Sifat-sifat Ruang Banach
|
|
|
- Ida Darmadi
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Vol. 11, No. 2, , Januari 2015 Sifat-sifat Ruang Banach Muhammad Zakir Abstrak Tulisan ini membahas tentang himpunan operator (pemetaan) linier dari ruang vektor ke ruang vektor yang dilambangkan dengan, ditunjukkan bahwa himpunan tersebut adalah ruang vektor dan membentuk ruang bernorma yang lengkap, atau suatu ruang Banach, selanjutnya sifat-sifat ruang Banach tersebut akan dibahas. Kata Kunci:Ruang Vektor, operator linier, Ruang Norm, Ruang Banach. Abstract This paper discussed a set of linear operator (mapping) froma vector space U to a vector space V, which denoted by.it is shown that the set is a vector space and formed a complete norm space, or formed a Banach space. The properties of that Banach space also discussed. Keywords:Vector space, Linier Operator, Norm space, Banach space. 1. Pendahuluan Ruang Banach adalah ruang norma yang lengkap, sedang ruang norma adalah ruang vektor yang dilengkapi dengan fungsi norm, selanjutnya kelengkapan suatu himpunan adalah bila untuk sebarang barisan Cauchy dalam himpunan tersebut konvergen ke himpunan tersebut. Dalam bagian pendahuluan ini akan diperkenalkan beberapa definisi dan teorema yang mendukung materi yang akan dibahas. 1 Definisi1.1. Misalkan U adalah ruang vektor atas lapangan F pemetaan norma dari U bila memenuhi: a. untuk setiap b. Jika dan maka c. untuk semua dan d. disebut Pasangan ruang vektor U dengan norma disebut ruang bernorma, yang biasanya dilambangkan dengan. Sebagai contoh adalah ruang { }, adalah ruang vektor dengan operasi : Untuk semua dan,, selanjutnya bila didefinisikan, maka dapat dibuktikan bahwa fungsi tersebut Dosen Jurusan Matematika FMIPA UNHAS, [email protected] 1,2,3 Jurusan Matematika FMIPA Universitas Hasanuddin Makassar, Jl. Perintis Kemerdekaan Km.10 Makassar
2 116 mendefinisikan norma di ruang vektor { }, sehingga adalah ruang bernorma. Definisi 1.2.Barisan disebut barisan Cauchy bila untuk setiap terdapat sedemikian sehingga untuk setiap berlaku Barisan adalah barisan Cauchy di dengan metrik Definisi 1.3.Misalkan U adalah ruang bernorma atas lapangan F. Ruang bernorma yang lengkap disebut ruang Banach. Definisi 1.4.Misalkan U dan V adalah ruang vektor atas lapangan F. Himpunan semua pemetaan linier dari ruang vektor U ke ruang vektor V disebut Teorema 1.1.Untuk setiap barisan konvergen di X adalah Cauchy. Misalkan adalah barisan di dengan, dan misalkan maka terdapat bilangan asli sedmikian hingga berlaku untuk setiap, akibatnya untuk berlaku jadi barisan Cauchy. 2. Pembahasan Misalkan adalah ruang vektor atas lapangan, pada sesi ini akan dibahas tentang sifat-sifat dari himpunan { }, akan dibuktikan bahwa adalah ruang bernorm yang lengkap, sehingga adalah ruang Banach, selanjutnya akan dibahas secara detail tentang sifat-sifat ruang Banach tersebut. Definisi2.1. Misalkan U dan V adalah ruang vektor atas lapangan F dan T adalah pemetaan dari ruang vektor U ke V. T disebut pemetaan linier jika dan hanya jika untuk setiap dan Teorema 2.1. Misalkan T tarnsformasi linier dari ruang vektor U ke ruang vektor V, Jika T kontinu pada stu titik maka T kontinu pada U.. Misalkan T kontinu pada, misalkan diberikan terdapat sedemikian sehingga dimana. Misalkan maka untuk setiapa dengan berarti dan, maka terbukti T kontinu pada, karna vektor sebarang pada U maka T kontinu pada U. Definisi2.2.Misalkan U dan V adalah ruang vektor atas lapangan F dan T adalah pemetaan linier dari ruang vektor U ke V. T disebut pemetaan linier terbatas jika dan hanya jika { } adalah himpunan bilangan real terbatas. T disebut terbatas jika dan hanya jika terdapat bilangan real M sedemikian sehingga dimana
3 117 Teorema 2.2.Misalkan T tarnsformasi linier dari ruang vektor U ke ruang vektor V, Transformasi linier T kontinu pada U jika dan hanya jika terbatas... Misalkan T kontinu pada U, maka T kontinu pada 0 karna, terdapat sedemikian sehingga dimana. Misalkan maka dan. Akan tetapi ( ) dan jadi T terbatas. Sebaliknya jika T terbatas, akan dibuktikan T kontinu pada U, dengan memanfatkan teorema 1, cukup dibuktikan T kontinu di titik 0. Bila diberikan dan M sedemikian sehingga berlaku bila. Pilih sedemikian sehingga. Jika maka dan. Selanjutnya untuk maka diperoleh jadi T kontinu pada titik 0, dari Teorema 1, berarti T kontinu pada U Definisi2.2.Misalkan U dan V adalah ruang vektor atas lapangan F dan T adalah pemetaan linier dari ruang vektor U ke V. Didefinisikan suatu bilangan real non negatif : = { } (1) Disebut norma T, dalam bentuk lain penulisan sbb: = { } (2) = { =inf { } (4) =, } (3) Definisi 2.3.Misalkan dan adalah tranformasi linier dari ruang vektor U ke ruang vektor V dan misalkan, didefinisikan operasi jumlah dan perkalian skalar pada pemetaan linier + dan dari ruang vektor U ke lapangan F sbb: + + untuk setiap. Teorema 2.3. Misalkan himpunan adalah himpunan semua transformasi linier terbatas dari ruang vektor U ke ruang vektor V adalah ruang vektor, dan pemetaan linier norm pada, selanjutnya jika V ruang Banach maka juga ruang Banach. Akan dibuktikan bahwa adalah ruang vektor dengan cara menunjukkan bahwa dan untuk setiap. Dari persamaan (5), jika maka :
4 118 Maka terbukti bahwa dan. Oleh karna. Akhirnya akan ditunjukkan bahwa dan. Dari persamaan (5), dan untuk semua jadi, jadi lengkaplah bahwa himpunan adalah ruang vektor atas lapangan F. Selanjutnya akan ditunnjukkan bahwa adalah ruang Banach, berarti akan ditunjukkan bahwa adalah ruang yang lengkap, yang berarti akan ditunjukkan bahwa sebarang barisan Cauchy di akan konvergen ke. Misalkan sebarang barisan Cauchy di, artinya bila diberikan maka untuk setiap untuk suatu bilangan asli akan berlaku. Misalkan dan jika maka diperoleh : (6) Jadi terbukti bahwa adalah barisan Cauchy di, karna lengkap maka konvergen. Misalkan : (7) Karna x sebarang di U maka adalah pemetaan dari ruang vektor U ke ruang vektor V, selanjutnya akan ditunjukkan bahwa dan. Misalkan dan maka dari persamaan (7), linieritas maka diperoleh : Jadi linier. Terakhir untuk semua x di U dan semua bilangan positif, dari persamaan (7) diberikan : Jadi Tetapi dari persamaan (6) sehingga diperoleh : (8) Untuk semua x di U dan semua di U maka diperoleh :. Dari persamaan (5) dan (8) diberikan untuk setiap x Karna T pemetaan linier terbatas maka. Selanjutnya dari persamaan (8) bila diberikan : { } untuk semua atau. Oleh karna sebarang barisan Cauchy di konvergen, maka
5 119 terbukti bahwa ruang lengkap sehingga ruang adalah ruang Banach. Teorema 2.4. Misalkan U, V, W adalah ruang vektor atas lapangan F, jika maka dan dan Dapat diperipikasi bahwa tranformasi linier. Untuk semua, dari (5) diberikan : Maka terbukti bahwa dan Teorema 2.5. Misalkan T transformasi linier tidak nol dari ruang vektor U kw ruang vektor V. T satu-satu dan terbatas jika dan hanya jika terdapat bilangan real positip m sedemikian sehingga untuk setiap dengan Misalkan T satu-satu dan karna { }maka ada dan memenuhi. Misalkan dengan maka : Sehingga diperoleh Sebaliknya jika terdapat sedmikian sehingga untuk. Perhatikan bahwa untuk semua (karna jika maka ), berarti T satu-satu. Misalkan dan. Maka dan berarti. Teorema 2.6. Misalkan dan adalah barisan dalam ruang vektor U atas lapangan F dengan dan, dan misalkan ad lah barisan di F dengan. Maka dan demikian juga Misalkan, terdapat bilangan bulat N,M sedemikian sehingga untuk semua dan untuk semua. Pilih { }, untuk semua berlaku :
6 120 Maka terbukti bahwa Selanjutnya misalkan, terdapat bilangan bulat L sedemikian sehingga dan, untuk semua. Untuk semua berlaku ; Dan Bila diberikan, Misalkan { }, maka terbukti bahwa terdapat M sedemikian sehingga untuk semua. Terbukti akhirnya telah diketahui bahwa dan. Teorema 2.7. Misalkan W adalah subruang vektor dari U dan misalkan adalah transformasi linier pada W ke ruang Banach V, maka terdapat dengan tunggal pemetaan linier T dari W ke V sedeminian sehingga untuk setiap dan selanjutnya. Misalkan, berarti terdapat barisan di sedemikian sehingga, maka barisan adalah barisan Cauchy. Oleh karna hal ini berarti juga barisan Cauchy dan konvergen ke V karna V adalah ruang Banach. Misalkan adalah sebarang barisan di W dengan, maka juga konvergen. Akan dibuktikan bahwa. Diketahui bahwa, karna maka dari teorema 6 diperoleh. Sekarang didefinisikan pemetaan T dari ke V yaitu dimana dan barisan adalah barisan di W dengan. Selanjutnya akan dibuktikan T memenuhi teorema pertama misalkan, jika untuk setiap, maka dan karna untuk setiap, sementara itu diketahui. Selanjutnya misalkan dan, jika barisan dan adalah barisan di W dengan dan dari teorema 2.6 diperoleh, tetapi dan sekali lagi dengan teorema 2.6. diperoleh : Jadi T linier. ( ) Terakhir misalkan dengan. Jika barisan adalah barisan di dengan dari teorema6dipunyai untuk dari teorema 2.6 diperoleh : Jadi terbukti T terbatas dan maka :
7 121 { } { } { } Jadi Selanjutnya akan ditunjukkan bahwa tunggal. Misalkan adalah transformasi linier dari ke V sedemikian sehingga untuk semua. Misalkan dan misalkan pula barisan di sedemikian sehingga. Karna kontinu pada maka. Definisikan dan diketahui untuk setiap konsekwensinya, maka terbukti. 3. Kesimpulan/Saran Himpunan operator (pemetaan) linier dari ruang vektor U keruang vektor V yang dilambangkan membentuk ruang bernorma yang lengkap, sehingga himpunan tersebut juga membentuk ruang Banach. Daftar Pustaka [1] Conway, 1990, A Course In Fungtional Analysis,Springer-Verlag, New Yourk [2] G.F. Simon, 1963, Fintroduction to Topology and Modern Analysis,Mc Graw-Hill Book Company, Inc. [3] Hewit E and K Stromberg, 1969, Freal Abstract Analysis,Springer, Berlin [4] Kreyzig E, 1978, Fintroduction Fungtional Analysisi Whith Application,John Wilay & soon New Yourk [5] A.L Brawon and A. Page, 1970,Elements of Fungtional Analysisis,Butler & Tanner Ltd, LondoN [6] Lang Serge 1993, Algebra, Addison Weslay Publishing Company Inc
UNIVERSITAS PENDIDIKAN INDONESIA
Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat
TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh
II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,
TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,
II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema
II. TINJAUAN PUSATAKA
4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm
Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert
Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah
BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi
BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang
Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA
Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert
Kelengkapan Ruang l pada Ruang Norm-n
Jurnal Matematika, Statistika,& Komputasi Vol.... No... 20... Kelengkapan Ruang l pada Ruang Norm-n Meriam, Naimah Aris 2, Muh Nur 3 Abstrak Rumusan norm-n pada l merupakan perumuman dari rumusan norm-n
RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional
Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang
II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan
II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah
OPERATOR PADA RUANG BARISAN TERBATAS
OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: [email protected]
Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik
Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Oleh : Iswanti 1, Soeparna Darmawijaya 2 Iswanti, Jurusan Teknik Elektro, Politeknik Negeri Semarang, Semarang, Jawa
BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert
BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,
BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian
BAB III KEKONVERGENAN LEMAH
BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini
RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ
RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: [email protected] ABSTRAK. Diberikan ruang
Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach
Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Badrulfalah 1,Khafsah Joebaedi 2 1 Departemen Matematika FMIPA Universitas Padjadjaran [email protected] 2 Departemen Matematika
PROYEKSI ORTHOGONAL PADA RUANG HILBERT. ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara
PROYEKSI ORTHOGONAL PADA RUANG HILBERT ROSMAN SIREGAR Fakultas Matematika Dan Ilmu Pengetahuan Jurusan Matematika Universitas Sumatera Utara Pendahuluan Pada umumnya suatu teorema mempunyai ruang lingkup
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pemetaan linear merupakan salah satu jenis pemetaan yang dikenal dalam bidang matematika, khususnya dalam bidang matematika analisis. Diberikan ruang vektor
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, batasan masalah, maksud dan tujuan penulisan, tinjauan pustaka serta sistematika penulisan skirpsi ini. 1.1.
TRANSFORMASI LINIER PADA RUANG BANACH
TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM [email protected] ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni
Ekuivalensi Norm-n dalam Ruang R d
Jurnal Matematika Statistika & Komputasi 1 Vol No 201 Ekuivalensi Norm-n dalam Ruang R d Taufik Akbar Muh Zakir uh Nur Abstrak Sebuah ruang vektor dapat dilengkapi lebih dari satu buah norm Hal yang sama
Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji
Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,
EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH
EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari
0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks
0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,
KEKONVERGENAN LEMAH PADA RUANG HILBERT
KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: [email protected] ABSTRAK.
BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab
BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B
PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung
PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung e-mail: [email protected] Abstrak Diketahui ruang fungsi klasik L (, ). Melalui oerator T ada ruang
TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI-
JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- Hajar Grestika Murti, Erna Apriliani, Sunarsini Jurusan Matematika, Fakultas Matematika dan
TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n
TEOREMA TITIK TETAP DI RUANG BARISAN p-summable DALAM NORM-n Anwar Mutaqin dan Indiana Marethi Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Sultan Ageng Tirtayasa
BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian
Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana
Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real Lina urhayati, Universitas Sanggabuana [email protected] Abstrak Misalkan P suatu operator superposisi terbatas dan T adalah
SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION
SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION Azki Nuril Ilmiyah Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 [email protected] ABSTRAK Nama Program Studi
Pembagi Bersama Terbesar Matriks Polinomial
Vol. 11, No. 1, 63-70, Juli 2014 Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 ABSTRAK Teori bilangan adalah cabang ilmu Matematika yang mempelajari
PEMETAAN KONTRAKTIF LEMAH MULTIVALUED DI RUANG METRIK PARSIAL
Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol. 9 No. 2, Desember 2017, hal. 1-10 ISSN (Cetak) : 2085-1456; ISSN (Online) : 2550-0422; https://jmpunsoed.com/ PEMETAAN KONTRAKTIF LEMAH MULTIVALUED
PENGANTAR ANALISIS FUNGSIONAL
PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat
Perluasan Teorema Cayley-Hamilton pada Matriks
Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan
Kekontraktifan Pemetaan pada Ruang Metrik Kerucut
Jurnal Matematika Integratif ISSN 1412-6184 Vol 9 No 2, Oktober 2013 pp 53-57 Kekontraktifan Pemetaan pada Ruang Metrik Kerucut Badrulfalah dan Iin Irianingsih Jurusan Matematika, Fakultas MIPA, Universitas
TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111
TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 Abstract. In this paper was discussed about Nadlr fixed
ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF
ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NON- EKSPANSIF Agung Anggoro, Siti Fatimah 1, Encum Sumiaty 2 Departemen Pendidikan Matematika FPMIPA UPI *Surel: [email protected] ABSTRAK. Misalkan
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan ilmu dasar yang digunakan di berbagai bidang. Teori titik tetap merupakan salah satu cabang dalam ilmu matematika, khususnya matematika
TEOREMA TITIK TETAP BANACH UNTUK MENDAPATKAN SYARAT KEKONVERGENAN METODE JACOBY
La Ode Muhammd Umar Reky Rahmad R, et al.// Paradigma, Vol. 17 No. 1, April 2013, hlm. 51-60 TEOREMA TITIK TETAP BANACH UNTUK MENDAPATKAN SYARAT KEKONVERGENAN METODE JACOBY La Ode Muhammad Umar Reky Rahmad
REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA
REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding
BAB III FUNGSI UJI DAN DISTRIBUSI
BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi
FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1
FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281
Aljabar Linear Elementer
BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk
IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL
Vol 11, No 1, 71-76, Juli 2014 IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Qharnida Khariani, Amir Kamal Amir dan Nur Erawaty Abstrak Teori gelanggang merupakan salah satu bagian di matematika
Teorema Titik Tetap di Ruang Norm-2 Standar
Teorema Titik Tetap di Ruang Norm- Standar Muh. Nur Universitas Hasanuddin Abstract Pada tulisan ini, akan dipelajari ruang norm- standar, yakni ruang hasil kali dalam yang dilengkapi dengan norm- standar.
BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai
BAB V KESIMPULAN Berdasarkan uraian ada Bab III dan Bab IV maka daat disimulkan sebagai berikut 1. Keluarga emetaan K C,δ (R, R) dan L C,δ (R, R) adalah beberaa bentuk keluarga emetaan demi linear dari
REPRESENTASI OPERATOR PADA RUANG BARISAN TERBATAS. ( Skripsi ) Oleh ANGGER PAMBUDHI
REPRESENTASI OPERATOR PADA RUANG BARISAN TERBATAS ( Skripsi ) Oleh ANGGER PAMBUDHI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2017 ABSTRACT REPRESENTATION OF OPERATOR
SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra
JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a
II. LANDASAN TEORI ( ) =
II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu
Parameterisasi Pengontrol yang Menstabilkan Melalui Pendekatan Faktorisasi
Vol 7, No2, 92-97, Januari 2011 Parameterisasi Pengontrol yang Menstabilkan Melalui Pendekatan Faktorisasi Nur Erawati Abstrak Suatu sistem linear yang matriks transfernya berupa matriks rasional proper,
BAB I PENDAHULUAN Latar Belakang Permasalahan
BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Pemetaan merupakan konsep yang tidak pernah terlepas dari bahasan matematika analisis. Pengaitan setiap anggota dari suatu himpunan dengan tepat satu
MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS
MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia [email protected] Abstrak Penelitian ini membahas beberapa
RUANG FAKTOR. Oleh : Muhammad Kukuh
Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang
Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal
Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit
Edisi Juni 2011 Volume V No. 1-2 ISSN SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS
SIFAT-SIFAT RUANG HASIL KALI DALAM-n KOMPLEKS Sri Maryani Program Studi Matematika, Fakultas Sains dan Teknik Universitas Jenderal Soedirman, Purwokerto Email : [email protected] Abstract Inner
Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL
Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl
Konvergensi Barisan dan Teorema Titik Tetap
JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,
REPRESENTASI OPERATOR LINIER PADA RUANG BARISAN
REPRESENTASI OPERATOR LINIER PADA RUANG BARISAN (Skripsi) Oleh RISA OKTARINA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2017 ABSTRACT REPRESENTATION OF LINEAR
CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS)
CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL SUATU KAJIAN TEORITIS) Sufri Program Studi Pendidikan Matematika FKIP Universitas Jambi Kampus
Ruang Norm-n Berdimensi Hingga
Jurnal Matematika Integratif. Vol. 3, No. 2 (207), pp. 95 04. p-issn:42-684, e-issn:2549-903 doi:0.2498/jmi.v3.n2.986.95-04 Ruang Norm-n Berdimensi Hingga Moh. Januar Ismail Burhan Jurusan Matematika dan
JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 65-70, Agustus 2001, ISSN : SYARAT PERLU LAPANGAN PEMISAH
JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA
KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 42 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE DEBI OKTIA HARYENI
-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini
PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER
J. Math. and Its Appl. ISSN: 829-65X Vol. 8, No. 2, November 2, 8 PENGHITUNGAN VEKTOR-KHARAKTERISTIK SECARA ITERATIF MENGGUNAKAN TITIK TETAP BROUWER Subiono Jurusan Matematika FMIPA Institut Teknologi
DASAR-DASAR TEORI RUANG HILBERT
DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z
SYARAT CUKUP DAN SYARAT PERLU AGAR RUANG BERNORMA MENJADI RUANG HASIL KALI DALAM
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 57 62. SYARAT CUKUP DAN SYARAT PERLU AGAR RUANG BERNORMA MENJADI RUANG HASIL KALI DALAM Hendri Untoro, Nilamsari Kusumastuti,
SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri
Jurnal Matematika Murni dan Terapan εpsilon Vol. 07, No.01, 013, Hal. 1 1 SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER Yulia Romadiastri Program Studi Tadris Matematika Fakultas Tarbiyah
BAB I PENDAHULUAN ( )
BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan
Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( )
Vol. 8, No.2, 64-68, Januari 2012 Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( ) Amir Kamal Amir Abstrak Misalkan R adalah suatu gelanggang dengan identitas 1, adalah suatu endomorfisma
ORDER UNSUR DARI GRUP S 4
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika
SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN
PROSIDING ISBN : 978 979 6353 3 SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI OMPLIT ( ) A. DENGAN Oleh Imam Fahcruddin Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri
Aljabar Linier Elementer. Kuliah 26
Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor
TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR. Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB
JMP : Volume 4 Nomor, Juni 0, hal. 69-77 TEOREMA TITIK TETAP PADA RUANG NORM-n STANDAR Shelvi Ekariani KK Analisis dan Geometri FMIPA ITB [email protected] Hendra Gunawan KK Analisis dan
Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3
Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 1 Program Studi Matematika, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas
Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass
Vol. 11, No. 2, 139-148, Januari 2015 Penerapan Aproksimasi Fejer dalam Membuktikan Teorema Weierstrass NaimahAris 1, Jusmawati M 2,Islamiyah Abbas 3, Abstrak Dalam tulisan ini dibahas pembuktian teorema
(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS
Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
REPRESENTASI OPERATOR LINIER PADA RUANG BARISAN. Oleh ARTHA KURNIA ALAM
REPRESENTASI OPERATOR LINIER PADA RUANG BARISAN Oleh ARTHA KURNIA ALAM JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2017 ABSTRACT REPRESENTATION OF
Eksistensi Dan Ketunggalan Titik Tetap Untuk Pemetaan Kontraktif Pada Ruang Metrik-G Komplit
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Eksistensi Dan Ketunggalan Titik Tetap Untuk Pemetaan Kontraktif Pada Ruang Metrik-G Komplit Nurul Huda Matematika FMIPA Universitas Lambung
Modifikasi Kontrol untuk Sistem Tak Linier Input Tunggal-Output Tunggal
Vol 7, No2, 118-123, Januari 2011 Modifikasi Kontrol untuk Sistem Tak Linier Input Tunggal-Output Tunggal Abstrak Dalam tulisan ini diuraikan sebuah kontrol umpan balik dinamik Dari kontrol yang diperoleh
II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass,
II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi Integral Atas dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass, serta teorema-teorema yang mendukung
KAJIAN OPERATOR ACCRETIVE DAN SIFAT KETERBATASAN PADA RUANG HILBERT
Seminar Nasional Matematika dan Aplikasinya, 1 Oktober 017 KAJIAN OPERATOR ACCRETIVE DAN SIFAT KETERBATASAN PADA RUANG HILBERT Susilo Hariyantoe 1), Y.D Sumanto ), Solikhin 3), Abdul Aziz 1 Departemen
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu subjek yang menarik untuk dikaji karena memiliki banyak aplikasi dalam berbagai bidang. Selama kurun waktu sepuluh tahun
INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH. Badrulfalah 1, Khafsah Joebaedi. 2.
Eksakta Vol.18 No.2 Oktober 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH Badrulfalah 1, Khafsah Joebaedi. 2 1) Departemen Matematika,
SIFAT-SIFAT HIMPUNAN PROXIMINAL
Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi
BAB 2 RUANG BERNORM. 2.1 Norm dan Ruang `p. De nisi 2.1 Misalkan V ruang vektor atas R, Sebuah fungsi k:k : V! R yang memenuhi sifat-sifat berikut :
BAB 2 RUANG BERNORM 2. Norm dan Ruang ` De nisi 2. Misalkan V ruang vektor atas R, Sebuah fungsi kk V! R yang memenuhi sifat-sifat berikut [N] kxk 0 jika dan hanya jika x 0 [N2] kxk jj kxk untuk setia
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dalam ilmu matematika, banyak pembahasan di bidang analisis dan topologi yang memerlukan pengertian ruang Hilbert. Ruang Hilbert merupakan konsep abstrak yang mendasari
BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis fungsional merupakan salah satu cabang dari kelompok analisis yang membahas operator, operator linear dan sifat-sifatnya. Sebuah pemetaan antar ruang bernorm
Aljabar Linier Elementer. Kuliah 27
Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi
Aljabar Linier & Matriks
Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n
SIFAT SUB RUANG TOPOLOGI HASIL KALI RUANG METRIK KERUCUT
Jurnal Euclid, Vol4, No2, pp704 SIFAT SUB RUANG TOPOLOGI HASIL KALI RUANG METRIK KERUCUT Badrulfalah 1), Khafsah Joebaedi 2), Iin Irianingsih 3) 1) FMIPA Universitas Padjadjaran, Jl Raya Bandung - Sumedang,
KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA
Jurnal Matematika Murni dan Teraan εsilon Vol. 07, No.01, 013), Hal. 13 0 KAJIAN KONSEP RUANG NORMA- DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Wahidah 1 dan Moch. Idris 1, Program Studi Matematika
