DIKTAT MATEMATIKA II
|
|
|
- Deddy Kusnadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 DIKTAT MATEMATIKA II (PERSAMAA GARIS DA PERSAMAA BIDAG DATAR) Drs. A. ABABA PURAWA, M.T JURUSA PEDIDIKA TEKIK MESI FAKULTAS PEDIDIKA TEKOLOGI DA KEJURUA UIVERSITAS PEDIDIKA IDOESIA 004
2 PERSAMAA GARIS DA PERSAMAA BIDAG DATAR 4.. PERSAMAA BIDAG DATAR Untuk menentukan persamaan bidang melalui satu titik P ( x, y z ),, dapat dengan mudah dilakukan, jika diberikan persyaratan bahwa bidang itu tegak lurus pada suatu vektor yang diketahui. Vektor yang diketahui itu merupakan normal pada bidang yang dicari itu. Diminta menentukan bidang melalui ( x, y z ) P tegak lurus pada vektor, v ai + bj + ck, vektor V dipandang sebagai vektor normal pada bidang yang diminta. Jika P ( x, y, z) karena tiap \ sembarang titik pada bidang itu, maka vektor : ( x x ) i + ( y y ) j + ( z z )k p p p p v, maka selalu v. p p 0. oleh karena itu persamaan bidang yang diminta adalah : a ( x x ) + b( y y ) + c( z z ) + by + cz ( ax + by + cz ) ax ax + by + cz p dim ana 0 0 atau atau p ax + by + cz Contoh : Hitung jarak titik P (, -3, 4 ) ke bidang : H x + y + z 3 Ada dua cara menyelesaikan soal ini : ) Vektor i + j + k normal pada bidang itu, jadi garis g x y + 3 z 4 melalui P (, -3, 4 ) sejajar dengan normal ( ). Dari sini ( g ) dipandang sebagai x y + 3 z 4 normal pada bidang itu, sehingga ( g ) dapat ditulis : t jadi x t + ; y t 3 dan z t + 4 merupakan persamaan parameter garis itu dalam t. Subtitusikan dalam persamaan bidang di dapat : ( t + ) + ( t 3 ) + ( t + 4 ) 3 t
3 P(,-3,4) R ( 3, 0, 0 ) Q ( 3, -,6 ) menyatakan titik tembus garis pada bidang itu, yaitu titik Q ( 3, -, 6 ). Jadi jarak titik P (, -3, 4 ) dari bidang H itu adalah panjang garis PQ yaitu : PQ d ( 3 ) + ( + 3) + ( 6 4) 3 ) Misalnya R suatu titik di bidang H. Proyeksikan PR ke garis normal i + j + k. R dapat dipilih, misalnya titik potong bidang H dengan sumbu X, yaitu titik R ( 3, 0 o, 0 ). Ambil sejajar melalui R. membentu sudut θ 90 dengan BP. Jika RP ( 3 )i 3j + 4k, maka dapat diperoleh jarak P dari H yaitu : RP cosθ d RP cosθ. RP Ambil : ± ( tanda yang dipakai ditentukan kemudian ). RP ± ( ) ± ( - 9 ) jadi ; + ( 9) d. Untuk itu ambil -, maka d 3 3 Contoh : Hitung sudut antara bidang x + y z 5 dengan bidang 3x 6y z 7 Jelas bahwa sudut antara dua bidang sama dengan sudut yang dibentuk normalnormal kedua bidang itu, yaitu 0 atau 80 º - 0. dari persamaan bidang-bidang itu didapat normal-normalnya, yaitu :
4 maka : jadi : cos θ. i + j + k dan 3i 6j k θ arc. cos Contoh 3 : Carilah vektor yang sejajar dengan perpotongan bidang x + y z 5 dan bidang 3x 6x z 7. Perpotongan kedua bidang itu tegak lurus pada normal normalnya : i + j + k dan 3i 6j 5k jadi vektor yang diminta adalah hasil kali cross product kedua normal itu, yaitu : i j k v i j -5k Jadi vektor yang sejajar dengan garis potong kedua bidang itu adalah V - 4i j -5k Contoh 4 : Carilah persamaan bidang melalui P (, 0, - ) dan P ( -,, ) dan sejajar dengan perpotongan bidang-bidang 3x + y z 0 dan 4x y + 3z 0. Problem utama adalah mencari sebuah vektor PP x V, normal pada bidang yang diminta. Perpotongan bidang yang diberikan sejajar dengan vektor : i j k v x 3 - i 7j -7k 4-3
5 dimana dan normal-normal kedua bidang yang diketahui. Vektor P P - i + j + k terletak pada bidang yang dicari. Vektor V dapat di geser sejajar dengan dirinya ( translasi ) sehingga terletak pada bidang yang diminta. Oleh karena itu ambilah P P x V, yaitu : i j k P P x V - 0i j - 3k -7 7 sebagai vektor normal pada bidang itu 0i j + 3k atau dikecilkan 5 i 3 j + 8k, sehingga bilangan arah bidang itu ( 5, - 3, 8 ). Jadi bidang yang diminta melalui titik (, 0, - ) adalah 5(x ) 3(y 0)+ 8(z + ) 0 atau 5x 3y + 8z Soal Soal Latihan :. Jarak P ( x, y, z ) ke titik pangkal 0 adalah d, dan jarak P ke titik A ( 0, 0, 3 ) adalah d, tentukanlah tempat kedudukan P, jika ; a) d d dan b) d d. Carilah vektor proyeksi dari B i + 3j + 4k pada vektor A 0i + j k. 3. Carilah titik A ( a, a, 0 ) pada garis y x dibidang XOY, sehingga vektor AB tegak lurus pada garis OA, dimana O titik pangkal dan B (, 4, -3 ). x y + z 4. Diketahui garis g carilah titik tembus garis g dengan bidang 3 3x + y z Carilah persamaan parameter dan persamaan garis yang menghubungkan A (,, - ) dan B ( -, 0, ). 6. Tunjukanlah memakai vektor, bahwa jarak titik ( x, y z ) cz + d 0 adalah : P pada bidang ax + by +, ax + by + cz + d j a + b + c 7. Tentukanlah bidang melalui P (, -, 3 ) sejajar dengan bidang 3x + y + z 7.
6 8. Tentukanlah bidang melalui P (,, - ), Q (, 0, ) dan R ( 0, -, ). 9. Tentukanlah luas SegiTiga PQR tersebut pada soal o Tentukan jarak titik S ( 3,, 3 ) terhadap bidang tersebut pada soal o.8 diatas.
Vektor di ruang dimensi 2 dan ruang dimensi 3
Vektor di ruang dimensi 2 dan ruang dimensi 3 Maulana Malik 1 ([email protected]) 1 Departemen Matematika FMIPA UI Kampus Depok UI, Depok 16424 2014/2015 1/21 [email protected] Vektor
2. Tiga Dimensi (R3) Persamaan Garis
2. Tiga Dimensi (R3) Ø Persamaan Garis Titik A (xa,ya,za) dan titik B (xb,yb,zb) terletak pada satu garis. Jika titik P (xp,yp,zp) terletak di tengah titik A dan B, secara vektor dituliskan : Jadi persamaan
Aljabar Linier Elementer. Kuliah ke-9
Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor
MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Sesi NGAN VEKTOR A. DEFINISI PERKALIAN TITIK Misal a a a a dan b b b b dua vektor di R. Perkalian titik dari a dan b, dinotasikan a badalah a b ab + ab + ab
VEKTOR. Oleh : Musayyanah, S.ST, MT
VEKTOR Oleh : Musayyanah, S.ST, MT 1 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).
MAKALAH GEOMETRI ANALITIK RUANG PERSAMAAN GARIS LURUS
MAKALAH GEOMETRI ANALITIK RUANG PERSAMAAN GARIS LURUS Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Geometri Analitik Ruang Dosen Pengampu : NINA AGUSTYANINGRUM, M.Pd Disusun Oleh Yani Novita Murni
Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 5 Perkalian Antar Vektor Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Komponen-Komponen Vektor dalam Suku-Suku Vektor Satuan Artinya, OP = a (di sepanjang
DIKTAT MATEMATIKA II
DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah
Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q
Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q a) Nyatakan PQ dalam bentuk vektor kolom b) Nyatakan PQ dalam bentuk i, j (vektor satuan) c) Tentukan
19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =
19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =
Matematika II : Vektor. Dadang Amir Hamzah
Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang
Pembahasan SNMPTN 2011 Matematika IPA Kode 576
Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.
VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain
VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering
PERSAMAAN GARIS LURUS
PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan
Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili
4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik
LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran
LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu
b = dan a b= 22. Jika sudut antara a dan b adalah a, maka
1. Jika vektor p = i + 4j + 9k, q = 2i + 5 j 3k, p = 3i + j 2k dan, a = p 2q + 3r maka panjang vektor a =... 2. Diketahui vektor a 4i 5 j 3k = + dan titik ( 2, 1,3) P. Jika panjang PQ sama dengan panjang
Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika
Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya
Vektor di Bidang dan di Ruang
Vektor di Bidang dan di Ruang 4.1. Pengertian, notasi,dan operasi pada ektor Vektor merupakan istilah untuk menyatakan besaran yang mempunyai arah. Secara geometris, ektor dinyakan dengan segmen-segmen
IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd
IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian
KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK
1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.
Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor
Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :
VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK
HAND OUT PERKULIAHAN GEOMETRI ANALITIK A. Sistem Koordinat Tegak Lurus Suatu sistem koordinat tegak lurus disebut juga dengan sistem koordinat cartesian. Di dalam ruang, terdapat tiga buah garis lurus
PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan
PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor
2.1 Zat Cair Dalam Kesetimbangan Relatif
PERTEMUAN VI 1.1 Latar Belakang Zat cair dalam tangki yang bergerak dengan kecepatan konstan tidak mengalami tegangan geser karena tidak adanya gerak relative antar partikel zat cair atau antara partikel
A. PERSAMAAN GARIS LURUS
A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam
Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan
2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R
. Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b
VEKTOR. maka a c a c b d b d. , maka panjang (besar/nilai) vector u ditentukan dengan rumus. maka panjang vector
VEKTOR Bab a. Penjumlahan dan Pengurangan Vektor. OA a ; OB b maka OA AB OB AB OB OA AB b a a u b dan c v d maka a c a c u v b d b d Contoh : Tentukan nilai x dan y dari x y + y = 8 Jawab : x + 8 + y =
dengan vektor tersebut, namun nilai skalarnya satu. Artinya
1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan
Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Skalar hanya memiliki besaran saja, contoh : temperatur,
Program Studi Pendidikan Matematika STKIP PGRI SUMBAR
VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,
PERSAMAAN BIDANG RATA
1 KEGIATAN BELAJAR 5 PERSAMAAN BIDANG RATA Setelah mempelajari kegiatan belajar 5 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan vektoris bidang rata 2. Menentukan persamaan linier bidang rata
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =
A. Menentukan Letak Titik
Apa yang akan Anda Pelajari? Koordinat Cartesius Mengenal pengertian dan menentukan gradien garis lurus Menentukan persamaan garis lurus Menggambar grafik garis lurus Menentukan Gradien, Persamaan garis
SUDUT DAN JARAK ANTARA DUA BIDANG RATA
1 KEGIATAN BELAJAR 6 SUDUT DAN JARAK ANTARA DUA BIDANG RATA Setelah mempelajari kegiatan belajar 6 ini, mahasiswa diharapkan mampu: 1. Menentukan sudut antara dua bidang rata 2. Menentukan jarak sebuah
VEKTOR Matematika Industri I
VEKTOR TIP FTP UB Pokok Bahasan Pendahuluan: Kuantitas skalar dan vektor Representasi vektor Komponen-komponen vektor yang diketahui Vektor dalam ruang Kosinus arah Hasilkali skalar dari dua vektor Hasilkali
PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah
PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota
VEKTOR II. Tujuan Pembelajaran
Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang
SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1
SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun
BAB 2 ANALISIS VEKTOR
BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep
MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat]
1 MODUL 3 BIDANG RATA Setelah mempelajari modul 1 dan 2 anda akan melanjutkan mempelajari modul 3 tentang bidang rata. Materi bidang rata ini berkaitan dengan materi pada modul sebelumnya. Pada modul 3
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macam macam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti disebut dengan skalar.
SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com
SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan
Pertemuan 2 KOORDINAT CARTESIUS
Kalkulus Pertemuan 2 KOORDINAT CARTESIUS Koordinat Cartesius 1 2 3 Jarak y Hitunglah jarak dari A(3,-5) ke B(4,2) A(3,-5) maka x 1 = 3 dan y 1 = -5 B(4,9) maka x 2 = 4 dan y 2 = 2 sehingga d(a, B) = (x
Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius
Pengertian Persamaan Garis Lurus Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam
GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1
GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT sofyan mahfudy-iain Mataram 1 Sasaran kuliah hari ini 1. Mahasiwa dapat menjelaskan konsep kemiringan garis/gradien 2. Mahasiswa dapat menentukan
erkalian Silang, Garis & Bidang dalam Dimensi 3
erkalian Silang, Garis & Bidang dalam Dimensi 3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat menghitung perkalian silang dari suatu vektor dan mengetahui
Transformasi Datum dan Koordinat
Transformasi Datum dan Koordinat Sistem Transformasi Koordinat RG091521 Lecture 6 Semester 1, 2013 Jurusan Pendahuluan Hubungan antara satu sistem koordinat dengan sistem lainnya diformulasikan dalam bentuk
ILMU UKUR TANAH 2 PENENTUAN POSISI
ILMU UKUR TANAH 2 PENENTUAN POSISI Oleh: Andri Oktriansyah JURUSAN SURVEI DAN PEMETAAN UNIVERSITAS INDO GLOBAL MANDIRI PALEMBANG 2017 1. Penentuan Posisi Penentuan posisi titik dikelompokkan dalam dua
Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;
BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,
SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A
SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram damai ) Jika Negara tentram damai maka rakyat makmur sejahtera
18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:
8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a
BESARAN VEKTOR B A B B A B
Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?
Rudi Susanto, M.Si VEKTOR
Rudi Susanto, M.Si VEKTOR ESRN SKLR DN VEKTOR esaran Skalar esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh Catatan : waktu, suhu, volume, laju, energi
JARAK DUA TITIK KEGIATAN BELAJAR 2
1 KEGIATAN BELAJAR 2 JARAK DUA TITIK Setelah mempelajari kegiatan belajar 2 ini, mahasiswa diharapkan mampu: 1. menghitung jarak dua titik di bidang, 2. menghitung jarak dua titik di ruang, 3. menentukan
1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1
Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi
BAB II BESARAN VEKTOR
BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan
FISIKA UNTUK UNIVERSITAS OLEH
FISIKA UNTUK UNIVERSITAS OLEH BAB I VEKTOR Pendahuluan B esaran adalah segala sesuatu yang dapat diukur dan dinyatakan dalam bentuk angkaangka. Besaran fisika dapat dibagi menjadi besaran pokok dan besaran
BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor
BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan
MODUL 1 SISTEM KOORDINAT KARTESIUS
1 MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x (absis)
VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :
1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan
TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA
TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita
Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT
KULIAH MEDAN ELEKTROMAGNETIK Pengantar Definisi Arsitektur MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT Operasional Sinkronisasi Kesimpulan & Saran Muhamad Ali, MT Http://www.elektro-uny.net/ali Pengantar
Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus
PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis
Matematika EBTANAS Tahun 2001
Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai
BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.
BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macammacam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti itu disebut dengan skalar.
a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1
1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai
RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd.
RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd. Universitas Negeri Surabaya Oleh Abdul Hayyih (147785010) Kelas D PROGRAM
Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018
Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)
BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor
BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus
MODUL 1 SISTEM KOORDINAT KARTESIUS
MODUL 1 SISTEM KOORDINAT KARTESIUS MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang
MODUL MATEMATIKA KELAS 8 MARET 2018 TAHUN PELAJARAN 2017/2018
MODUL MATEMATIKA KELAS 8 MARET 2018 TAHUN PELAJARAN 2017/2018 PERSAMAAN GARIS SINGGUNG LINGKARAN SIFAT-SIFAT GARIS SINGGUNG LINGKARAN Garis singgung lingkaran memiliki beberapa sifat yang merupakan akibat
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran
Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran
Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3
Vektor-Vektor dalam Ruang Berdimensi-2 dan Ruang Berdimensi-3 Disusun oleh: Achmad Fachrurozi Albert Martin Sulistio Iffatul Mardhiyah Rifki Kosasih Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,
SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A
SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram dan damai ) Jika Negara tentram dan damai maka
VEKTOR. Makalah ini ditujukkan untuk Memenuhi Tugas. Disusun Oleh : PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
VEKTOR Makalah ini ditujukkan untuk Memenuhi Tugas Disusun Oleh : 1. Chrisnaldo noel (12110024) 2. Maria Luciana (12110014) 3. Rahmat Fatoni (121100) PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
yos3prens.wordpress.com
yosprens.wordpress.com Before anything else, preparation is the key to success. Alexander Graham Bell Mata Pelajaran Jenjang Program Studi : Matematika : SMA/MA : IPA Hari/Tanggal Jam :... :.... Isilah
DIKTAT MATEMATIKA II
DIKTAT MATEMATIKA II (PERKALIAN TIGA VEKTOR ATAU LEBIH) Drs. A. NABABAN PURNAWAN, M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 004 PERKALIAN
VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.
VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel
Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,
VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,
TRY OUT MATEMATIKA PAKET 2B TAHUN 2010
TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang
Vektor Ruang 2D dan 3D
Vektor Ruang 2D dan D Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak
MODUL 2 GARIS LURUS. Mesin Antrian Bank
1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka
VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.
VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )
Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY
Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah
Hasil Kali Titik, Hasil Kali Silang, dan Hasil Kali Tripel
BAB II HASIL KALI TITIK DAN SILANG A. HASIL KALI TITIK ATAU SKALAR Hasil kali titik atau skalar dari dua buah vektor A dan B yang dinyatakan oleh A B (dibaca A titik B ) didefinisikan sebagai hasil kali
fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi
BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang
Ruang Vektor Euclid R 2 dan R 3
Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015
Matematika EBTANAS Tahun 1999
Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar
Bab. Teorema Pythagoras dan Garis-Garis pada Segitiga. A. Teorema Pythagoras B. Garis-garis pada Segitiga
ab 5 Sumber: Dokumentasi Penulis Teorema Pythagoras dan Garis-Garis pada Segitiga Televisi sebagai media informasi, memiliki banyak sekali keunggulan dibandingkan dengan media lainnya, baik media etak
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik
