BAB IV PEMECAHAN MASALAH

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PEMECAHAN MASALAH"

Transkripsi

1 BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii termasuk dalam metode grafis stock oscillator, dimaa perhitugaya berdasarka pada rata rata berjala dari persetase keaika harga peutupa rata rata suatu saham. Mulai STUDI KEPUSTAKAAN Mempelajari metode peramala tred pergerakaa harga saham berdasarka metode berjala yag umum diguaka. Stock Oscillator. Mempelajari metode perhituga MACD. Pegumpula Data Harga peutupa saham (LQ45) di BEJ Perhituga Peramala Tred Pergeraka Harga Saham Metode yag diguaka dalam peramala ii adalah: Movig Average (MA) Movig Average Covergece Divergece (MACD) MAMO Peetua Tred Pergeraka Saham Secara Grafis Iterpretasi Hasil Perhituga Sara Da Rekomedasi Peerapa Selesai Gambar 4.1 Flowchart Metodologi Pemecaha Masalah 21

2 4.1.1 Tred Pergeraka Harga Saham yag Diamati Dalam peelitia ii, data yag diguaka adalah data harga peutupa haria dari saham saham yag termasuk dalam saham LQ45 dalam retag waktu dari bula Oktober 2006 higga Februari Utuk memudahka perhituga da perbadiga, maka dipilih 10 saham LQ45 yag memiliki ilai trasaksi rata rata terbesar da 10 saham LQ45 yag memiliki ilai ratarata trasaksi terkecil. Adapu 10 saham LQ45 dega rata rata ilai trasaksi terbesar adalah TLKM, PGAS, BMRI, ASII, ISAT, MEDC, BBRI, BUMI, CMNP, PTBA, sedagka 10 saham yag memiliki ilai rata rata trasaksi terkecil adalah RALS, INKP, UNVR, GJTL, SMRA, GGRM, APOL, TKIM, MPPA, ADMG. Periode pegamata di bagi mejadi 2 meurut kodisi trasaksi yag terjadi di bursa, yaitu pada saat trasaksi di bursa sedag meigkat (bullish) da pada saat trasaksi di bursa sedag meuru (bearish) Aalisa Tred Pergeraka Harga Saham Berdasarka Metode Berjala Metode berjala merupaka metode yag umum diguaka dalam aalisa tekikal saham. Keuggula metode ii adalah kesederhaa dalam proses perhitugaya, sehigga dapat memberika hasil perhituga (rekomedasi) secara lebih cepat. Selai kelebihaya, metode ii pu memiliki kelemaha berupa keterlambata muculya siyal. 22

3 Peerapa metode berjala pada aalisa tekikal pergeraka harga saham sedikit berbeda dega metode berjala pada forecastig yag umum. Pada aalisa tekikal harga saham, rata rata berjala dari periode saat ii mejadi ilai utuk periode saat ii, sedagka pada forecastig yag umum diguaka ilai rata rata berjala saat ii mejadi ilai forecastig utuk periode berikutya. Metode berjala yag umum diguaka atara lai adalah (Syamsir, 2004): 1. Simple Movig Average (SMA) Metode ii dibetuk dega megguaka rata rata berjala dari periode terakhir dari data yag dimiliki. Pada metode ii tidak ada perbedaa pembobota utuk data data yag diguaka. Y m i= = 1 Y i Dimaa: Ym Yi = ilai rata rata bergerak saat ii = ilai saat ii selama periode = periode berjala 2. Weighted Movig Average (WMA) Metode ii dibetuk dega megguaka rata rata berjala dari periode terakhir dari data yag dimiliki. Pada metode ii data yag terbaru memiliki bobot yag lebih besar. Y m i= 1 = i= 1 i.y i i 23

4 Dimaa: Ym Yi = ilai rata rata bergerak saat ii = ilai saat ii selama periode = periode berjala 3. Expoetial Movig Average (EMA) Metode ii dibetuk dega megguaka rata rata berjala dari periode terakhir dari data yag dimiliki. Pada metode ii data yag terbaru memiliki bobot yag lebih kecil dari forecastig ilai rata rata sebelumya tergatug dari pajag periode yag diguaka. ( k ( C P) ) P Y m = + k 2 = + 1 Dimaa: Ym C P k = ilai rata rata bergerak saat ii = ilai saat ii = ilai rata rata bergerak sebelumya = kostata peghalus Aalisa Tred Pergeraka Harga Saham Berdasarka MACD MACD merupaka metode aalisa tekikal yag umum diguaka utuk membatu membaca siyal yag mucul pada metode movig average. MACD diperoleh dega meghitug selisih atara ilai MA yag lebih pedek da MA yag lebih pajag, sedagka jeis MA yag umum diguaka utuk perhituga MACD adalah WMA atau EMA. Pada 24

5 metode ii terdapat pula trigger lie (TL), TL adalah rata rata berjala dari MACD. MACD = MA 1 MA 2 Dimaa: MACD = Movig Average Covergece Divergece. MA1 MA2 = Movig Average periode pedek. = Movig Average periode pajag Aalisa Tred Pergeraka Harga Saham Berdasarka MAMO Movig Average Mometum Oscillator ii termasuk dalam metode grafis stock oscillator, dimaa perhitugaya berdasarka pada rata rata berjala dari persetase perubaha harga peutupa rata rata suatu saham. MAMO ^ P = Dimaa: i= = 1 Pi ( P P 1 ) / P 1 ^ MAMO = Metode alteratif yag ditawarka. ^ P = Percetase perubaha harga rata rata berjala. P P 1 = Harga rata rata berjala peutupa saat ii. = Harga rata rata berjala peutupa sebelumya. 25

6 4.1.5 Peetua Tred dega Metode Berjala 1. Metode Berjala Dalam peerapaya pada kodisi yata, umumya diguaka movig average dega dua pajag periode pegamata yag berbeda. Perpotoga kedua grafik movig average yag berbeda periode ii dijadika pertada atau siyal perubaha tred. Pajag periode yag diguaka umumya ditetapka secara coba coba (trial ad error) utuk setiap sahamya, tetapi disaraka diguaka atara 5 15 satua waktu walaupu ilai ii bukalah ilai pasti yag tidak dapat diubah. Movig Average B Harga A Pt MA 3 MA Waktu Gambar 4.2 Cotoh Peerapa Movig Average Pada Gambar 4.2. terlihat bahwa jika ilai MA pedek lebih besar dari ilai MA pajag, maka tred pergeraka harga aka meaik. Tred keaikka ii ditadai dega perpotoga kurva pada titik A. Pada tred peurua seperti pada titik B, ilai MA pedek aka lebih kecil dari ilai MA pajag. 2. MACD MACD merupaka metode tekikal yag berjeis Oscillator, sehigga sagat memudahka dalam megiterpretasika siyal yag dihasilka. 26

7 MACD 10 Harga B MACD TL -10 A Waktu Gambar 4.3 Cotoh Peerapa MACD Siyal yag dihasilka oleh metode ii berupa pembalika arah kurva, seperti halya pada metode movig average, maka siyal yag dihasilka harus dikofirmasi oleh trigger lie seperti pada titik A da B. 3. MAMO MAMO merupaka metode tekikal yag berjeis Oscillator seperti halya metode MACD, sehigga sagat memudahka dalam megiterpretasika siyal yag dihasilka. MAMO Harga 40% 30% B 20% 10% 0% -10% % -30% -40% A Waktu MAMO TL Gambar 4.4 Cotoh Peerapa MAMO Siyal yag dihasilka oleh metode ii berupa pembalika arah kurva, maka siyal yag dihasilkaya harus dikofirmasi oleh trigger lie seperti pada titik A da B. 27

8 4.2 Pegolaha Data da Iterpretasi Hasil Perhituga Pegolaha Data Dalam perhituga ii metode berjala yag diguaka adalah SMA dega pajag periode 10 da 15. Utuk perhituga MAMO diguaka perse perubaha harga SMA 10 dega pajag periode 5 da pajag periode TL 5, sedagka pajag periode TL utuk MACD adalah 5. Detail perhituga dilampirka pada lampira Hasil Perhituga Dalam perbadiga hasil perhituga diguaka 3 idikator yaitu, kecepata pemucula siyal yag diyataka dalam jumlah, rata rata selisih waktu pemucula siyal yag diyataka dalam hari, da selisih keutuga/kerugia yag diyataka dalam %. 1. Bullish Saham Kapitalisasi Besar Tabel 4.1 Hasil Perhituga Saham Kapitalisasi Besar Pada Saat Pasar Bullish 28

9 Pada kelompok saham ii terdapat 49 siyal yag timbul selama periode pegamata. Dari 49 siyal yag timbul, MAMO meghasilka 39 (79,6%) siyal yag lebih cepat dibadig metode MACD, 9 (18,4%) siyal relatif sama, da metode MACD haya meghasilka 1 (2,0%) siyal yag lebih cepat daripada MAMO. Selisih waktu rata rata pada kelompok saham ii bervariasi atara 0,00 hari higga 1,67 (MAMO lebih cepat dari metode MACD). Rata rata selisih waktuya adalah 0,67 hari. Utuk perhituga selisih keutuga pada kodisi bullish diguaka posisi Log (beli redah jual tiggi). Selisih keutuga per saham pada kelompok saham ii bervariasi atara 0,4% higga 3,4%, sedagka ratarata keseluruha utuk kelompok saham ii adalah 1,1%. Saham Kapitalisasi Kecil Tabel 4.2 Hasil Perhituga Saham Kapitalisasi Kecil Pada Saat Pasar Bullish 29

10 Pada kelompok saham ii terdapat 39 siyal yag timbul selama periode pegamata. Dari 39 siyal yag timbul, MAMO meghasilka 25 (64,1%) siyal yag lebih cepat dibadig metode MACD, 11 (28,2%) siyal relatif sama, da metode MACD haya meghasilka 3 (7,7%) siyal yag lebih cepat daripada MAMO. Pada kelompok saham ii selisih waktu rata rata bervariasi atara 0,00 hari higga 1,00 hari (MAMO lebih cepat dari metode MACD). Rata rata selisih waktuya adalah 0,44 hari. Selisih keutuga per saham pada kelompok saham ii bervariasi atara 1,7% higga 3,9%, sedagka rata rata keseluruha utuk kelompok saham ii adalah 0,6%. Saham Gabuga Tabel 4.3 Hasil Perhituga Saham Gabuga Pada Saat Pasar Bullish 30

11 Jika kedua kelompok ii digabugka, maka dihasilka 88 siyal selama periode pegamata, dimaa MAMO meghasilka 64 (72,7%) siyal yag lebih cepat dibadig metode MACD, 20 (22,7%) siyal relatif sama, da haya ada 4 (4,5%) siyal dimaa metode MACD lebih cepat dibadigka MAMO. Rata rata selisih waktuya adalah 0,57 hari. Selisih keutuga per saham pada kelompok saham ii bervariasi atara 1,7% higga 3,9%, sedagka rata rata keseluruha utuk kelompok saham ii adalah 0,9%. 2. Bearish Saham Kapitalisasi Besar Tabel 4.4 Hasil Perhituga Saham Kapitalisasi Besar Pada Saat Pasar Bearish Pada kelompok saham ii terdapat 50 siyal yag timbul selama periode pegamata. Dari 50 siyal yag timbul, MAMO meghasilka 34 (68,0%) siyal yag lebih cepat dibadig metode MACD, 13 (26,0%) siyal relatif 31

12 sama, da metode MACD haya meghasilka 3 (6,0%) siyal yag lebih cepat daripada MAMO. Pada kelompok saham ii selisih waktu rata rata bervariasi atara 0,17 hari (metode MACD lebih cepat dibadigka MAMO) higga 1,71 (metode MACD lebih lambat dari MAMO). Rata rata selisih waktuya adalah 0,76 hari. Utuk perhituga selisih keutuga pada kodisi bearish diguaka posisi Short (jual tiggi beli redah). Selisih keutuga per saham pada kelompok saham ii bervariasi atara 1,6% higga 3,6%, sedagka ratarata keseluruha utuk kelompok saham ii adalah 0,8%. Saham Kapitalisasi Kecil Tabel 4.5 Hasil Perhituga Saham Kapitalisasi Kecil Pada Saat Pasar Bearish Pada kelompok saham ii terdapat 56 siyal yag timbul selama periode pegamata. Dari 56 siyal yag timbul, MAMO meghasilka 42 (75,0%) siyal yag lebih cepat dibadig metode MACD, 9 (16,1%) siyal relatif 32

13 sama, da metode MACD haya meghasilka 5 (8,9%) siyal yag lebih cepat daripada MAMO. Pada kelompok saham ii selisih waktu rata rata bervariasi atara 0,14 hari higga 0,83 hari (metode MACD lebih lambat dari MAMO). Rata rata selisih waktuya adalah 0,61 hari. Selisih keutuga per saham pada kelompok saham ii bervariasi atara 0,8% higga 6,3%, sedagka rata rata keseluruha utuk kelompok saham ii adalah 2,2%. Saham Gabuga Tabel 4.6 Hasil Perhituga Saham Gabuga Pada Saat Pasar Bearish 33

14 Jika kedua kelompok ii digabugka, maka dihasilka 106 siyal selama periode pegamata, dimaa MAMO meghasilka 76 (71,7%) siyal yag lebih cepat dibadig metode MACD, 22 (20,8%) siyal relatif sama, da haya ada 8 (7,5%) siyal dimaa metode MACD lebih cepat dibadigka MAMO, dimaa rata rata selisih waktuya adalah 0,68 hari. Selisih keutuga per saham pada kelompok saham ii bervariasi atara 1,6% higga 6,3%, sedagka rata rata keseluruha utuk kelompok saham ii adalah 1,6% Uji Hipotesis Uji ii dilakuka utuk megetahui apakah hasil yag didapatka dari perhituga kedua metode ii bear bear berbeda secara sigifika. (Detail perhituga pada lampira D). 1. Bullish Pada kodisi pasar Bullish, selisih kecepata pemucula siyal berbeda secara sigifika utuk kedua kelompok saham. Utuk selisih P/L, perbedaa sigifika terjadi haya pada kelompok saham kapitalisasi besar, sedagka pada kelompok saham kapitalisasi kecil perbedaa yag terjadi tidak sigifika. 2. Bearish Pada kodisi pasar Bearish, selisih kecepata pemucula siyal berbeda secara sigifika utuk kedua kelompok saham. Utuk selisih P/L, perbedaa sigifika terjadi haya pada kelompok saham kapitalisasi kecil, sedagka pada kelompok saham kapitalisasi besar perbedaa yag terjadi tidak sigifika. 34

MATERI 13 ANALISIS TEKNIKAL ANALISIS TEKNIKAL

MATERI 13 ANALISIS TEKNIKAL ANALISIS TEKNIKAL MATERI 13 ANALISIS TEKNIKAL ASUMSI-ASUMSI DASAR ANALISIS TEKNIKAL KEUNTUNGAN DAN KRITIK TERHADAP ANALISIS TEKNIKAL TEKNIK-TEKNIK DALAM ANALISIS TEKNIKAL - The Dow Theory - Chart Pola Pergeraka Harga Saham

Lebih terperinci

Inflasi dan Indeks Harga I

Inflasi dan Indeks Harga I PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Metode Pegumpula Data Dalam melakuka sebuah peelitia dibutuhka data yag diguaka sebagai acua da sumber peelitia. Disii peulis megguaka metode yag diguaka utuk melakuka pegumpula

Lebih terperinci

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis BAB 3 METODE PENELITIAN 3.1 Peetapa Kriteria Optimasi Disii peerapa kriteria optimasi yag diguaka utuk megaalisis kebutuha pokok pada PT. Kusuma Kecaa Khatulistiwa yaitu : 1. Aalisis forecastig (peramala

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun 47 BAB IV HASIL DAN PEMBAHASAN Sebagai hasil peelitia dalam pembuata modul Racag Bagu Terapi Ifra Merah Berbasis ATMega8 dilakuka 30 kali pegukura da perbadiga yaitu pegukura timer/pewaktu da di badigka

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci

LOGO MATEMATIKA BISNIS (Deret)

LOGO MATEMATIKA BISNIS (Deret) LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Metode Pegolaha Data Lagkah Lagkah Dalam Pegolaha Data Dalam melakuka pegolaha data yag diperoleh, maka diguaka alat batu statistik yag terdapat pada Statistical

Lebih terperinci

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Halama Tulisa Jural (Judul da Abstraksi) Jural Paradigma Ekoomika Vol.1, No.5 April 2012 PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Oleh : Imelia.,SE.MSi Dose Jurusa Ilmu Ekoomi da Studi Pembagua,

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 22 BAB III METODE PENELITIAN 3.1. Metode Peelitia Pada bab ii aka dijelaska megeai sub bab dari metodologi peelitia yag aka diguaka, data yag diperluka, metode pegumpula data, alat da aalisis data, keragka

Lebih terperinci

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai 37 Gambar 4-3. Layout Model Awal Sistem Pelayaa Kedai Jamoer F. Aalisis Model Awal Model awal yag telah disusu kemudia disimulasika dega waktu simulasi selama 4,5 jam. Selama simulasi dijalaka, aimasi

Lebih terperinci

METODE PENELITIAN. Data yang digunakan dalam penelitian ini adalah data sekunder yang bersifat historis.

METODE PENELITIAN. Data yang digunakan dalam penelitian ini adalah data sekunder yang bersifat historis. III. METODE PENELITIAN 1.1. Jeis da Sumber Data Data yag diguaka dalam peelitia ii adalah data sekuder yag bersifat historis. Sumber data sekuder adalah sumber data peelitia yag diperoleh peeliti secara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur 0 III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai Mei 03. B. Populasi da Sampel Populasi dalam peelitia

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN 16 III. METODOLOGI PENELITIAN 3.1. Keragka Pemikira Pegukura kierja keuaga perusahaa pada dasarya dilaksaaka karea igi megetahui tigkat profitabilitas (keutuga) da tigkat resiko atau tigkat kesehata suatu

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian 19 3 METODE PENELITIAN 3.1 Keragka Pemikira Secara rigkas, peelitia ii dilakuka dega tiga tahap aalisis. Aalisis pertama adalah megaalisis proses keputusa yag dilakuka kosume dega megguaka aalisis deskriptif.

Lebih terperinci

MATEMATIKA EKONOMI (Deret)

MATEMATIKA EKONOMI (Deret) LOGO MATEMATIKA EKONOMI (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com MATEMATIKA EKONOMI Matematika Ekoomi memberika pemahama ilmu megeai kosep matematika dalam bidag bisis da ekoomi.

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Disai Peelitia Tujua Jeis Peelitia Uit Aalisis Time Horiso T-1 Assosiatif survey Orgaisasi Logitudial T-2 Assosiatif survey Orgaisasi Logitudial T-3 Assosiatif survey Orgaisasi

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Madiun, untuk mendapatkan gambaran kondisi tempat penelitian secara umum,

BAB III METODOLOGI PENELITIAN. Madiun, untuk mendapatkan gambaran kondisi tempat penelitian secara umum, 32 BAB III METODOLOGI PENELITIAN 3.1 Objek Peelitia Peelitia dilakuka di PT. INKA yag terletak di Jl. Yos Sudarso o 71 Madiu, utuk medapatka gambara kodisi tempat peelitia secara umum, termasuk kegiata-kegiata

Lebih terperinci

Pengamatan, Pengukuran dan Eksperimen

Pengamatan, Pengukuran dan Eksperimen TEORI KESALAHAN EKSPERIMEN FISIKA DASAR I Pegamata, Pegukura da Eksperime Pegamata da pegukura Teori / model Eksperime Ramala Pegamata payig attetio watch somethig attetively record of somethig see or

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Probabilitas dan Statistika Teorema Bayes. Adam Hendra Brata

Probabilitas dan Statistika Teorema Bayes. Adam Hendra Brata robabilitas da Statistika Teorema ayes dam Hedra rata Itroduksi - Joit robability Itroduksi Teorema ayes eluag Kejadia ersyarat Jika muculya mempegaruhi peluag muculya kejadia atau sebalikya, da adalah

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di halaman Pusat Kegiatan Olah Raga (PKOR) Way Halim Bandar Lampung pada bulan Agustus 2011.

III. METODE PENELITIAN. Penelitian ini dilaksanakan di halaman Pusat Kegiatan Olah Raga (PKOR) Way Halim Bandar Lampung pada bulan Agustus 2011. III. METODE PENELITIAN A. Tempat da Waktu Peelitia Peelitia ii dilaksaaka di halama Pusat Kegiata Olah Raga (PKOR) Way Halim Badar Lampug pada bula Agustus 2011. B. Objek da Alat Peelitia Objek peelitia

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: [email protected] A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. memelihara itik Damiaking murni di Kampung Teras Toyib Desa Kamaruton

III BAHAN DAN METODE PENELITIAN. memelihara itik Damiaking murni di Kampung Teras Toyib Desa Kamaruton III BAHAN DAN METODE PENELITIAN 3.1 Baha da Alat Peelitia 3.1.1 Telur Tetas Itik Damiakig Baha yag diguaka dalam peelitia ii adalah telur tetas itik Damiakig berasal dari iduk yag dipelihara secara ekstesif

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat BAB IV HASIL DAN PEMBAHASAN 4.1 Kebutuha Sistem Sebelum melakuka deteksi da trackig obyek dibutuhka peragkat luak yag dapat meujag peelitia. Peragkat keras da luak yag diguaka dapat dilihat pada Tabel

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

III. METODE PENELITIAN. Subjek dari penelitian adalah siswa kelas X.B SMA Muhammadiyah 2 Bandar

III. METODE PENELITIAN. Subjek dari penelitian adalah siswa kelas X.B SMA Muhammadiyah 2 Bandar III. METODE PENELITIAN A. Subjek da Tempat Peelitia Subjek dari peelitia adalah siswa kelas.b SMA Muhammadiyah 2 Badar Lampug Tahu Ajara 2011-2012 dega jumlah siswa 40 orag yag terdiri dari 15 siswa laki-laki

Lebih terperinci

Kata Kunci : Forecasting, Program Perhitungan, Simple Moving Averages, Weighted Moving Averages, Mean Absolute Deviation, Mean Square Error

Kata Kunci : Forecasting, Program Perhitungan, Simple Moving Averages, Weighted Moving Averages, Mean Absolute Deviation, Mean Square Error PREDIKSI PEMINATAN PROGRAM KEAHLIAN CALON SISWA BARU DENGAN METODE SIMPLE MOVING AVERAGES DAN WEIGHTED MOVING AVERAGES (Studi Kasus : SMK TEXMACO SEMARANG) Isa Raa Machilikha Putera Sistem Iformasi, Fakultas

Lebih terperinci

IV. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan September sampai Desember

IV. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan September sampai Desember IV. METODOLOGI PENELITIAN 4.1. Metode Peelitia 4.1.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka pada bula September sampai Desember 2009, bertempat di Laboratorium Terpadu IPB yag beralamat di Kampus

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1 Lokasi da Waktu Peelitia Peelitia sikap kosume terhadap kopi ista Kopiko Brow Coffee ii dilakuka di Wilaah Depok. Pemiliha dilakuka secara segaja (Purposive) dega pertimbaga

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 22 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di tiga kator PT Djarum, yaitu di Kator HQ (Head Quarter) PT Djarum yag bertempat di Jala KS Tubu 2C/57 Jakarta Barat,

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa III. METODE PENELITIAN A. Settig Peelitia Peelitia ii merupaka peelitia tidaka kelas yag dilaksaaka pada siswa kelas VIIIB SMP Muhammadiyah 1 Sidomulyo Kabupate Lampug Selata semester geap tahu pelajara

Lebih terperinci

KIMIA. Sesi. Sifat Koligatif (Bagian II) A. PENURUNAN TEKANAN UAP ( P)

KIMIA. Sesi. Sifat Koligatif (Bagian II) A. PENURUNAN TEKANAN UAP ( P) KIMIA KELAS XII IA - KURIKULUM GABUNGAN 02 Sesi NGAN Sifat Koligatif (Bagia II) Iteraksi atara pelarut da zat megakibatka perubaha fisik pada kompoekompoe peyusu laruta. Salah satu sifat yag diakibatka

Lebih terperinci

MATERI 14 EVALUASI KINERJA PORTOFOLIO

MATERI 14 EVALUASI KINERJA PORTOFOLIO MATERI 14 EVALUASI KINERJA PORTOFOLIO KERANGKA PIKIR EVALUASI KINERjA PORTOFOLIO (EKP) MENGUKUR TINGKAT RETURN PORTOFOLIO RISK-ADJUSTED PERFORMANCE - INDEKS SHARPE - INDEKS TREYNOR - INDEKS JENSEN dede08m.com

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN. Perumusan - Sasaran - Tujuan. Pengidentifikasian dan orientasi - Masalah.

BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN. Perumusan - Sasaran - Tujuan. Pengidentifikasian dan orientasi - Masalah. BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN 3.1. DIAGRAM ALIR PENELITIAN Perumusa - Sasara - Tujua Pegidetifikasia da orietasi - Masalah Studi Pustaka Racaga samplig Pegumpula Data Data Primer Data Sekuder

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

IV. METODE PENELITIAN. Penelitian ini dilakukan di Kawasan Pantai Anyer, Kabupaten Serang

IV. METODE PENELITIAN. Penelitian ini dilakukan di Kawasan Pantai Anyer, Kabupaten Serang IV. METODE PENELITIAN 4.1 Lokasi da Waktu Peelitia Peelitia ii dilakuka di Kawasa Patai Ayer, Kabupate Serag Provisi Bate. Lokasi ii dipilih secara segaja atau purposive karea Patai Ayer merupaka salah

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jeis peelitia Peelitia ii merupaka jeis peelitia eksperime. Karea adaya pemberia perlakua pada sampel (siswa yag memiliki self efficacy redah da sagat redah) yaitu berupa layaa

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan BAB III METODE PENELITIAN A. Jeis Peelitia Berdasarka pertayaa peelitia yag peeliti ajuka maka jeis peelitia ii adalah peelitia diskriptif kuatitatif. Dalam hal ii peeliti aka mediskripsika kemampua relatig,

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi 5 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMPN 0 Badar Lampug, dega populasi seluruh siswa kelas VII. Bayak kelas VII disekolah tersebut ada 7 kelas, da setiap kelas memiliki

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

PRESENTASI TUGAS AKHIR KI091391

PRESENTASI TUGAS AKHIR KI091391 PRESENTASI TUGAS AKHIR KI0939 APLIKASI PERBAIKAN KONTRAS PADA CITRA RADIOGRAFI GIGI MENGGUNAKAN KOMBINASI METODE HISTOGRAM EQUALIZATION DAN FAST GRAY LEVEL GROUPING (Kata kuci: Fast gray level groupig,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa 54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Alat terapi ini menggunakan heater kering berjenis fibric yang elastis dan

BAB IV HASIL DAN PEMBAHASAN. Alat terapi ini menggunakan heater kering berjenis fibric yang elastis dan BAB IV HASIL DAN PEMBAHASAN 4.1. Spesifikasi Alat Alat terapi ii megguaka heater kerig berjeis fibric yag elastis da di bugkus dega busa, pasir kuarsa, da kai peutup utuk memberi isolator terhadap kulit

Lebih terperinci

Studi Model Variasi Harian Komponen H Berdasarkan Pola Hari Tenang

Studi Model Variasi Harian Komponen H Berdasarkan Pola Hari Tenang Studi Variasi Haria Kompoe H Berdasarka Pola Hari Teag Habiru Pusat Pemafaata Sais Atariksa, LAPAN Bidag Aplikasi Geomaget da Maget Atariksa Jl. Dr. Jujua No. 133 Badug 4173 Abstrak Studi model karakteristik

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 36 BAB III METODE PENELITIAN A. Racaga Peelitia 1. Pedekata Peelitia Peelitia ii megguaka pedekata kuatitatif karea data yag diguaka dalam peelitia ii berupa data agka sebagai alat meetuka suatu keteraga.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Saham Saham adalah surat berharga yag dapat dibeli atau dijual oleh peroraga atau lembaga di pasar tempat surat tersebut diperjualbelika. Sebagai istrumet ivestasi, saham memiliki

Lebih terperinci

III. METODELOGI PENELITIAN

III. METODELOGI PENELITIAN III. METODELOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika, meurut Arikuto (998:73)

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB II TEORI MOTOR LANGKAH

BAB II TEORI MOTOR LANGKAH BAB II TEORI MOTOR LANGKAH II. Dasar-Dasar Motor Lagkah Motor lagkah adalah peralata elektromagetik yag megubah pulsa digital mejadi perputara mekais. Rotor pada motor lagkah berputar dega perubaha yag

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah siswa kelas VIII (delapan) semester ganjil di

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah siswa kelas VIII (delapan) semester ganjil di 4 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah siswa kelas VIII (delapa) semester gajil di SMP Xaverius 4 Badar Lampug tahu ajara 0/0 yag berjumlah siswa terdiri dari

Lebih terperinci

BAB IV PENGUMPULAN DAN PERHITUNGAN DATA

BAB IV PENGUMPULAN DAN PERHITUNGAN DATA BAB IV PENGUMPULAN DAN PERHITUNGAN DATA 4.1 Meetuka udara masuk (efisiesi volumetrik) da efisiesi pegirima pada hasil uji 4.1.1 Rumus udara masuk (efisiesi volumetrik) da efisiesi pegirima Jumlah volume

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB IV ANALISIS DATA PENELITIAN. Data yang digunakan untuk mengevaluasi Gardu Induk Bandar Sribhawono

BAB IV ANALISIS DATA PENELITIAN. Data yang digunakan untuk mengevaluasi Gardu Induk Bandar Sribhawono 38 BAB IV ANALISIS DATA PENELITIAN.1 Data Peelitia Data yag diguaka utuk megevaluasi Gardu Iduk Badar Sribhawoo 8 tahu medatag adalah data pemakaia eergi listrik tahu 2013 sampai 2016 pada trasformator

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 31 Flowchart Metodologi Peelitia BAB III METODOLOGI PENELITIAN Gambar 31 Flowchart Metodologi Peelitia 18 311 Tahap Idetifikasi da Peelitia Awal Tahap ii merupaka tahap awal utuk melakuka peelitia yag

Lebih terperinci

BAB III METODE PENELITIAN. cuci mobil CV. Sangkara Abadi di Bumiayu. Metode analisis yang dipakai

BAB III METODE PENELITIAN. cuci mobil CV. Sangkara Abadi di Bumiayu. Metode analisis yang dipakai 20 BAB III METODE PENELITIAN 3.1 Jeis Peelitia Peelitia ii merupaka aalisis tetag kelayaka ivestasi usaha cuci mobil CV. Sagkara Abadi di Bumiayu. Metode aalisis yag dipakai adalah metode aalisis kuatitatif

Lebih terperinci

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa III. METODE PENELITIAN A. Lokasi da Waktu Peelitia Peelitia tetag Potesi Ekowisata Huta Magrove ii dilakuka di Desa Merak Belatug, Kecamata Kaliada, Kabupate Lampug Selata. Peelitia ii dilaksaaka atara

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci