T)( x) x, S( x) T( x) = x, S( x) x, T( x) S ( x), x T ( x), x ( S T )( x), x. Jadi, ( S T) S T.. Diambil sebarang x H. 5

6 Unisda Journal Mathematis and Computer Siene ( T ) ( x), x x, T ( x) x, T ( x) T ( x), x ( T ) x, x. Jadi, ( T) T. d. Diambil sebarang x H. ( T ) ( x), x x, T ( x) T( x), x. Jadi, ( T ) T. Teorema 4. Diketahui H, K, dan L ruang Hilbert. Jika T L H, K, maka ST T S S L K L Diambil sebarang x H.. ( ST ) ( x), x x, ST( x) S ( x), T( x) T S ( x), x. dan Jadi, ( ST ) T S.. Karakteristik Operator Self Adjoint Pada Ruang Hilbert Berikut ini akan disamapaikan mengenai karakteristik operator self adjoint pada ruang Hilbert. Pembahasan mengenai karakteristik operator self adjoint lebih difokuskan pada definisi, sifat- sifat aljabar, dan sifat- sifat lain ang berkaitan dengan operator self adjoint pada ruang Hilbert. Definisi. Diketahui H ruang Hilbert dan T B( H). Operator T dikatakan self- adjoint jika T T. Teorema 5. Diketahui H ruang Hilbert dan S, T B( H). Jika S, T self adjoint maka 1) S T ) T, 3) ST, dengan ST TS masing- masing merupakan self adjoint. 1) Diambil sebarang x H. ( S T)( x), x S( x) T( x), x S( x), x T( x), x x, S ( x) x, T ( x) =, ( ), ( ) ( ), ( ), ( ), ( ), x S x x T x S x x T x x S T x x S T x x Jadi, S T ( S T). Dengan demikian, S T self adjoint. ) Diambil sebarang x H. Tx, x x, T x x, T x x, Tx T ( x), x ( T ) x, x Jadi, T ( T). Dengan demikian, T self adjoint. 6

7 Unisda Journal Mathematis and Computer Siene 3) Diambil sebarang x H. ST ( x), x T ( x), S ( x) x, T S x x, TS( x) x, ST ( x) ( ST ) ( x), x Jadi, ST ST. Dengan demikian, ST self adjoint. Teorema 6. Diketahui H ruang Hilbert dan T B( H). Pernataan- pernataan berikut ekuivalen: 1) T self adjoint ) T( x), x, T( ), x, H 3) T( x), x x, T ( x), x H 4) T( x), x bilangan real, x H. 1) ) Diambil sebarang x, H. Diperoleh: T ( x), T ( x), x, T ( ). Jadi, T( x), x, T( ), x, H. ) 3) Jelas dari ang diketahui. 3) 4) Diambil sebarang x H : T( x), x x, T ( x) T ( x), x. Diperoleh T( x), x bilangan real x H. 4) 1) Diambil sebarang x H : T( x), x T( x), x x, T( x) T ( x), x self adjoint).. Jadi, untuk setiap x H, 3 Kesimpulan T T (T Berdasarkan pembahasan di atas, kesimpulan ang dapat diambil adalah jika diberikan H ruang Hilbert atas lapangan F, maka operator linear kontinu T dikatakan self adjoint apabila operator T memenuhi sifat T T, dengan T operator adjoint T. Lebih lanjut, apabila dan S, T B( H ) self adjoint, maka S T, T, dan ST merupakan operator self adjoint. Selain itu, jika T operator self adjoint, maka T( x), x real, x H. Daftar Pustaka [1] Berberian, S.K Introdution to Hilbert Spaes. Oxford Universit Press. New York. [] Furuta, T. 00. Invitation to Linear Operators. Talor and Franis. New York. [3] Kreszig, E Introdutor Funtional Analsis with Appliations. John Wile and Sons. New York. [4] Weidmann, J Linear Operators in Hilbert Spaes. Springer-Verlag. New York. 7

Karakteristik Operator Positif Pada Ruang Hilbert

Karakteristik Operator Positif Pada Ruang Hilbert SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

JMP : Volume 1 Nomor 1, April 2009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM-2

JMP : Volume 1 Nomor 1, April 2009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM-2 JMP : Volume Nomor April 009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM- Sri Marani Program Studi Matematika Fakultas Sains dan Tekink Universitas Jenderal Soedirman Purwokerto Email : srimar_math_97@ahoo.com

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

OPERATOR PADA RUANG BARISAN TERBATAS

OPERATOR PADA RUANG BARISAN TERBATAS OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: ansomath@yahoo.com

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis BAB I PENDAHULUAN 1.1 Latar Belakang Analisis fungsional merupakan salah satu cabang dari kelompok analisis yang membahas operator, operator linear dan sifat-sifatnya. Sebuah pemetaan antar ruang bernorm

Lebih terperinci

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara

PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara PROYEKSI ORTHOGONAL PADA RUANG HILBERT ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara Pendahuluan Pada umumnya suatu teorema mempunyai ruang lingkup

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

Fungsi Generalisasi Supra Kontinu Pada Ruang Supra Topologi

Fungsi Generalisasi Supra Kontinu Pada Ruang Supra Topologi PROSIDING ISBN : 978 979 6353 6 3 Fungsi Generalisasi Supra Kontinu Pada Ruang Supra Topologi A 9 Imam Supeno Universita Negeri Malang imam@mat.um.a.id Abstrak Pada makalah ini dikenalkan fungsi generalisasi

Lebih terperinci

yang Dibangun oleh Ukuran Bernilai Proyeksi

yang Dibangun oleh Ukuran Bernilai Proyeksi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Integral pada A - 3 yang Dibangun oleh Ukuran Bernilai Proyeksi Arta Ekayanti dan Ch. Rini Indrati. FMIPA Universitas Gadjah Mada arta_ekayanti@ymail.com

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, di antaranya ruang Hilbert. Banyak hal yang dapat dikaji di dalam ruang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T BAB I PENDAHULUAN. Latar Belakang dan Permasalahan Bidang ilmu analisis meruakan salah satu cabang ilmu matematika yang di dalamnya banyak membicarakan konse, aksioma, teorema, lemma disertai embuktian

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

DESKRIPSI MATA KULIAH MT413 ALJABAR LINEAR LANJUT. Prasyarat : Mahasiswa telah mengikuti mata kuliah Aljabar Linear

DESKRIPSI MATA KULIAH MT413 ALJABAR LINEAR LANJUT. Prasyarat : Mahasiswa telah mengikuti mata kuliah Aljabar Linear DESKRIPSI MATA KULIAH MT41 ALJABAR LINEAR LANJUT SKS Setelah mengikuti perkuliahan ini mahasiswa diharapkan dapat :memahami kembali pengertian matriks dan transformasi linear, dapat penggunakan matriks

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam ilmu matematika, banyak pembahasan di bidang analisis dan topologi yang memerlukan pengertian ruang Hilbert. Ruang Hilbert merupakan konsep abstrak yang mendasari

Lebih terperinci

TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH

TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH TEORI DILASI DALAM RUANG HILBERT DAN RUANG BANACH Annisanti Surachman, Rizky Rosjanuardi 1, Isnie Yusnitha 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: annisanti.surachman@student.upi.edu ABSTRAK.

Lebih terperinci

BIMODUL-C* HILBERT. Oleh: Raden Muhammad Hadi. Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia

BIMODUL-C* HILBERT. Oleh: Raden Muhammad Hadi. Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia BIMODUL-C* HILBERT Oleh: Raden Muhammad Hadi hadimaster65555@gmail.com Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia Agustus 2015 Dosen Pembimbing : Rizky Rosjanuardi dan Isnie Yusnitha

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Oleh : Iswanti 1, Soeparna Darmawijaya 2 Iswanti, Jurusan Teknik Elektro, Politeknik Negeri Semarang, Semarang, Jawa

Lebih terperinci

HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR

HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR Mustafa A.H. Ruhama Program Studi Pendidikan Matematika, Jurusan Pendidikan MIPA, Fakultas Keguruan dan Ilmu Pendidikan, Unveristas Khairun ABSTRAK Let UU,

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

dari ruang vektor berdimensi hingga V (dimana I adalah suatu himpunan indeks) disebut basis bagi V jika V = span(ψ) dan vektorvektor

dari ruang vektor berdimensi hingga V (dimana I adalah suatu himpunan indeks) disebut basis bagi V jika V = span(ψ) dan vektorvektor BAB 3 FRAME Sinyal kontinu dapat kita diskritisasi dengan menggunakan ekspansi vektor. Sifat yang paling esensial untuk melakukan hal tersebut adalah adanya operator yang menjamin bahwa ekspansi vektor

Lebih terperinci

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: Muhammadrifqyagustian@yahoo.co.id ABSTRAK. Diberikan ruang

Lebih terperinci

Kelengkapan Ruang l pada Ruang Norm-n

Kelengkapan Ruang l pada Ruang Norm-n Jurnal Matematika, Statistika,& Komputasi Vol.... No... 20... Kelengkapan Ruang l pada Ruang Norm-n Meriam, Naimah Aris 2, Muh Nur 3 Abstrak Rumusan norm-n pada l merupakan perumuman dari rumusan norm-n

Lebih terperinci

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Badrulfalah 1,Khafsah Joebaedi 2 1 Departemen Matematika FMIPA Universitas Padjadjaran badrulfalah@gmail.com 2 Departemen Matematika

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

SIFAT-SIFAT PEMETAAN BILINEAR

SIFAT-SIFAT PEMETAAN BILINEAR SIFAT-SIFAT PEMETAAN BILINEAR Mustafa A.H. Ruhama Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT Let UU, VV and WW are vector

Lebih terperinci

KAJIAN OPERATOR ACCRETIVE DAN SIFAT KETERBATASAN PADA RUANG HILBERT

KAJIAN OPERATOR ACCRETIVE DAN SIFAT KETERBATASAN PADA RUANG HILBERT Seminar Nasional Matematika dan Aplikasinya, 1 Oktober 017 KAJIAN OPERATOR ACCRETIVE DAN SIFAT KETERBATASAN PADA RUANG HILBERT Susilo Hariyantoe 1), Y.D Sumanto ), Solikhin 3), Abdul Aziz 1 Departemen

Lebih terperinci

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

BAB 3 FUNGSI MONOTON MATRIKS

BAB 3 FUNGSI MONOTON MATRIKS BAB 3 FUNGSI MONOTON MATRIKS Pada bab ini akan dibahas fungsi monoton matriks. Dalam mengkontruksi fungsi monoton matriks banyak istilah yang harus kita ketahui sebelumnya. Beberapa konsep yang akan dibahas

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci

Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes. The Stieltjes Integrals of Baire-1, Henstock and Riemann

Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes. The Stieltjes Integrals of Baire-1, Henstock and Riemann Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes Kalfin D Muchtar 1, Jullia Titaley 2, Mans L Mananohas 3 1 Program Studi Matematika, FMIPA, UNSRAT Manado, kalfin_muchtar@yahoocom 2

Lebih terperinci

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Permulaan munculnya analisis fungsional didasari oleh permasalahan pada kurang memadainya metode analitik klasik pada fisika dan astronomi matematika.

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teori titik tetap merupakan teori matematika yang sering digunakan untuk menjamin eksistensi solusi masalah nilai awal dan syarat batas persamaan diferensial

Lebih terperinci

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real Lina urhayati, Universitas Sanggabuana nurhayati_lina@yahoo.co.id Abstrak Misalkan P suatu operator superposisi terbatas dan T adalah

Lebih terperinci

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF

ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF Agung Anggoro, Siti Fatimah 1, Encum Sumiaty 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: agung.anggoro@student.upi.edu ABSTRAK. Misalkan

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA

GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA 07934028 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2011 ABSTRAK Misalkan

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) ABSTRACT

SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) ABSTRACT SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) Miftakhul Rohmah 1, Sri Gemawati 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

Edisi Juni 2011 Volume V No. 1-2 ISSN SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS

Edisi Juni 2011 Volume V No. 1-2 ISSN SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS Sri Maryani Program Studi Matematika, Fakultas Sains dan Teknik Universitas Jenderal Soedirman, Purwokerto Email : sri.maryani@unsoed.ac.id Abstract Inner

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT

REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT Page 1 of 33 REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT SUZYANNA NRP.1208 201 002 July 13, 2010 ABSTRAK Page 2 of 33 Konsep frame di ruang hasil kali dalam dapat dipandang

Lebih terperinci

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Joko Harianto 1, Nana Fitria 2, Puguh Wahyu Prasetyo 3, Vika Yugi Kurniawan 4 Jurusan Matematika, Universitas Gadjah Mada, Yogyakarta Indonesia

Lebih terperinci

FUNGSIONAL LINEAR-2 DALAM RUANG NORM-2 2-LINEAR FUNCTIONALS IN 2-NORMED SPACE

FUNGSIONAL LINEAR-2 DALAM RUANG NORM-2 2-LINEAR FUNCTIONALS IN 2-NORMED SPACE Jurnal Ilmu Matematika dan Terapan Maret 016 Volume 10 Nomor 1 Hal. 1 7 FUNGSIONAL LINEAR- DALAM RUANG NORM- Harmanus Batkunde 1, Meilin I. Tilukay dan F. Y. Rumlawang 3 1,,3 Jurusan Matematika FMIPA Universitas

Lebih terperinci

ISOMORFISMA DARI MATRIKS QUATERNION KOMPLEKS KE MATRIKS KOMPLEKS DAN SIFAT-SIFATNYA Ainun Mawaddah Abdal, Amir Kamal Amir, dan Nur Erawaty

ISOMORFISMA DARI MATRIKS QUATERNION KOMPLEKS KE MATRIKS KOMPLEKS DAN SIFAT-SIFATNYA Ainun Mawaddah Abdal, Amir Kamal Amir, dan Nur Erawaty ISOMORFISMA DARI MATRIKS QUATERNION KOMPLEKS KE MATRIKS KOMPLEKS DAN SIFAT-SIFATNYA Ainun Mawaddah Abdal, Amir Kamal Amir, dan Nur Erawaty Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

MASALAH DIRICHLET UNTUK PERSAMAAN BEDA DALAM GRAF TERBOBOTI

MASALAH DIRICHLET UNTUK PERSAMAAN BEDA DALAM GRAF TERBOBOTI MAALAH DIRICHLET UNTUK PERAMAAN BEDA DALAM GRAF TERBOBOTI GARNADI, AD DAN E KHATIZA Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor Jl Meranti, Kampus IPB Darmaga,

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

Tinjauan Tentang Fungsi Harmonik. Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

Tinjauan Tentang Fungsi Harmonik. Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Tinjauan Tentang Fungsi Harmonik Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Tujuan penulisan ini untuk mengkaji tentang pengertian fungsi harmonik, fungsi harmonik konjugat pada

Lebih terperinci

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks

Lebih terperinci

ABSTRAK 1 PENDAHULUAN

ABSTRAK 1 PENDAHULUAN EKSISTENSI SOLUSI LOKAL DAN KETUNGGALAN SOLUSI MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL TUNDAAN Muhammad Abdulloh Mahin Manuharawati Matematika, Fakultas Ilmu Pengetahuan Alam Matematika, Universitas Negeri

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral tipe Stieltjes merupakan salah satu topik yang banyak dipelajari dalam matematika analisis. Beberapa di antaranya adalah integral Riemann-Stieltjes,

Lebih terperinci

GELANGGANG ARTIN. Kata Kunci: Artin ring, prim ideal, maximal ideal, nilradikal.

GELANGGANG ARTIN. Kata Kunci: Artin ring, prim ideal, maximal ideal, nilradikal. Jurnal Matematika UNAND Vol. 2 No. 2 Hal. 108 114 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND GELANGGANG ARTIN IMELDA FAUZIAH, NOVA NOLIZA BAKAR, ZULAKMAL Program Studi Matematika, Fakultas Matematika

Lebih terperinci

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak SIFAT-SIFAT TOPOLOGI RUANG LINEAR Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo Abstrak Penulisan ini bertujuan menyelidiki sifat-sifat yang berlaku di dalam topologi

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

Sifat-sifat Ruang Banach

Sifat-sifat Ruang Banach Vol. 11, No. 2, 115-121, Januari 2015 Sifat-sifat Ruang Banach Muhammad Zakir Abstrak Tulisan ini membahas tentang himpunan operator (pemetaan) linier dari ruang vektor ke ruang vektor yang dilambangkan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Himpunan fuzzy pertama kali diperkenalkan oleh Zadeh (1965). Himpunan fuzzy adalah suatu himpunan yang setiap anggotannya memiliki derajat keanggotaan. Derajat keanggotaan

Lebih terperinci

SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT

SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 52 60 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT DESI RAHMADANI Program Studi

Lebih terperinci

INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH. Badrulfalah 1, Khafsah Joebaedi. 2.

INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH. Badrulfalah 1, Khafsah Joebaedi. 2. Eksakta Vol.18 No.2 Oktober 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH Badrulfalah 1, Khafsah Joebaedi. 2 1) Departemen Matematika,

Lebih terperinci

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M. RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.Pd Disusun oleh: Kelompok 5 1. Nurita Cahyaningtyas (14144100112)

Lebih terperinci

Teorema Titik Tetap di Ruang Norm-2 Standar

Teorema Titik Tetap di Ruang Norm-2 Standar Teorema Titik Tetap di Ruang Norm- Standar Muh. Nur Universitas Hasanuddin Abstract Pada tulisan ini, akan dipelajari ruang norm- standar, yakni ruang hasil kali dalam yang dilengkapi dengan norm- standar.

Lebih terperinci

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi PROYEKSI ORTOGONAL PADA RUANG HILBERT Skripsi Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna Memenuhi Gelar Sarjana

Lebih terperinci

SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra

SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n

TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n Anwar Mutaqin dan Indiana Marethi Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Sultan Ageng Tirtayasa

Lebih terperinci

PRODUK GRAF FUZZY INTUITIONISTIC. Zumiafia Ross Yana Ningrum 1 dan Lucia Ratnasari 2. Jl. Prof. H. Soedarto, S.H, tembalang, Semarang

PRODUK GRAF FUZZY INTUITIONISTIC. Zumiafia Ross Yana Ningrum 1 dan Lucia Ratnasari 2. Jl. Prof. H. Soedarto, S.H, tembalang, Semarang PRODUK GRAF FUZZY INTUITIONISTIC Zumiafia Ross Yana Ningrum 1 Luia Ratnasari 1, Jurusan Matematika FSM UNDIP Jl. Prof. H. Soedarto, S.H, tembalang, Semarang Abstrat: An intuitionisti fuzzy graph G: V,

Lebih terperinci

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU DENGAN Andi Bahota 1*, Aziskhan 2, Musraini M. 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES Iin Karmila Putri Karsa Amir Kamal Amir Loeky Haryanto Jurusan Matematika

Lebih terperinci

Teorema Dasar Aljabar Mochamad Rofik ( )

Teorema Dasar Aljabar Mochamad Rofik ( ) Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program

Lebih terperinci

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan Unit KONSEP DASAR ALJABAR Clara Ika Sari Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam aljabar seperti persamaan dan pertidaksamaan ang berbentuk linear dan kuadrat, serta

Lebih terperinci

ISSN: X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH

ISSN: X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH ISSN: 2088-687X 35 SEMI HASIL KALI DALAM ATAS DAN BAWAH Febi Sanjaya Program Studi Pendidikan Matematika FKIP USD Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta, febi@usdacid ABSTRAK Konsep hasil kali

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

TURUNAN DALAM RUANG DIMENSI-n

TURUNAN DALAM RUANG DIMENSI-n TURUNAN DALAM RUANG DIMENSI-n A. Fungsi Dua Variabel atau Lebih Dalam subbab ini, fungsi dua variabel atau lebih dikaji dari tiga sudut pandang: secara verbal (melalui uraian dalam kata-kata) secara aljabar

Lebih terperinci

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia Alfid51@yahoo.com Abstrak Penelitian ini membahas beberapa

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (Discrete-Event System) merupakan suatu sistem yang state space nya berbentuk diskret, sistem yang keadaannya berubah hanya pada waktu

Lebih terperinci

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak.

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak. BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF Oleh: Rindang Kasih Program Studi Pendidikan Matematika FKIP UNIVET Sukoharjo Jl. Letjend Sujono Humardani No.1 Kampus Jombor Sukoharjo, e-mail: Rindang_k@yahoo.com

Lebih terperinci

SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS 1. PENDAHULUAN

SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS 1. PENDAHULUAN SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS Kiki Aprilia, Siswanto, dan Titin Sri Martini Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret ABSTRAK.

Lebih terperinci

OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL

OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 1 (2016), hal 9-18 OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL Dodi Arianto, Helmi, Mariatul Kiftiah INTISARI

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika

Lebih terperinci