Pengukuran Kesehatan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengukuran Kesehatan"

Transkripsi

1 1 Pengukuran Kesehatan Ukuran Sentral: Mean atau Arithmetic Mean Median Modus Ukuran Variasi: Range Mean Deviasi Standar deviasi, Standar Error, 95%CI Coefisien Variasi Ukuran Posisi: Median Kuartil Desil Persentil 2 Mean atau Arithmetic Mean Mean paling sering digunakan untuk menggambarkan ukuran pemusatan data n Rumus: x i x = i 1 Contoh:Lama rawat 10 pasien (hari) Data: 2, 3, 4, 2, 3, 5, 3, 6,,3, 4 n Nilai Mean=( )/10=3.5 hari Sifat nilai Mean Proses perhitungannya melibatkan semua data Sangat sensitif terhadap nilai ekstrim (kecil atau besar) Data: 2, 3, 4, 2, 3, 5, 3, 31, 3, 4 Nilai Mean=( )/10=6.0 hari

2 3 Mean atau Arithmetic Mean Bila terhadap seluruh data ditambah dengan konstanta c yaitu y i =x i +c, i=1,2..n maka mean y=mean x + c Contoh:Lama rawat 10 pasien (hari) Data: 2, 3, 4, 2, 3, 5, 3, 6, 3, 4 dan Mean 3.5 hari Masing-masing ditambah dengan angka 2 Data: 4, 5, 6, 4, 5, 7, 5, 8, 5, 6 dan Mean 5.3 atau (3.5+2) hari Bila terhadap seluruh data dikalikan dengan konstanta c yaitu y i =cx i i=1,2..n maka mean y=(mean x)(c) Data: 2, 3, 4, 2, 3, 5, 3, 6, 3, 4 dan Mean 3.5 hari Masing-masing dikali dengan angka 2 Data: 4, 6, 8, 4, 6, 10, 6, 12, 6, 8 dan Mean 7 atau (3.5x2) hari 4 Median(Med) Median membagi data menjadi dua bagian yaitu 50% data berada di bawah nilai median dan 50% data berada di atas nilai median Proses perhitungannya 1. Mengurutkan data dari terkecil ke terbesar 2. Menentukan posisi median yaitu (n+1)/2 3. Menghitung nilai Median Contoh:Lama rawat 10 pasien (hari) Data: 2, 3, 4, 2, 3, 5, 3, 6, 3, 4 Posisi median Di urutkan menjadi: 2,2,3,3,3, 3,4,4,5,6 Posisi median (10+1)/2=5.5 Nilai median adalah (3+3)/2=3 hari 2

3 5 Median(Med) Median membagi data menjadi dua bagian yaitu 50% data berada di bawah nilai median dan 50% data berada di atas nilai median Proses perhitungannya 1. Mengurutkan data dari terkecil ke terbesar 2. Menentukan posisi median yaitu (n+1)/2 3. Menghitung nilai Median Contoh:Lama rawat 9 pasien (hari) Data: 2, 3, 4, 2, 3, 5, 3, 6, 3 Posisi median Di urutkan menjadi: 2,2,3,3, 3,3,4,5,6 Posisi median (9+1)/2=5 Nilai median adalah =3 hari 6 Modus (Mod) Secara kuantitatif nilai yang paling banyak muncul atau frekuensi paling besar Proses perhitungannya Mengurutkan data dari terkecil ke terbesar (mempermudah) Satu modus (unimodal), dua modus (bimodal), dst Tidak ada modus Contoh: Data: 2, 3, 4, 2, 3, 5, 3, 6, 3, 4, Mod=3 Data: 2, 3, 4, 2, 3, 5, 3, 2, 3, 2, Mod=2 dan 3 Data: 2, 3, 4, 5, 6, 7, 8, 9, Tidak ada Modus 3

4 7 Hubungan Empiris Mean, Median dan Modus Simetris Skewness positif Miring ke kanan Mean=Med=Mod Mod Md Mean Skewness negatif Mean=Median=Modus simetris Modus<Median<Mean Skewness Positif Mean<Median<Modus Skewness Negatif Mean Med Mod Modus>Median>Mean.miring ke kiri 8 Kelebihan dan Kekurangan Mean, Median dan Modus Mean Kelebihan Mempertimbangkan semua nilai Dapat menggambarkan mean populasi Cocok untuk data homogen Kekurangan Sensitif /peka terhadap nilai ekstrim Kurang baik untuk data heterogen Median Tidak sensitif /peka terhadap nilai ekstrim Cocok untuk data heterogen /homogen Tidak mempertimbangkan semua nilai Kurang dapat menggambarkan mean pop Modus Tidak sensitif /peka terhadap nilai ekstrim Cocok untuk data homogen/heterogen Tidak mempertimbangkan semua nilai Kurang menggambarkan mean populasi Modus bisa lebih dari satu atau tidak ada 4

5 9 Geometric Mean Indeks harga alat medis = = = = =121 Rata-rata indeks harga alat medis? Geometric Mean=GM Log GM=(log log log log log 121)/5=2,1306 Antilog (log GM)=GM= Weighted Mean Jumlah kunjungan dan tarif berobat Tempat Tarif Jumlah Kunjungan A Rp 10,000, B Rp 15,000, C Rp 8,000, Rata-rata tarif berobat tiap kunjungan? 10000(Rp 10,000)+30000(Rp 15,000)+8000(Rp6000) =Rp 13,

6 11 Harmonic Mean H= k / ( 1/x i ), i = 1,2,3, k Contoh: Seorang calon staf baru di Asurnsi X ditargetkan harus membawa nasabah sebanyak 10 orang dalam jangka waktu 10 minggu sebagai prasyarat menjadi staf baru. Dari pengamatan saudara calon staf tersebut berhasil membawa nasabah sebanyak 3 orang pada minggu pertama, 2 nasabah pada minggu ke dua, 1 orang pada minggu ke tiga dan 1 nasabah pada minggu ke empat. Berapa rata-rata nasabah perminggu yang dapat dibawa calon staf tersebut. Hasilnya: H= 4 / (1/3+1/2+1/1+1/1) = 1.41 orang 12 Ukuran Letak/Posisi Data Median (membagi 2) Kuartil (membagi 4) Desil (membagi 10) Persentil (membagi 10) 6

7 13 Kuartil Ukuran Posisi Data Kuartil membagi data menjadi 4 (empat) bagian yang sama K1 (25%), K2 (50%) dan K3 (75%) Kuartil 1 disimbol K1 merupakan 25% data ada di bawah atau sama dengan nilai K1. Posisi kuartil K i = i (n+1)/4 (i=1,2,3) (n= jml pengamatan) Nilai kuartil (posisi median berada antara 2 titik) K i = x1 + [ posisi,?? (x2-x1) ]?? = desimal Contoh Data: Urutkan: Posisi K1 adalah 1x (14+1)/4=3.75 ada diantara posisi 3 dan 4 Nilai K1=4 + [0.75 (5-4)]=4.75 Posisi K2 adalah 2x (14+1)/4=7.5 ada diantara posisi 7 dan 8 Nilai K2=6 + [0.5 (6-6)]=6 Posisi K3 adalah 3x (14+1)/4=11.25 ada diantara posisi 11 dan 12 Nilai K3=8 + [0.25 (9-8)]= Kuartil Ukuran Posisi Data Kuartil membagi data menjadi 4 (empat) bagian yang sama K1 (25%), K2 (50%) dan K3 (75%) Kuartil 1 disimbol K1 merupakan 25% data ada di bawah atau sama dengan nilai K1. Posisi kuartil K i = i (n+1)/4, i=1,2,3 n= jml pengamatan Nilai kuartil (berada pd 1 titik) Nilai pada posisi tsb Contoh Data: Urutkan: Posisi K1 adalah 1x (15+1)/4= 4 ada di posisi 4 Nilai K1=5 Posisi K2 adalah 2x (15+1)/4=8 ada di posisi 8 Nilai K2=6 Posisi K3 adalah 3x (15+1)/4=12 ada di posisi 12 Nilai K3=9 7

8 15 Kuartil Ukuran Posisi Data Kuartil membagi data menjadi 4 (empat) bagian yang sama K1 (25%), K2 (50%) dan K3 (75%) Kuartil 1 disimbol K1 merupakan 25% data ada di bawah atau sama dengan nilai K1. Posisi kuartil K i = i (n+1)/4, i=1,2,3 n= jml pengamatan Nilai kuartil (n = ganjil) Nilai pada posisi tsb Contoh Data: Urutkan: Posisi K1 adalah 1x (13+1)/4= 3,5 pd posisi 3 dan 4 Nilai K1=4 + 0,5 (5-4) = 4,5 Posisi K2 adalah 2x (13+1)/4=7,0 ada di posisi 7 Nilai K2=6 Posisi K3 adalah 3x (13+1)/4=10,5 ada diantara posisi 10 dan 11 Nilai K3=8 + 0,5 (8-8) = 8 16 Desil Ukuran Posisi Data Desil membagi data menjadi 10 (sepuluh) bagian yang sama D1, D2,., D9 Posisi D i = i (n+1)/10, i=1,2,3,4,5,6,7,8,9 Nilai desil (jika posisi desil berada antara 2 titik) Contoh D i = x1 + [ posisi,?? (x2-x1) ]?? = desimal Data: Urutkan: Posisi D1 adalah 1 x (14+1)/10=1.5 ada diantara posisi 1 dan 2 Nilai D1= (3-2)=2.5 Posisi D5 adalah 5 x (14+1)/10=7.5 ada diantara posisi 7 dan 8 Nilai D2= (6-6)=6 Posisi D7 adalah 7 x (14+1)/10=10.5 ada diantara posisi 10 dan 11 Nilai D7= (8-8)=8 8

9 17 Desil Ukuran Posisi Data Desil membagi data menjadi 10 (sepuluh) bagian yang sama D1, D2,., D9 Posisi D i = i (n+1)/10, i=1,2,3,4,5,6,7,8,9 Nilai desil (jika posisi desil berada antara 2 titik) Contoh D i = x1 + [ posisi,?? (x2-x1) ]?? = desimal Data: Urutkan: Posisi D1 adalah 1 x (15+1)/10=1.6 ada diantara posisi 1 dan 2 Nilai D1= (3-2)=2.6 Posisi D5 adalah 5 x (15+1)/10=8 ada di posisi 8 Nilai D5=6 Posisi D7 adalah 7 x (15+1)/10=11.2 ada diantara posisi 11 dan 12 Nilai D7= (9-8)= Ukuran Posisi Data Persentil Persentil membagi data menjadi 100 (seratus) bagian yang sama P1, P2,., P99 P i = i (n+1)/100, i=1,2,, 99 Contoh Data: Urutkan: Posisi P50 adalah 50 x (14+1)/100=7.5 ada diantara posisi 7 dan 8 Nilai D2= (6-6)=6 Posisi P75 adalah 75 x (14+1)/100=11.25 ada diantara posisi 11 dan 12 Nilai P75= (9-8)=8.25 9

10 19 Ukuran Variasi Data Ukuran Variasi Mutlak Range Mean Deviasi Standar Deviasi Ukuran Variasi Relatif Koefisien variasi 20 Ukuran Variasi Data Contoh:Lama rawat 10 pasien (hari) di Dua RS RS A: 2,2,3,3,3,3,4,4,5,6 maka nilai Mean=3.5 hari RS B: 1,1,2,3,3,3,4,5,5,8 maka nilai Mean=3.5 hari RS A dan RS B mempunyai nilai Mean yang sama tetapi mempunyai variasi data yang berbeda SD RS A= 1.27 hari dan SD RS B=2.12 hari Bila hanya menampilkan informasi ukuran pemusatan data (misalnya Mean) ternyata ada informasi yang hilang tanpa mengikutsertakan ukuran variasi data. Ukuran Variasi Data (Mutlak): Range, Mean Deviasi dan Standar Deviasi (SD) Ukuran Variasi Data (Relatif): Coefficient of Variation (COV) 10

11 21 Range (Kisaran) Ukuran variasi data yang paling sederhana dibandingkan dengan Mean Deviasi dan Standar Deviasi Proses perhitungannya: Urutkan data dari terkecil ke terbesar Nilai Range adalah selisih dari data terbesar terhaap data terkecil Contoh:Lama rawat 10 pasien (hari) di Dua RS RS A: 2,2,3,3,3,3,4,4,5,6 maka nilai Range=4 hari RS B: 1,1,2,3,3,3,4,5,5,8 maka nilai Range=7 hari Nilai range juga sensitif terhadap nilai-nilai ekstrim besar atau kecil 22 Mean Deviasi Rata-rata Penyimpangan (Mean Deviasi) dalam harga mutlak dari masing-masing pengamatan terhadap nilai Mean-nya Contoh:Lama rawat 10 pasien (hari) di Dua RS RS A: 2,2,3,3,3,3,4,4,5,6 dengan nilai mean=3.5 hari RS A: ( )/10 = 1 hari RS A: (1,5+1, )/10 = 1 hr RS B: 1,1,2,3,3,3,4,5,5,8 dengan nilai mean=3.5 hari RS B: ( )/10 =1.6 hari Mean deviasi juga sensitif terhadap nilai-nilai ekstrim besar atau kecil 11

12 23 Ukuran Variasi Data Standar Deviasi Ukuran variasi data yang paling sering digunakan Lebih menggambarkan variasi data yang sesungguhnya dibandingkan Range & mean deviasi Rumus Standar Deviasi Sampel SD = n i 1 x i n 1 x 2 24 Standar Deviasi Rata-rata kuadrat Penyimpangan dari masing-masing pengamatan terhadap nilai Mean-nya Contoh:Lama rawat 10 pasien (hari) di Dua RS RS A: 2,2,3,3,3,3,4,4,5,6 dengan nilai mean=3.5 hari RS A: (2-3.5) 2 +(2-3.5) 2 +(3-3.5) 2 +(3-3.5) 2 +(3-3.5) 2 +(3-3.5) 2 +(4-3.5) 2 +(4-3.5) 2 +(5-3.5) 2 +(6-3.5) 2 /10-1 =.. RS A: (1,5 2 +1, )/9 =

13 25 Ukuran Variasi Data Coefisien Variasi (COV) Koefisien variasi adalah rasio standar deviasi dengan mean yang dinyatakan dalam persen Membandingkan variasi dua kelompok data yang mempunyai unit atau satuan pengukuran atau gradasi yang berbeda Rumus SD COV = x100% x Contoh: Mean BB=40.5 kg, SD=5 kg maka COV=(5/40.5)x100% =12.3% Mean TB=167 cm, SD=12 cm maka COV=(12/167) x 100%=7.2% 26 Kemiringan Distribusi Data (Skewness) Simetris Skewness 0 Skewness positif Mean=Med=Mod Skewness negatif Pearson Mod Md Mean x Mod = SD 3( x Med ) atau SD Mean Med Mod 13

14 27 Keruncingan distribusi data (Kurtosis) y 4 ( x i x) 4 4 nsd Mesokurtis = 4 = 3 Leptokurtis= 4 >3 x Platykurtis = 4 < 3 28 Contoh soal Diketahui dari 200 mhs, rata2 berat badannya adalah 60 kg, median 50,01kg Std Deviasi 12 kg, minimum 45kg, dan maksimum 80 kg. Hitunglah berapa org mhs yg memiliki berat badan <50kg? Hitunglah berapa org mhs yg memiliki berat badan >50kg? 14

15 29 Contoh soal Diketahui dari 200 mhs, rata2 berat badannya adalah 60 kg, kuartil-1 45,01kg, Std Deviasi 12 kg, minimum 40kg, dan maksimum 80 kg. Hitunglah berapa org mhs yg memiliki berat badan <45kg? = 25% * 200 = 50 org Hitunglah berapa org mhs yg memiliki berat badan >45kg? = 75% * 200 = 150 org 30 TUGAS Hitunglah nilai Kuartil-1 dan kuartil-3 dari variabel: 1. Umur 2. BB 3. TB (Gunakan data yg sama) 15

Pengukuran Statistik Deskriptif UKURAN PUSAT, UKURAN VARIASI DAN UKURAN POSISI

Pengukuran Statistik Deskriptif UKURAN PUSAT, UKURAN VARIASI DAN UKURAN POSISI Pengukuran Statistik Deskriptif UKURAN PUSAT, UKURAN VARIASI DAN UKURAN POSISI Besral: Departemen Biostatistik dan Kependudukan Fakultas Kesehatan Masyarakat Universitas Indonesia, 2012 SAP Statistika

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri

Penyimpulan data numerik & kategorik. Elsa Roselina Dewi Gayatri Penyimpulan data numerik & kategorik Elsa Roselina Dewi Gayatri P. data numerik Tendensi sentral (mean, median, modus) Hubungan mean, median, modus Ukuran variasi (range, interkuartil range, mean deviasi,

Lebih terperinci

By : Hanung N. Prasetyo

By : Hanung N. Prasetyo theory STATISTIKA DESKRIPTIF By : Hanung N. Prasetyo UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran

Lebih terperinci

REVIEW BIOSTATISTIK DESKRIPTIF

REVIEW BIOSTATISTIK DESKRIPTIF REVIEW BIOSTATISTIK DESKRIPTIF POKOK BAHASAN 1. Konsep statistik deskriptif 2. Data dan variabel 3. Nilai Tengah (Ukuran Pusat), posisi dan variasi) pada data tunggal dan kelompok 4. Penyajian data 5.

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Dispersi Data Dispersi Data Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Beberapa jenis ukuran dispersi data : Jangkauan (range) Simpangan rata-rata

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan 1 DAFTAR ISI Mean Median Modus Kuartil, Desil dan Presentil Hubungan Mean-Median-Modus 2 Ukuran Statistik Untuk menjelaskan ciri-ciri

Lebih terperinci

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi

STATISTIKA DESKRIPTIF. Tendensi Sentral & Ukuran Dispersi STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi Statistik dan Statistika Statistik : nilai-nilai ukuran data yang mudah dimengerti. Contoh : statistik liga sepak bola Indonesia Statistika : ilmu

Lebih terperinci

Ukuran gejala pusat. Nugraeni

Ukuran gejala pusat. Nugraeni Ukuran gejala pusat Nugraeni UKURAN PEMUSATAN Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran pemusatan : 1.

Lebih terperinci

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA.

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Populasi : totalitas dari semua objek/ individu yg memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti Sampel : bagian dari populasi yang

Lebih terperinci

BAB IV DISPERSI DATA

BAB IV DISPERSI DATA BAB IV DIPERI DATA Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Ukuran dispersi yang sering digunakan dalam penelitian ialah jangkauan (range), simpangan rata-rata (mean deviation),

Lebih terperinci

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal

Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal Ukuran Dispersi (Variasi, atau Penyimpangan) untuk Data Tunggal BAB: UKURAN VARIABILITAS/ DISPERSI A. Pengertian Ukuran Variabilitas: Dlm kehidupan sehari-hari, kita sering menemukan banyaknya informasi

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

Pengukuran Deskriptif

Pengukuran Deskriptif Pengukuran Deskriptif 2.2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi

Lebih terperinci

OUTLINE BAGIAN I Statistik Deskriptif

OUTLINE BAGIAN I Statistik Deskriptif UKURAN PENYEBARAN 1 OUTLINE BAGIAN I Statistik Deskriptif Pengertian Statistika Penyajian Data Ukuran Pemusatan Ukuran Penyebaran Angka Indeks Deret Berkala dan Peramalan Range, Deviasi Rata-rata, Varians

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

MUHAMMAD HAJARUL ASWAD A MT.KULIAH: STATISTIKA DESKRIPTIF UNANDA, 2016

MUHAMMAD HAJARUL ASWAD A MT.KULIAH: STATISTIKA DESKRIPTIF UNANDA, 2016 MUHAMMAD HAJARUL ASWAD A MT.KULIAH: STATISTIKA DESKRIPTIF UNANDA, 2016 RATA- RATA nilai matakuliah mahasiswa tsb adalah B Sumber: https://sinarnetri.files.wordpress.com/2010/04/khs.png Aswad2016 Titik-titik

Lebih terperinci

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom

Statistika Materi 3 UKURAN PEMUSATAN. Nilai Tunggal yang mewakili Karakteristik Sekumpulan data. Hugo Aprilianto, M.Kom Statistika Materi 3 UKURAN PEMUSATAN Nilai Tunggal yang mewakili Karakteristik Sekumpulan data UKURAN PEMUSATAN Adalah nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

Statistik Deskriptif Ukuran Dispersi

Statistik Deskriptif Ukuran Dispersi MAKALAH STATISTIKA DASAR Statistik Deskriptif Ukuran Dispersi Oleh: Kelompok 1 Dwireta Ramadanti Aliv Vito Palox Arif Rahman Hakim Asrar Halim Desi Anggraini Eki Maruci Hary Sentosa Monalisa Muhammad Irvand

Lebih terperinci

Statistika Materi 5. Ukuran Penyebaran. (Lanjutan) Hugo Aprilianto, M.Kom

Statistika Materi 5. Ukuran Penyebaran. (Lanjutan) Hugo Aprilianto, M.Kom Statistika Materi 5 Ukuran Penyebaran (Lanjutan) Hugo Aprilianto, M.Kom UKURAN PENYEBARAN RELATIF yaitu mengubah ukuran penyebaran dari berbagai satuan menjadi ukuran relatif atau persen. Penggunaan ukuran

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

STATISTIK. Rahma Faelasofi

STATISTIK. Rahma Faelasofi STATISTIK Rahma Faelasofi 1 BAB 3 VARIABILITAS Pengertian Jangkauan Mean deviasi Standar deviasi 2 Pengertian Pengukuran penyebaran adalah pengukuran tingkat penyebaran nilai dalam suatu kumpulan data

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Risiko adalah kerugian karena kejadian yang tidak diharapkan terjadi. Misalnya, kejadian sakit mengakibatkan kerugian sebesar biaya berobat dan upah yang hilang karena

Lebih terperinci

Pengukuran Deskriptif. Debrina Puspita Andriani /

Pengukuran Deskriptif. Debrina Puspita Andriani    / Pengukuran Deskriptif 3 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Pendahuluan Tendensi Sentral Ukuran Dispersi 3 Pendahuluan Pengukuran Deskriptif 4 Definisi Pengukuran

Lebih terperinci

UKURAN TENGAH DAN UKURAN DISPERSI

UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH DAN UKURAN DISPERSI UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan paling tengah

Lebih terperinci

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT UKURAN NILAI SENTRAL&UKURAN PENYEBARAN Tita Talitha, MT DISTRIBUSI FREKWENSI PENGERTIAN distribusi frekwensi adalah suatu tabel dimana banyaknya kejadian / frekwensi didistribusikan ke dalam kelas-kelas

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Ukuran Pemusatan Data Ukuran Pemusatan Data Ukuran pemusatan adalah suatu ukuran yang menunjukkan dimana suatu data memusat atau suatu kumpulan pengamatan memusat (mengelompok)

Lebih terperinci

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT

UNIVERSITAS NEGERI MALANG FAKULTAS ILMU KEOLAHRAGAAN JURUSAN ILMU KESEHATAN MASYARAKAT UKURAN PEMUSATAN MAKALAH UNTUK MEMENUHI TUGAS MATAKULIAH Dasar-dasar Biostatistik Deskriptif Yang dibina oleh Bapak Dr. Saichudin, M.Kes Ibu dr. Anindya, S.Ked Oleh : Derada Imanadani 130612607847/2013

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Pertemuan ketiga UKURAN PEMUSATAN DATA Karakteristik suatu kumpulan data adalah : (1). Memusat pada nilai tertentu dari suatu distribusi, yang disebut nilai pusat (middle of data set), dan (2). Menyebar/berpencar

Lebih terperinci

UKURAN PEMUSATAN DATA STATISTIK

UKURAN PEMUSATAN DATA STATISTIK UKURAN PEMUSATAN DATA STATISTIK Pengantar Dari setiap kumpulan data, terdapat tiga ukuran atau tiga nilai statistik yang dapat mewakili data tersebut, yaitu rataan (mean), median, dan modus. Ketiga nilai

Lebih terperinci

1.0 Distribusi Frekuensi dan Tabel Silang

1.0 Distribusi Frekuensi dan Tabel Silang ANALISIS DESKRIPTIF 1.0 Distribusi Frekuensi dan Tabel Silang 1.1 Pengantar Statistik deskriptif Statistika deskriptif adalah bidang statistika yang mempelajari tatacara penyusunan dan penyajian data yang

Lebih terperinci

BAGIAN UKURAN PEMUSATAN DAN UKURAN LETAK. Memahami konsep dan menerapkan prosedur statistik dalam menghitung ukuran pemusatan dan ukuran letak.

BAGIAN UKURAN PEMUSATAN DAN UKURAN LETAK. Memahami konsep dan menerapkan prosedur statistik dalam menghitung ukuran pemusatan dan ukuran letak. UKURAN PEMUSATAN DAN UKURAN LETAK BAGIAN 1 Memahami konsep dan menerapkan prosedur statistik dalam menghitung ukuran pemusatan dan ukuran letak. a. Mendeskripsikan konsep dan penerapan prosedur statistik

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.

Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. UKURAN PENYEBARAN 1 Bab 4 PENGANTAR Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. Ukuran penyebaran membantu

Lebih terperinci

Pengumpulan & Penyajian Data

Pengumpulan & Penyajian Data Pengumpulan & Penyajian Data Cara Pengumpulan Data 1. Mengadakan penelitian langsung ke lapangan atau laboratorium terhadap obyek yang diteliti, hasilnya dicatat dan dianalisis 2. Mengambil atau menggunakan

Lebih terperinci

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR TNR 12 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL I TNR 12 Space 2.0 STATISTIK

Lebih terperinci

Statistik Deskriptif. Statistik Farmasi 2015

Statistik Deskriptif. Statistik Farmasi 2015 Statistik Deskriptif Tujuan perkuliahan Setelah mengikuti perkuliahan, diharapkan mahasiswa mampu: 1. Meringkas data, dengan menggunakan pengukuran tendensi sentral seperti rata-rata, median, modus dan

Lebih terperinci

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting

Lebih terperinci

dapat digunakan formulasi sebagai berikut : Letak Letak Letak

dapat digunakan formulasi sebagai berikut : Letak Letak Letak 1. Ukuran Letak Agar kita dapat mengetahui lebih jauh mengenai karakteristik data observasi dengan beberapa ukuran sentral, kita sebaiknya mengetahui beberapa ukuran lain, yaitu ukuran letak. Ada tiga

Lebih terperinci

Statistik Deskriptif: Central Tendency & Variation

Statistik Deskriptif: Central Tendency & Variation Statistik Deskriptif: Central Tendency & Variation Widya Rahmawati Central Tendency (Ukuran Pemusatan) dan Variation (Ukuran Simpangan) 1) Ukuran pemusatan atau ukuran lokasi adalah beberapa ukuran yang

Lebih terperinci

Ukuran Pemusatan (Central Tendency)

Ukuran Pemusatan (Central Tendency) Ukuran Pemusatan (Central Tendency) MUHAMMAD ARIF RAHMAN [email protected] Central Tendency Ukuran statistik yang menyatakan bahwa satu skor dapat mewakili keseluruhan distribusi skor yang sedang diteliti.

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA UKURAN PEMUSATAN DATA DAN UKURAN LETAK FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA PENDAHULUAN Untuk mendapatkan gambaranyang lebih jelas tentang sekumpulan data data itu disajikan dalam

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

BAB I PENDAHULUAN. TNR 12 SPACE 2.0 BEFORE AFTER 0 MARGIN 3,4,3,3 KERTAS A4 TULISAN INGGRIS ITALIC 1.2 Rumusan Masalah

BAB I PENDAHULUAN. TNR 12 SPACE 2.0 BEFORE AFTER 0 MARGIN 3,4,3,3 KERTAS A4 TULISAN INGGRIS ITALIC 1.2 Rumusan Masalah BAB I PENDAHULUAN TNR 14 BOLD 1.1 Latar Belakang (1 halaman. min 4 paragraf.) TNR 12 SPACE 2.0 BEFORE AFTER 0 MARGIN 3,4,3,3 KERTAS A4 TULISAN INGGRIS 1.2 Rumusan Masalah Rumusan masalah yang digunakan

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : [email protected] Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 2 Review Statistika Dasar

STK511 Analisis Statistika. Pertemuan 2 Review Statistika Dasar STK511 Analisis Statistika Pertemuan 2 Review Statistika Dasar Statistika Populasi Sampling Pendugaan Contoh Deskriptif Tingkat Keyakinan Statistika Deskriptif vs Statistika Inferensia Ilmu Peluang Parameter

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik Bahasan : Membahas Silabus Perkuliahan Tujuan Umum : Mahasiswa Mengetahui Komponen Yang Perlu Dipersiapkan Dalam Matakuliah Ini satu kali Tujuan 1 Menjelaskan tentang Mengakomodasi berbagai masukan

Lebih terperinci

Kenapa Data Harus Diringkas?

Kenapa Data Harus Diringkas? 1 Kenapa Data Harus Diringkas? Agar data berguna, pengamatan yang diperoleh harus disusun dalam bentuk yang lebih terorganisir. Peringkasan data akan memudahkan pengambilan kesimpulan Peringkasan data

Lebih terperinci

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN

BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN BESARAN STATISTIK (UKURAN TENGAH DAN UKURAN DISPERSI) UKURAN TENGAH Ukuran tengah nilai tunggal yang representatif untuk keseluruhan nilai data. Ukuran tendensi sentral nilainya cenderung terletak di urutan

Lebih terperinci

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si

STATISTIKA DESKRIPTIF. Wenny Maulina, S.Si., M.Si STATISTIKA DESKRIPTIF Wenny Maulina, S.Si., M.Si Ukuran Pemusatan Ukuran pemusatan ukuran ringkas yang menggambarkan karakteristik umum data tersebut. Modus (Mode): Nilai pengamatan yang paling sering

Lebih terperinci

STATISTIKA DESKRIPTIF Dosen:

STATISTIKA DESKRIPTIF Dosen: LEMBAR TUGAS MAHASISWA (LTM) Mata Kuliah: STATISTIKA DESKRIPTIF Dosen: Nama NIM Kelas Jurusan Akademi : : : : : AKADEMI - AKADEMI BINA SARANA INFORMATIKA J A K A R T A C.2009 1 BAB I PENDAHULUAN Pertemuan

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG

HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HARISON,S.Pd,M.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG HOMOGEN DAN HETEROGEN DATA I. 50,50,50,50,50 II. 30,40,50,60,70 III.0,30,50,70,80 Ketiga kelompok data

Lebih terperinci

KWARTIL, DESIL DAN PERSENTIL

KWARTIL, DESIL DAN PERSENTIL KWARTIL, DESIL DA PERSETIL 1. KWARTIL Kwartil merupakan nilai yang membagi frekuensi distribusi data menjadi empat kelompok yang sama besar. Dengan kata lain kwartil merupakan nilai yang membagi tiaptiap

Lebih terperinci

Statistik Deskriptif dengan Microsoft Office Excel

Statistik Deskriptif dengan Microsoft Office Excel Statistik Deskriptif dengan Microsoft Office Excel Junaidi, Junaidi I. Prosedur Statistik Deskriptif pada Excel Statistik deskriptif adalah statistik yang bertujuan untuk mendeskripsikan atau menggambarkan

Lebih terperinci

MINGGU KE- III: UKURAN NILAI SENTRAL

MINGGU KE- III: UKURAN NILAI SENTRAL MINGGU KE- III: UKURAN NILAI SENTRAL Tujuan Instruksinal Umum : 1. Mahasiswa memahami apa yang dimaksud dengan nilai sentral 2. Mahasiswa memahami guna dari perhitungan nilai sentral 3. Mahasiswa dapat

Lebih terperinci

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada.

Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Azimmatul Ihwah Ukuran tendensi sentral seperti mean, median, dan modus seringkali tidak mempunyai cukup informasi untuk menyimpulkan data yg ada. Ada cara yg lebih baik untuk menginterpretasi data yg

Lebih terperinci

Laporan Tugas dan Quiz Statistik Deskriptif. 1. Berikan penjelasan secara singkat apa yang dimaksud dengan:

Laporan Tugas dan Quiz Statistik Deskriptif. 1. Berikan penjelasan secara singkat apa yang dimaksud dengan: Nama : Purnomo Satria NIM : 1133467162 Evaluasi Pertemuan 4 dan 5 Laporan Tugas dan Quiz Statistik Deskriptif 1. Berikan penjelasan secara singkat apa yang dimaksud dengan: a. Rata-rata hitung, median,

Lebih terperinci

PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014

PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014 PENGANTAR STATISTIK Pusat Data dan Satistik Pendidikan-Kebudayaan Setjen, Kemdikbud 2014 Daftar Isi: 1. Definisi Statistik 2. Unit Analisis & Lingkup Analisis 3. Pengukuran Nilai Sentral 4. Pengukuran

Lebih terperinci

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng.

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng. PROBABILITAS &STATISTIK ke- Oleh: Kholistianingsih, S.T., M.Eng. ILAI TEGAH, MEDIA, MODUS, dan, UKURA PEMUSATA LAIYA PEULISA IDEKS, ATAU TIKALAS Tetapkan lambang ( dibaca sub ) yang menunukkan sebarang

Lebih terperinci

Ukuran Nilai Sentral

Ukuran Nilai Sentral Ukuran Nilai Sentral Nilai Sentral Pengertian Nilai Sentral Nilai sentral suatu rangkaian data adalah nilai dalam rangkaian data yang dapat mewakili data tersebut. Suatu rangkaian data biasanya memiliki

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A Oleh : WIJAYA email : [email protected] FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 Wijaya : Statistika 0 I. PENDAHULUAN Statistika adalah

Lebih terperinci

STATISTIKA MATEMATIKA KELAS XI MIA

STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA MATEMATIKA KELAS XI MIA STATISTIKA Matematika Kelas XI MIA 90 80 70 60 50 40 30 20 10 0 East West North 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Disusun oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2016

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial BAB 2 LANDASAN TEORI 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial Risiko adalah kerugian akibat kejadian yang tidak dikehendaki muncul. Risiko diidentifikasikan berdasarkan faktor penyebabnya,

Lebih terperinci

BAB III UKURAN TENGAH DAN DISPERSI

BAB III UKURAN TENGAH DAN DISPERSI BAB III UKURAN TENGAH DAN DISPERSI Dalam pembicaraan yang lalu kita telah mempresentasikan data dalam bentuk tabel dan grafik yang bertujuan meringkaskan dan menggambarkan data kuantitatif, untuk mendapatkan

Lebih terperinci

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif

BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR. Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif BAB 8 ANALISIS STUDI DESKRIPTIF DAN DATA DASAR Bab ini menjelaskan secara lebih mendalam jenis studi deskriptif maupun teknik mendekripsikan data secara grafis maupun secara angka. Sebagai ilustrasi aplikasi

Lebih terperinci

C. Ukuran Letak dan Ukuran Penyebaran Data

C. Ukuran Letak dan Ukuran Penyebaran Data C. Ukuran Letak dan Ukuran Penyebaran Data. Ukuran Letak Data Tunggal a. Kuartil Pada data dengan banyak data n 4, Kuartil membagi data menjadi 4 bagian sama banyak, sehingga diperoleh tiga nilai yang

Lebih terperinci

PENGANTAR STATISTIK SUGENG ENJANG...!!! Pengertian Statistik. Imam Gunawan. Arti sempit (data):

PENGANTAR STATISTIK SUGENG ENJANG...!!! Pengertian Statistik. Imam Gunawan. Arti sempit (data): SUGENG ENJANG...!!! PENGANTAR STATISTIK Imam Gunawan Pengertian Statistik Arti sempit (data): Semua fakta yang berwujud angka tentang sesuatu kejadian Ex: statistik pengalaman seorang petinju M D K = 35

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Teknik. Memahami cara memperoleh data yang baik, menentukan jenis dan ukuran data, serta memeriksa, dan menyusun data.

SILABUS. Kegiatan Pembelajaran Teknik. Memahami cara memperoleh data yang baik, menentukan jenis dan ukuran data, serta memeriksa, dan menyusun data. SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : XII STANDAR KOMPETENSI : Menerapkan aturan konsep statistika dalam pemecahan masalah. KODE KOMPETENSI : 10 ALOKASI WAKTU : 52 x 45 Kompetensi

Lebih terperinci

III. BESARAN, LOKASI, DAN VARIASI

III. BESARAN, LOKASI, DAN VARIASI III. BESARAN, LOKASI, DAN VARIASI RATA-RATA Rata-rata (average) adalah nilai yang mewakili sehimpunan atau sekelompok data (a set of data). Nilai rata-rata cenderung berada di tengah-tengah jika data disusun

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian tidak terantisipasi yang menyebabkan kerugian perusahaan. Depresi tajam dan cepat terhadap

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd.

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd. Tutorial : ke-1 Nama Tutor : a. Menjelaskan pengertian statistik; b. Menjelaskan pengertian statistika; c. Menjelaskan pengertian data statistik; d. Menjelaskan contoh macam-macam data; e. Menjelaskan

Lebih terperinci

Pengertian Statistika (1) Statistika: Ilmu mengumpulkan, menata, menyajikan, menganalisis, dan menginterprestasikan data menjadi informasi untuk

Pengertian Statistika (1) Statistika: Ilmu mengumpulkan, menata, menyajikan, menganalisis, dan menginterprestasikan data menjadi informasi untuk Pengertian Statistika (1) Statistika: Ilmu mengumpulkan, menata, menyajikan, menganalisis, dan menginterprestasikan data menjadi informasi untuk membantu pengambilan keputusan yang efektif. Statistik:

Lebih terperinci

STATISTIK DAN STATISTIKA

STATISTIK DAN STATISTIKA STATISTIK DAN STATISTIKA MAKNA DARI PENGERTIAN STATISTIK DAN STATISTIKA DATA STATISTIK Pengertian : Data adalah keterangan atau fakta mengenai suatu persoalan bisa berupa kategori (rusak, baik senang,

Lebih terperinci

TUGAS MAKALAH STATISTIKA DESKRIPTIF UKURAN PENYEBARAN DATA (KEMIRINGAN DAN KERUNCINGAN) MAKALAH

TUGAS MAKALAH STATISTIKA DESKRIPTIF UKURAN PENYEBARAN DATA (KEMIRINGAN DAN KERUNCINGAN) MAKALAH TUGAS MAKALAH STATISTIKA DESKRIPTIF UKURAN PENYEBARAN DATA (KEMIRINGAN DAN KERUNCINGAN) MAKALAH Diajukan untuk memenuhi tugas mata kuliah Statistika Deskriptif Kelompok 5 : 1. Ade Risma Arianto (NIM: 12110457)

Lebih terperinci

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika Catatan Kuliah MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA2082

Lebih terperinci

STATISTIK. dwipurnama2.blogspot.com

STATISTIK. dwipurnama2.blogspot.com STATISTIK dwipurnama2.blogspot.com adalah sebuah cabang ilmu dari matematika yang mempelajari cara cara : Mengumpulkan dan menyusun data,mengelolah dan menganalisa data,serta menyajikan dalam bentuk kurva

Lebih terperinci

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut :

Rata-rata hitung sekumpulan data hasil observasi dapat dihitung dengan menggunakan rumus berikut : UKURAN STATISTIK Pendahuluan aturan statistic merupakan aturan yang menunjukkan bagaimana suatu gugus data memusat dan menyebar. aturan pemusatan yang umum digunakan untuk mendeskripsikan data adalah mean

Lebih terperinci

Median Median dari data yang belum dikelompokkan

Median Median dari data yang belum dikelompokkan Median Median merupakan salah satu ukuran pemusatan atau sebuah nilai yang berada ditengah-tengah data, setelah data tersebut diurutkan. Mungkin Anda bertanya, mengapa perlu median setelah Anda mempelajari

Lebih terperinci

BAB II TEORI DASAR. Metode statistik telah banyak digunakan dalam kehidupan sehari-hari, oleh

BAB II TEORI DASAR. Metode statistik telah banyak digunakan dalam kehidupan sehari-hari, oleh BAB II TEORI DASAR 2.1 Pendahuluan Metode statistik telah banyak digunakan dalam kehidupan sehari-hari, oleh peneliti, pemerintah, masyarakat umum, pemimpin perusahaan, baik dalam bidang ilmu pengetahuan,

Lebih terperinci

. Rumus untuk rata-rata gabungan adalah

. Rumus untuk rata-rata gabungan adalah Jawaban Bab IV 1. Macam-macam ukuran gejala pusat dan ukuran letak yang dikenal hingga sekarang terdiri dari golongan pertama yang meliputi rata-rata atau rata-rata hitung, rata-rata ukur, rata-rata harmonic,

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 6 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 6 MODUS Modus (Mo) adalah sebuah ukuran untuk menyatakan fenomena yang paling banyak terjadi atau

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 1:,, Statistika FMIPA Universitas Islam Indonesia Data Populasi dan Sampel Menurut Websters New World Dictionary, data berarti sesuatu yang diketahui atau dianggap. Dengan demikian, data dapat memberikan

Lebih terperinci

Tentang MA5283 Statistika BAB 1 STATISTIKA DESKRIPTIF MA5283 STATISTIKA. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Orang Cerdas Belajar Statistika

Tentang MA5283 Statistika BAB 1 STATISTIKA DESKRIPTIF MA5283 STATISTIKA. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Orang Cerdas Belajar Statistika Orang Cerdas Belajar Statistika Bentuk perkuliahan Jadwal Kuliah Buku teks Penilaian Matriks kegiatan perkuliahan Jadwal Kuliah 1 Tatap muka di kelas 2 Praktikum di Lab. Statistika dan Komputasi Bentuk

Lebih terperinci

Ukuran Statistik / Tendency Central

Ukuran Statistik / Tendency Central Ukuran Statistik / Tendency Central Tinjauan : Data Tidak Dikelompokkan & Data di Kelompokkan (Dist. Frek.) 1 Data yg tidak dikelompokkan : 1. Rata-rata : [1].Rata-rata (mean). [2].Rata-rata alternatif

Lebih terperinci

Ukuran Statistik. Data yg tidak dikelompokkan :

Ukuran Statistik. Data yg tidak dikelompokkan : /2/201 Ukuran Statistik Tinjauan : Data Tidak Dikelompokkan & Data di Kelompokkan (Dist. Frek.) 1 Data yg tidak dikelompokkan : 1. Rata-rata : [1].Rata-rata (mean). [2].Rata-rata alternatif & [3].Rata-rata

Lebih terperinci

CIRI-CIRI DISTRIBUSI NORMAL

CIRI-CIRI DISTRIBUSI NORMAL DISTRIBUSI NORMAL CIRI-CIRI DISTRIBUSI NORMAL Berbentuk lonceng simetris terhadap x = μ distribusi normal atau kurva normal disebut juga dengan nama distribusi Gauss, karena persamaan matematisnya ditemukan

Lebih terperinci

Statistika Pendidikan

Statistika Pendidikan Statistika Pendidikan Statistika adalah metode ilmiah yang mempelajari pengumpulan, pengaturan, perhitungan, penggambaran dan penganalisisan data, serta penarikan kesimpulan yang valid berdasarkan penganalisisan

Lebih terperinci

PENGUKURAN VARIASI. Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi

PENGUKURAN VARIASI. Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi BAB 4 PENGUKURAN VARIASI Kompetensi Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi Indikator 1. Menjelaskan range 2. Menjelaskan range antar kuartil 3. Menjelaskan

Lebih terperinci

UKURAN-UKURAN NILAI PUSAT

UKURAN-UKURAN NILAI PUSAT UKURAN-UKURAN NILAI PUSAT Nilai tunggal yang dinilai dapat mewakili keseluruhan nilai dalam data dianggap sebagai rata-rata (averages). Nilai rata-rata dihitung bedasarkan keseluruhan nilai yang terdapat

Lebih terperinci

PENYAJIAN DATA. Cara Penyajian Data meliputi :

PENYAJIAN DATA. Cara Penyajian Data meliputi : PENYAJIAN DATA Cara Penyajian Data meliputi : 1. Tabel Tabel terbagi menjadi : - Tabel Biasa - Tabel Kontingensi - Tabel Distribusi Tabel Distribusi terbagi menjadi : Tabel Distribusi Mutlak Tabel Distribusi

Lebih terperinci

Materi UAS: 1. Indeks 2. Trend Linear dan Non Linear 3. Regresi dan korelasi sederhana

Materi UAS: 1. Indeks 2. Trend Linear dan Non Linear 3. Regresi dan korelasi sederhana STATISTIK I Buku Acuan: 1. Pokok-pokok materi Statistik I oleh Ir.M.Iqbql Hasan,M.M, edisi 2 cetakan 6 th 2010 2. Dasar-dasar statistika untuk Ekonomi oleh Drs. Danang Sunyoto,S.H., S.E.,M.M.,cetakan I

Lebih terperinci

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA.

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA. STATISTIKA INDUSTRI I Agustina Eunike, ST., MT., MBA. PERTEMUAN-1 DATA Data Hasil pengamatan pada suatu populasi Untuk mendapatkan informasi yang akurat Pengumpulan data Pengolahan data Penyajian data

Lebih terperinci

Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013

Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013 UKURAN STATISTIK BAGI DATA Ledhyane Ika Harlyan Jurusan Pemanfaatan Sumberdaya Perikanan & Kelautan Universitas Brawijaya 2013 Konten Definisi: -Data dan Jenis Data -Parameter dan Statistik -Ukuran Statistik

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

Setelah mempelajari bahan ajar ini diharapkan Anda dapat:

Setelah mempelajari bahan ajar ini diharapkan Anda dapat: D. Pembelajaran 4 1. Silabus N o STANDAR KOMPE TENSI Menerapk an aturan konsep statistika dalam pemecaha n masalah KOMPE TENSI DASAR Mengidenti fikasi pengerti-an statistik, statistika, populasi dan sampel

Lebih terperinci

MATERI STATISTIK. Genrawan Hoendarto

MATERI STATISTIK. Genrawan Hoendarto MATERI STATISTIK Distribusi Frekwensi Perhitungan Tendensi Pusat Penyimpangan atau Dispersi Teori Probabilitas Teori Distribusi Distribusi Sampling / Pengambilan Contoh Pengujian Hipotesis Regresi dan

Lebih terperinci

Distribusi Frekuensi dan Statistik Deskriptif Lainnya

Distribusi Frekuensi dan Statistik Deskriptif Lainnya BAB 2 Distribusi Frekuensi dan Statistik Deskriptif Lainnya Misalnya seorang penjaga gudang mencatat berapa sak gandum keluar dari gudang selama 15 hari kerja, maka diperoleh distribusi data seperti berikut.

Lebih terperinci