Bab 2: Optimasi Ekonomi. Ekonomi Manajerial Manajemen

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 2: Optimasi Ekonomi. Ekonomi Manajerial Manajemen"

Transkripsi

1 Bab 2: Optimasi Ekonomi 1 Ekonomi Manajerial Manajemen

2 2 Pokok Bahasan Bentuk-Bentuk Hubungan Ekonomi Hubungan Total, Rata-rata dan Marjinal Analisis Optimalisasi Turunan dan Aturan Turunan Optimalisasi dengan Kalkulus Optimalisasi Multivariat Optimalisasi Terkendala Peralatan Baru Manajemen

3 3 Bentuk-Bentuk Hubungan dalam Ekonomi Persamaan: TR = 100Q - 10Q 2 Tabel : Q TR TR Grafik: Q

4 4 Biaya Total, Biaya Rata-Rata dan Biaya Marjinal Tabel Biaya Total, Rata-rata dan Marjinal Biaya Rata- Rata AC = TC/Q Biaya Marjinal MC = TC/ Q Q TC AC MC

5 5 Grafik : Biaya Total, Biaya Rata-rata dan Biaya Marjinal T C ($) Q AC, M C ($) AC MC Q

6 6 Aplikasi kasus Fungsi biaya total pada industri baja di Amerika Serikat diperkirakan : TC = Q TC : Biaya total, juta dolar Q : Output, juta ton 1. Buat Daftar Biaya total, Biaya Rata-rata dan Biaya Marjinal 2. Buat Grafiknya

7 7 Pemaksimuman Keuntungan : Analisi total Q TR TC Profit

8 8 Pemaksimuman Keuntungan : analisis marjinal ($) 300 TC TR MC 60 0 MR Q Profit

9 9 Konsep Turunan Concept of the Derivative Turunan Y terhadap X (dy/dx) adalah limit dari perbandingan Y/ X dimana X mendekati nol.

10 10 Aturan Turunan Aturan fungsi konstan: Turunan dari suatu fungsi konstan, Y = f(x) = a, sama dengan nol untuk semua nilai konstanta Y f ( X ) a Fungsi dy dx 0 Turunan

11 11 Aturan Turunan Aturan fungsi pangkat: Turunan dari suatu fungsi pangkat, Y = ax b, dimana a dan b adalah konstanta, dirumuskan sebagai : dy dx bax b 1 Turunan dari : Y = ax b

12 12 Aturan Turunan Aturan Penjumlahan-Pengurangan: Turunan dari fungsi penjumlahan (atau pengurangan) dari dua fungsi U dan V dirumuskan sebagai : U g( X ) V h( X ) Y U V dy du dv dx dx dx Turunan dari : Y = U ± V

13 Aturan Turunan 13 Aturan fungsi perkalian : Turunan dari perkalian dua fungsi U dan V dirumuskan sebagai : U g( X ) V h( X ) Y U V dy dv du U V dx dx dx Turunan dari : Y = U.V

14 14 Aturan Turunan Aturan fungsi rasio: Turunan dari dari dua fungsi rasio U dan V dirumuskan sebagai : U U g( X ) V h( X ) Y V du dv U dy V dx dx dx V 2 Turunan dari : Y = U/V

15 15 Aturan Turunan Aturan fungsi berantai: Turunan dari fungsi berantai dan merupakan fungsi dari X, dirumuskan sebagai : Y f ( U ) dan U g( X ) dy dy du dx du dx

16 16 Optimalisasi dengan Kalkulus Menentukan maksimum atau minimum dengan Kalkulus Cari X srs dy/dx = 0 Selanjutnya cari turunan kedua : Jika d 2 Y/dX 2 > 0, maka X minimum. Jika d 2 Y/dX 2 < 0, maka X maximum.

17 17 Contoh kasus Jika TR = 100Q 10 Q 2 Berapa nilai Q agar TR maksimum? Jika TR = 100Q 10 Q 2 Tunjukkan bahwa fungsi ini memiliki nilai maksimum!

18 18 Optimalisasi Multivariat Turunan parsial : turunan dimana variabel bebas lainnya dianggap sebagai konstanta, misalnya : = 80X 2 X 2 XY 3 Y Y, maka turunan parsial thd X : d /dx = 80 4X Y dan turunan parsial thd Y : d /dy = -X 6Y +100 Optimalisasi dengan Banyak Variabel : membuat turunan parsial sama dengan nol dan menyelesaikan persamaan tersebut secara simultan.

19 19 Optimalisasi Terkendala : upaya memaksimumkan atau meminimumkan fungsi tujuan dengan memperhatikan kendala-kendala Teknik substitusi : mensubstitusikan fungsi kendala ke dalam fungsi tujuan Teknik addisi dikenal dengan metode pengganda Langrange : menambahkan fungsi kendala dengan fungsi tujuan shg menghasilkan fungsi Langrange dan kemudian menyelesaikannya dengan teknik multivariat Programming : linier dan non-linier

20 20 Contoh kasus Fungsi tujuan dirumuskan sebagai : = 80X 2 X 2 XY 3 Y Y Fungsi kendala X + Y = 12 Berapa X dan Y yang membuat maksimum? Teknik substitusi : Teknik addisi dikenal dengan metode pengganda Langrange :

21 21 Instrumen Baru Manajemen Perbandingan (Benchmarking) Manajemen Mutu Total (Total Quality Management) Rekayasa Ulang (Reengineering) Organisasi Pembelajar (The Learning Organization)

22 22 Instrumen Manajemen Lainnya Perluasan Pembatasan (Broadbanding) Model Bisnis Langsung (Direct Business Model) Membuat Jaringan Kerja (Networking) Kekuatan Menentukan Harga (Pricing Power) Manajemen Proses (Process Management) Model Dunia Kecil (Small-World Model) Integrasi Virtual (Virtual Integration) Manajemen Virtual (Virtual Management)

OPTIMISASI EKONOMI. Dr. Muh. Yunanto, MM. Kuliah Minggu ke-2

OPTIMISASI EKONOMI. Dr. Muh. Yunanto, MM. Kuliah Minggu ke-2 OPTIMISASI EKONOMI Dr. Muh. Yunanto, MM. Kuliah Minggu ke-2 BAB II Berbagai Teknik Optimasi dan Peralatan Manajemen Baru Metode Dalam Mengambarkan hub Ekonomi Hubungan ekonomi dapat digambarkan dalam bentuk

Lebih terperinci

Bab 2 Berbagai Teknik Optimasi dan Peralatan Manajemen Baru

Bab 2 Berbagai Teknik Optimasi dan Peralatan Manajemen Baru Bab 2 Berbagai Teknik Optimasi dan Peralatan Manajemen Baru Sumber: http://ideolicious.blogspot.co.id/2014/09/ma teri-perkuliahan-ekonomi-manajerial.html Pendahuluan Ekonomi Manajerial sebagai penerapan

Lebih terperinci

MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI. SRI SULASMIYATI, S.Sos, M.AP. Ari Darmawan, Dr., S.AB, M.AB

MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI. SRI SULASMIYATI, S.Sos, M.AP. Ari Darmawan, Dr., S.AB, M.AB MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI SRI SULASMIYATI, S.Sos, M.AP Ari Darmawan, Dr., S.AB, M.AB [email protected] Pendahuluan Adanya kebutuhan manusia yang tidak terbatas dan terbatasnya

Lebih terperinci

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange OPTIMISASI EKONOMI Ari Darmawan, Dr. S.AB, M.AB Email: [email protected] A. PENDAHULUAN B. TEKNIK OPTIMISASI EKONOMI C. OPTIMISASI EKONOMI TANPA KENDALA - Hubungan Antara Nilai Total, Rata-rata

Lebih terperinci

MAKALAH EKONOMI MANAJERIAL

MAKALAH EKONOMI MANAJERIAL MAKALAH EKONOMI MANAJERIAL TEKNIK OPTIMASI MAKALAH INI DISUSUN UNTUK MEMENUHI TUGAS MATA KULIAH EKONOMI MANAJERIAL SEMESTER V DOSEN PENGAMPU : Dr. Supawi Pawenang, SE, MM NAMA : KHANIF ASFIROTUN NIM :

Lebih terperinci

Tugas Tersturtur Mata Kuliah Ekonomi Manajerial. Resume Bab Optimasi Ekonomi. Kelompok 2

Tugas Tersturtur Mata Kuliah Ekonomi Manajerial. Resume Bab Optimasi Ekonomi. Kelompok 2 Tugas Tersturtur Mata Kuliah Ekonomi Manajerial Resume Bab Optimasi Ekonomi Kelompok 2 1. Pupun Sofiyati 115030201111037 2. Isty Puji H 115030205111004 3. Della Herlita 115030207111046 Fakultas Ilmu Administrasi

Lebih terperinci

Hubungan ekonomi dapat digambarkan dalam bentuk persamaan, tabel, atau grafik.

Hubungan ekonomi dapat digambarkan dalam bentuk persamaan, tabel, atau grafik. Hubungan ekonomi dapat digambarkan dalam bentuk persamaan, tabel, atau grafik. Bila hubungannya sederhana, tabel dan/atau grafik dapat mencukupi, namun bila hubungannya rumit, menggambarkan dalam bentuk

Lebih terperinci

BAB 3.Penerapan Diferensial Fungsi Sederhana dalam Ekonomi

BAB 3.Penerapan Diferensial Fungsi Sederhana dalam Ekonomi BAB 3.Penerapan Diferensial Fungsi Sederhana dalam Ekonomi A. Elastisitas Elastisitas merupakan persentase perubahan y terhadap persentase perubahan x. 1.1 Elastisitas Permintaan Elastisitas Permintaan

Lebih terperinci

KONSEP BIAYA DALAM PENGAMBILAN KEPUTUSAN

KONSEP BIAYA DALAM PENGAMBILAN KEPUTUSAN KONSEP BIAYA DALAM PENGAMBILAN KEPUTUSAN A. Jenis Biaya yang Perlu Diketahui Oleh Decision Maker 1. Biaya Eksplisit (Explisiy Cost) Biaya yang dikeluarkan guna mendapatkan input yang dibutuhkan dalam proses

Lebih terperinci

MEMAKSIMALKAN NILAI PERUSAHAAN Memaksimumkan nilai perusahaan merupakan tujuan utama perusahaan Faktor-faktor dari TR harus diperhatikan dalam

MEMAKSIMALKAN NILAI PERUSAHAAN Memaksimumkan nilai perusahaan merupakan tujuan utama perusahaan Faktor-faktor dari TR harus diperhatikan dalam OPTIMASI EKONOMI 1. Memaksimalkan nilai perusahaan 2. Metode metode pengekpresian hubungan ekonomi 3. Kalkulus deferensial dan kaidah-kaidah penurunan fungsi 4. Memaksimalkan dan meminimalkan fungsi 5.

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a LEMBAR AKTIVITAS SISWA DIFFERENSIAL (TURUNAN) Nama Siswa : y f(a h) f(a) x (a h) a Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.21 Memahami konsep turunan dengan menggunakan konteks matematik atau konteks

Lebih terperinci

OPTIMASI MULTIVARIAT DENGAN KENDALA PERSAMAAN. Oleh : Hafidh Munawir

OPTIMASI MULTIVARIAT DENGAN KENDALA PERSAMAAN. Oleh : Hafidh Munawir OPTIMASI MULTIVARIAT DENGAN KENDALA PERSAMAAN Oleh : Hafidh Munawir BENTUK-BENTUK FUNGSI MULTIVARIAT DARI SEGI BENTUK GRAFIK I. Fungsi Linier : Y = ao + a 1 X 1 + a 2 X 2 Contoh: Y = 50 + 0,50 X 1 + 0,60

Lebih terperinci

BAB VII APLIKASI TURUNAN FUNGSI DALAM EKONOMI DAN BISNIS. Sifat-sifat yang sering digunakan untuk turanan fungsi dalam ekonomi dan bisnis:

BAB VII APLIKASI TURUNAN FUNGSI DALAM EKONOMI DAN BISNIS. Sifat-sifat yang sering digunakan untuk turanan fungsi dalam ekonomi dan bisnis: BAB VII APLIKASI TURUNAN FUNGSI DALAM EKONOMI DAN BISNIS A. TURUNAN FUNGSI ALJABAR SATU VARIABEL f(x) = ax n Keterangan: f (x) = turunan pertama dari fungsi f(x) a dan n adalah suatu konstanta f (x) =

Lebih terperinci

DIFERENSIAL FUNGSI MAJEMUK

DIFERENSIAL FUNGSI MAJEMUK DIFERENSIAL FUNGSI MAJEMUK Tujuan Instruktusional : Memahami diferensiasi untuk fungsi-fungsi yang mengandung lebih dari satu macam variabel bebas Daftar Materi Pembahasan : 1. Diferensiasi parsial 2.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa pengertian dari optimasi bersyarat dengan kendala persamaan menggunakan multiplier lagrange serta penerapannya yang akan digunakan sebagai landasan

Lebih terperinci

Derivatif/turunan dan penerapannya dalam fungsi ekonomi

Derivatif/turunan dan penerapannya dalam fungsi ekonomi Derivatif/turunan dan penerapannya dalam fungsi ekonomi Ahmad Sabri Universitas Gunadarma, Indonesia 2016 Diberikan y = f (x). Notasi (delta) merepresentasikan perubahan nilai dari sebuah variabel (dependen

Lebih terperinci

A. KONSEP DASAR TURUNAN

A. KONSEP DASAR TURUNAN Materi Derivatif MODUL DERIVATIF A. KONSEP DASAR TURUNAN Turunan (derivatif) membahas tingkat perubahan suatu fungsi sehubungan dengan perubahan kecil dalam variabel bebas fungsi yang bersangkutan. Turunan

Lebih terperinci

MATEMATIKA EKONOMI. Oleh: Dosen STIE Ahmad Dahlan Jakarta

MATEMATIKA EKONOMI. Oleh: Dosen STIE Ahmad Dahlan Jakarta MATEMATIKA EKONOMI Oleh: Husnayetti Dosen STIE Ahmad Dahlan Jakarta DIFERENSIAL Diferensial mempelajari tentang tingkat perubahan rata-rata atau tingkat perubahan seketika dari suatu fungsi Metode Kalkulus

Lebih terperinci

Biaya variabel dapat dihitung dari penurunan rumus menghitung biaya total, yaitu:

Biaya variabel dapat dihitung dari penurunan rumus menghitung biaya total, yaitu: Pilihan Ganda Hal 226 1. Yang manakah dari yang berikut digolongkan sebagai biaya tetap? a. Sewa Pabrik. 2. Biaya marjinal akan mulai meningkat pada ketika... b. Biaya Produksi Total Mencapai Maksimum.

Lebih terperinci

Telkom University Alamanda

Telkom University Alamanda Telkom University Alamanda 2 Tujuan Mahasiswa diharapkan mampu: Memahami fungsi non-linear Menerapkan fungsi non-linear dalam ilmu ekonomi 3 Hubungan Non-Linear Ada 4 macam bentuk fungsi non-linear yang

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4 a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a Nama Siswa Kelas : : aasdaa. PENGERTIAN DIFERENSIAL (TURUNAN) Turunan fungsi atau diferensial didefinisikan sebagai laju perubahan fungsi sesaat dan dinotasikan f (x). LEMBAR AKTIVITAS SISWA DIFFERENSIAL

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua

Lebih terperinci

A. KONSEP DASAR TURUNAN

A. KONSEP DASAR TURUNAN MODUL DERIVATIF A. KONSEP DASAR TURUNAN Turunan (derivatif) membahas tingkat perubahan suatu fungsi sehubungan dengan perubahan kecil dalam variabel bebas fungsi yang bersangkutan. Turunan diperoleh dengan

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR MODUL MATEMATIKA EKONOMI 2 ATA 2014/2015

LABORATORIUM MANAJEMEN DASAR MODUL MATEMATIKA EKONOMI 2 ATA 2014/2015 LABORATORIUM MANAJEMEN DASAR MODUL MATEMATIKA EKONOMI 2 ATA 2014/2015 NAMA : NPM : KELAS : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA DEPOK KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Esa atas rahmat,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

Elastisitas Permintaan

Elastisitas Permintaan 06/1/010 Penerapan Diferensial Fungsi Sederhana dalam Ekonomi Diskripsi materi: Elastisitas Biaya Marjinal dan Penerimaan Marjinal Utilitas Marjinal Produk Marjinal Analisis Keuntungan Maksimum Matematika

Lebih terperinci

MENGAPA ECONOMISTS MENGGUNAKAN DIFFERENSIAL?

MENGAPA ECONOMISTS MENGGUNAKAN DIFFERENSIAL? Almasdi Syahza 2011 1 MENGAPA ECONOMISTS MENGGUNAKAN DIFFERENSIAL? Perkuliahan ini akan memperlajari bagaimana fungsi differensial digunakan dalam economic modelling Orang ekonomi selalu menganalisis efek

Lebih terperinci

Macam-macam Biaya : Biaya Total (Total cost : TC), yaitu merupakan jumlah keseluruhan dari biaya tetap dan biaya tidak tetap.

Macam-macam Biaya : Biaya Total (Total cost : TC), yaitu merupakan jumlah keseluruhan dari biaya tetap dan biaya tidak tetap. FUNGSI BIAYA Macam-macam Biaya : Biaya Tetap (Fixed Cost : FC) yaitu, merupakan balas jasa dari pada pemakaian faktor produksi tetap (fixed factor), yaitu biaya yang dikeluarkan tehadap penggunaan faktor

Lebih terperinci

MATEMATIKA EKONOMI Pertemuan 7 Elastisitas, Biaya Produksi dan Penerimaan, Maksimum dan Minimum Suatu Fungsi I Komang Adi Aswantara UT Korea Fall 2013

MATEMATIKA EKONOMI Pertemuan 7 Elastisitas, Biaya Produksi dan Penerimaan, Maksimum dan Minimum Suatu Fungsi I Komang Adi Aswantara UT Korea Fall 2013 MATEMATIKA EKONOMI Pertemuan 7 Elastisitas, Biaya Produksi dan Penerimaan, Maksimum dan Minimum Suatu Fungsi I Komang Adi Aswantara UT Korea Fall 2013 Elastisitas Elastisitas merupakan ukuran kepekaan

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

STRUKTUR PASAR PERSAINGAN SEMPURNA / MURNI

STRUKTUR PASAR PERSAINGAN SEMPURNA / MURNI Materi 9A. Struktur Pasar Persaingan Sempurna 159 Materi 9A. Struktur Pasar Persaingan Sempurna 160 Materi 9A STRUKTUR PASAR PERSAINGAN SEMPURNA / MURNI Persaingan Sempurna Penentuan Harga Pasar dalam

Lebih terperinci

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z

Lebih terperinci

Persamaan Linear dan non Linier. Dr. Ananda Sabil Hussein

Persamaan Linear dan non Linier. Dr. Ananda Sabil Hussein Persamaan Linear dan non Linier Dr. Ananda Sabil Hussein SISTEM PERSAMAAN LINEAR Persamaan linear satu variabel adalah kalimat terbuka yang menyatakan hubungan sama dengan dan hanya memiliki satu variabel

Lebih terperinci

V. TEORI PERILAKU PRODUSEN

V. TEORI PERILAKU PRODUSEN Kardono -nuhfil V. TEORI PERILAKU PRODUSEN 5.. Fungsi Produksi Seorang produsen atau pengusaha dalam melakukan proses produksi untuk mencapai tujuannya harus menentukan dua macam keputusan: ) berapa output

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

BAB 2 PROGRAM LINEAR

BAB 2 PROGRAM LINEAR BAB 2 PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah.

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah. Turunan fungsi adalah fungsi lain dari suatu fungsi sebelumnya misalkan fungsi f menjadi f' TURUNAN Notasi turunan y' atau f'(x) atau dy/dx fungsi naik Penggunaan turunan fungsi turun persamaan garis singgung

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

LABORATORIUM MANAJEMEN DASAR MATEMATIKA EKONOMI 2 NAMA : KELAS : NPM : PJ : KP : TUTOR : ASBAR :

LABORATORIUM MANAJEMEN DASAR MATEMATIKA EKONOMI 2 NAMA : KELAS : NPM : PJ : KP : TUTOR : ASBAR : LABORATORIUM MANAJEMEN DASAR MATEMATIKA EKONOMI 2 NAMA : KELAS : NPM : PJ : KP : TUTOR : ASBAR : ATA 2017/2018 SUSUNAN TIM LITBANG SUSUNAN TIM LITBANG MATEMATIKA EKONOMI 2 ATA 2017/2018 STAF PENANGGUNG

Lebih terperinci

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

Aplikasi Fungsi. Fungsi Linier. Fungsi Kuadrat. 1. Fungsi penawaran 2. Fungsi permintaan 3. Fungsi penerimaan 4. Fungsi biaya

Aplikasi Fungsi. Fungsi Linier. Fungsi Kuadrat. 1. Fungsi penawaran 2. Fungsi permintaan 3. Fungsi penerimaan 4. Fungsi biaya Telkom University Aplikasi Fungsi Fungsi Linier 1. Fungsi penawaran, permintaan, dan keseimbangan pasar 2. Pengaruh pajak-spesifik thd keseimbangan pasar 3. Pengaruh pajak-proposional thd keseimbangan

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR GAMBAR DAFTAR GRAFIK DAFTAR TABEL DAFTAR LAMPIRAN BAB I PENDAHULUAN

KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR GAMBAR DAFTAR GRAFIK DAFTAR TABEL DAFTAR LAMPIRAN BAB I PENDAHULUAN DAFTAR ISI ABSTRAK... i KATA PENGANTAR... ii UCAPAN TERIMA KASIH... iii DAFTAR ISI... v DAFTAR GAMBAR... viii DAFTAR GRAFIK... ix DAFTAR TABEL... x DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN 1.1 Latar Belakang

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN III KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Fungsi Produksi Produksi dan operasi dalam ekonomi menurut Assauri (2008) dapat diartikan sebagai suatu kegiatan yang berhubungan dengan usaha

Lebih terperinci

Template Standar Powerpoint

Template Standar Powerpoint Modul ke: Template Standar Powerpoint Pembuatan Template Powerpoint untuk digunakan sebagai template standar modul-modul yang digunakan dalam perkuliahan Fakultas FEB Ali Akbar Gayo, SE.,MM Program Studi

Lebih terperinci

PENGGUNAAN FUNGSI LINEAR DALAM EKONOMI

PENGGUNAAN FUNGSI LINEAR DALAM EKONOMI PENGGUNAAN FUNGSI LINEAR DALAM EKONOMI Agar fungsi permintaan dan fungsi penawaran dapat digambarkan grafiknya, maka faktor-faktor selain jumlah yang diminta dan harga barang dianggap tidak berubah selama

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

Materi 6 Ekonomi Mikro

Materi 6 Ekonomi Mikro Materi 6 Ekonomi Mikro Memaksimalkan Laba/Keuntungan Tujuan Pembelajaran : Mahasiswa dapat mengetahui dan memahami konsep dan metode perhitungan untuk mencapai laba/keuntungan yang maksimal berdasarkan

Lebih terperinci

Ekstremum relatif dan absolut Titik kritis Uji turunan pertama Uji turunan kedua

Ekstremum relatif dan absolut Titik kritis Uji turunan pertama Uji turunan kedua Telkom University Ekstremum relatif dan absolut Titik kritis Uji turunan pertama Uji turunan kedua RELATIF Jk suatu fungsi y=f(x) didefinisikan pd interval (b,c) yg memuat x=x 0, a. Fungsi f(x) dikatakan

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN atau perusahaan mana yang menjualnya. Jika produk dijual dengan harga yang berbeda, maka konsumen akan bergegas membeli produk tersebut ketika harganya lebih murah dan hasil produksi suatu perusahaan tidak

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Contoh - 1 Volume V dari sebuah silinder dengan

Lebih terperinci

Gambar 1. Kurva Permintaan

Gambar 1. Kurva Permintaan APLIKASI FUNGSI PADA MATEMATIKA EKONOMI. Fungsi Permintaan dan Penawaran Hukum permintaan menyatakan bahwa semakin tinggi harga barang (P) maka permintaan barang tersebut () akan menurun. Semakin rendah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Metode Pengali Lagrange adalah sebuah konsep populer dalam menangani permasalahan optimasi untuk program-program nonlinier. Sesuai namanya, konsep ini dikemukakan oleh

Lebih terperinci

Modul 5. Teori Perilaku Produsen

Modul 5. Teori Perilaku Produsen Modul 5. Teori Perilaku Produsen A. Deskripsi Modul Seorang produsen atau pengusaha dalam melakukan proses produksi untuk mencapai tujuannya harus menentukan dua macam keputusan: berapa output yang harus

Lebih terperinci

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

BAB 2. PROGRAM LINEAR

BAB 2. PROGRAM LINEAR BAB 2. PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

Teori Ekonomi Mikro Biaya Produksi & Memaksimalkan Laba. Dosen: Irawan, S.I.A., M.A.

Teori Ekonomi Mikro Biaya Produksi & Memaksimalkan Laba. Dosen: Irawan, S.I.A., M.A. Teori Ekonomi Mikro Biaya Produksi & Memaksimalkan Laba Dosen: Irawan, S.I.A., M.A. A. Biaya Produksi Jangka Pendek Biaya Total Biaya Marjinal Biaya Rata-Rata TC = FC + VC TC = Biaya Total FC = Biaya Tetap

Lebih terperinci

Laboratorium Manajemen Dasar. Nama NPM/Kelas Fakultas/Jurusan : : : Matematika Ekonomi 2 i Litbang ATA 13/14

Laboratorium Manajemen Dasar. Nama NPM/Kelas Fakultas/Jurusan : : : Matematika Ekonomi 2 i Litbang ATA 13/14 Nama NPM/Kelas Fakultas/Jurusan : : : Matematika Ekonomi 2 i Litbang ATA 13/14 KATA PENGANTAR Puji syukur penulis panjatkan kehadirat Allah SWT atas rahmat, hidayah, dan karunia yang diberikan-nya, sehingga

Lebih terperinci

Derivatif Parsial (Fungsi Multivariat)

Derivatif Parsial (Fungsi Multivariat) Derivatif Parsial (Fungsi Multivariat) week 12 W. Rofianto, ST, MSi FUNGSI MULTIVARIAT Fungsi dapat memiliki lebih dari satu variabel bebas. Fungsi demikian biasanya disebut sebagai fungsi multivariat.

Lebih terperinci

Perusahaan, Produksi, dan Biaya

Perusahaan, Produksi, dan Biaya Perusahaan, Produksi, dan Biaya Perusahaan adalah kesatuan teknis, yang bertujuan untuk menghasilkan benda-benda atau jasa. Perusahaan ingin mencapai laba setinggi mungkin. Pengertian sehari-hari, laba

Lebih terperinci

Ekonomi Mikro. Struktur Pasar

Ekonomi Mikro. Struktur Pasar Ekonomi Mikro Struktur Pasar Faktor-faktor yang membedakan bentuk pasar 1. Ciri-ciri barang yang dihasilkan 2. Banyaknya perusahaan dalam industri 3. Tingkat kesulitan perusahaan baru dalam memasuki industri

Lebih terperinci

M AT E M AT I K A E K O N O M I KALKULUS TURUNAN I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I KALKULUS TURUNAN I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I KALKULUS TURUNAN TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Statik Komparatif Analisis perbandingan titik-titik kesetimbangan terhadap perubahan nilai-nilai

Lebih terperinci

SEP222 - Matematik Untuk Ahli-Ahli Ekonomi. Mac 2005 UNIVERSITI SAINS MALAYSIA. Arahan: Peperiksaan Semester Kedua Sidang Akademik 2004/2005

SEP222 - Matematik Untuk Ahli-Ahli Ekonomi. Mac 2005 UNIVERSITI SAINS MALAYSIA. Arahan: Peperiksaan Semester Kedua Sidang Akademik 2004/2005 UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2004/2005 Mac 2005 SEP222 - Matematik Untuk Ahli-Ahli Ekonomi Masa: 3jam Sila pastikan bahawa kertas peperiksaan ini mengandungi ENAM

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, optimasi selalu dilakukan untuk memenuhi kebutuhan. Tetapi optimasi yang dilakukan masyarakat awam lebih banyak

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II c. Metoda Persamaan Differensial Pasti (Exact) Pada kalkulus bahwa jika suatu fungsi u(x,y) mempunyai turunan parsial yang sifatnya kontinyu, turunan pasti

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

METODE PENGUKURAN DAN PERAMALAN. Pusat Pengembangan Pendidikan - Universitas Gadjah Mada

METODE PENGUKURAN DAN PERAMALAN. Pusat Pengembangan Pendidikan - Universitas Gadjah Mada METODE PENGUKURAN DAN PERAMALAN PENDAHULUAN Mengetahui prospek usaha dari proyek yang direncanakan Perkiraan tentang peluang pasar produk yang dihasilkan Bentuk dan sifat produk yang dihasilkan Nasional

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN III KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis Kelangkaan merupakan hal yang tidak bisa dihindari. Hal ini menjadi masalah utama ketika keinginan manusia yang tidak terbatas berhadapan dengan

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul

Lebih terperinci

VI. BIAYA PRODUKSI DAN PENERIMAAN

VI. BIAYA PRODUKSI DAN PENERIMAAN Nuhfil1 6.1. Macam-Macam Biaya Produksi VI. BIAYA PRODUKSI DAN PENERIMAAN Biaya produksi adalah semua pengeluaran perusahaan untuk memperoleh faktorfaktor produksi yang akan digunakan untuk menghasilkan

Lebih terperinci

Terdapat Banyak Penjual dan. Barang yang ditawarkan pejual sangat mirip. ii. Keluar pasar.

Terdapat Banyak Penjual dan. Barang yang ditawarkan pejual sangat mirip. ii. Keluar pasar. PASAR PERSAINGAN SEMPURNA Kuliah 11 Universitas i Komputer Indonesia Karakteristik Pasar Persaingan Sempurna Terdapat Banyak Penjual dan pembeli di pasar Barang yang ditawarkan pejual sangat mirip. ii

Lebih terperinci

F U N G S I. A. Variabel

F U N G S I. A. Variabel F U N G S I Pemahaman akan konsep fungsi sangat penting dalam mempelajari disiplin ilmu ekonomi, mengingat telaah-telaah ekonomi banyak dinyatakan dengan matematika dan biasanya dapat dinyatakan dalam

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut   Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65 DIFERENSIAL TOTAL 1. Pendahuluan Ingat kembali konsep diferensial pada fungsi satu variabel y = f(x). suatu diferensial dx terhadap variabel bebas didefinisikan sebagai: dy = f (x) dx selanjutnya, misalkan

Lebih terperinci

Masalah Keputusan Manajemen timbul dalam organisasi apa saja:

Masalah Keputusan Manajemen timbul dalam organisasi apa saja: Ekonomi Manajerial adalah aplikasi teori ekonomi dan perangkat analisis ilmu keputusan untuk membahas bagaimana suatu organisasi dapat mencapai tujuan atau maksudnya dengan cara yang paling efisien Masalah

Lebih terperinci

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL)

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) KATA PENGANTAR Puji dan Syukur kami panjatkan ke Hadirat Tuhan Yang Maha Esa, karena berkat limpahan Rahmat dan Karunia-nya sehingga kami dapat menyusun makalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya

Lebih terperinci

SOAL A 1. Dalam prinsip opportunity cost,

SOAL A 1. Dalam prinsip opportunity cost, SOAL A 1. Dalam prinsip opportunity cost, apabila misalnya sebidang tanah disewakan kepada berbagai pihak, maka pembayaran termahal yang disanggupi oleh salah satu pihak itulah yang dicatat sebagai sewanya.

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN III KERANGKA PEMIKIRAN 3.1. Kerangka Teoritis Untuk mengetahui dampak kenaikan harga kedelai sebagai bahan baku (input) dalam industri tempe, akan digunakan beberapa teori yang berkaitan dengan hal tersebut.

Lebih terperinci