06. PERSAMAAN LINIER

Ukuran: px
Mulai penontonan dengan halaman:

Download "06. PERSAMAAN LINIER"

Transkripsi

1 06. PERSAMAAN LINIER A Persamaan Linier dengan Satu Variabel Persamaan linier dengan satu variabel mempunyai bentuk umum: dimana:, dan adalah konstanta Persamaan tersebut penyelesaiannya adalah: Contoh soal: 1., berapakah x? 2., berapakah x? 3. Jumlah dari dua bilangan adalah 21, dan salah satu bilangan tersebut adalah dua kali bilangan lainnya. Carilah bilangan-bilangan tersebut! Misalkan bilangan yang dicari adalah x dan 2x, maka: Jadi bilangan itu adalah dan 4. Empat kali suatu bilangan tertentu dikurangi 10 adalah 14. Tentukan bilangan tersebut Misalkan bilangan yang dikehendaki adalah x, maka: Matematika: PERSAMAAN LINIER - Sugiyono 1

2 5. Jumlah dari tiga bilangan bulat yang berurutan adalah 24. Carilah bilangan-bilangan tersebut! Misalkan tiga bilangan tersebut adalah,, dan, maka: Jadi bilangan-bilangan bulat tersebut adalah: 6. Ali mempunyai 50 keping, dalam lima ratusan rupiah dan seribuan rupiah, semuanya berjumlah Rp ,--. Berapa keping uang lima ratusan yang dimilikinya? Misalkan jumlah uang lima ratusannya adalah keping, maka jumlah uang seribuannya adalah keping. Jumlah uang lima ratusan + jumlah uang seribuan = Rp maka: Jadi uang lima ratusan yang dimiliki Ali adalah keping. 7. Berapakah berat air yang harus diuapkan dari 40 kg larutan garam 20% untuk menghasilkan larutan garam 50%? (catatan: % dalam satuan berat per-berat, dan yang diuapkan adalah air jadi berat garamnya tetap). Matematika: PERSAMAAN LINIER - Sugiyono 2

3 Untuk larutan garam 20% (artinya berat garamnya 20% dari berat larutan) seberat 40 kg, misalnya berat garam a kg, dan airnya b kg, maka: Berat garam Berat air Misalkan air yang diuapkan adalah agar kadar larutan garam menjadi 50%. Rumus kadar larutan garam adalah: Maka air yang harus diuapkan untuk memperoleh kadar larutan 50% adalah: Jadi untuk memperoleh kadar larutan garam 50% harus menguapkan air TUGAS: Selesaikan soal-soal berikut ini: 1. Di dalam dompet terdapat uang berjumlah Rp , terdiri atas lima ribuan, sepuluh ribuan, dan dua puluh ribuan rupiah. Banyaknya sepuluh ribuan rupiah adalah dua kali banyaknya dua puluh ribuan, dan banyaknya lima ribuan rupiah kurang dua dari dua kali banyaknya sepuluh ribuan. Tentukan banyaknya masing-masing lembar uang tersebut. 2. Berapakah bonus yang harus diterima oleh seorang karyawan sedemikian rupa sehingga ia menerima bersih Rp , setelah dikurangi pajak 15%. 3. Berapa harga yang harus dipasang oleh seorang pedagang roti yang harga belinya Rp , agar dapat memberikan potongan 20% dan masih mendapatkan untung 25%. 4. Harga donat super adalah Rp dan harga donat mini adalah Rp Pada suatu hari, counter makanan itu menjual 280 porsi donat dan jumlah uang yang diperoleh Rp Berapakah banyaknya donat mini yang terjual pada hari itu? Matematika: PERSAMAAN LINIER - Sugiyono 3

4 5. Seorang karyawan digaji Rp untuk setiap hari kerja dan didenda Rp untuk setiap hari absen. Pada akhir hari ke-25 ia mendapat gaji bersih Rp Berapa harikah dia bekerja? 6. Sebuah laporan tenaga kerja mengatakan bahwa suatu perusahaan mempekerjakan 400 orang lakilaki dan perempuan. Rata-rata gaji harian untuk seorang laki-laki adalah Rp dan untuk seorang perempuan Rp Apabila biaya untuk tenaga kerja adalah Rp per hari, berapakah jumlah tenaga kerja perempuan? 7. Berapakah berat air yang harus ditambahkan pada liter larutan alkohol 90% untuk menghasilkan larutan 70%? Semua persen menurut berat. (kurang jelas!!!) 8. Kacang tanah basah sebanyak 30 kg mempunyai kadar air 50 %. Berapa berat air yang harus diuapkan untuk menghasilkan kacang tanah kering dengan kadar air 10 %? Jika kadar protein kacang tanah mula-mula (kacang tanah basah) 10 %, berapa kadar protein kacang tanah kering? (dianggap protein tidak mengalami kerusakan selama proses pengeringan). 9. Sebungkus mie instan dengan berat 84 g mempunyai kadar lemak 23 %, karbohidrat 57 %, protein 11 %, dan bahan-bahan lain yang dianggap tidak menghasilkan energi. Tiap gram lemak, karbohidrat, dan protein masing-masing menghasilkan 9, 4, dan 4 kkal (kilo kalori). Jika kebutuhan energi kkal/hari dan anda hanya makan mie instan, berapa bungkus kebutuhan mie instan per hari? 10. Minuman serbuk instan mengandung pemanis buatan aspartam sebanyak 120 mg/sachet. Menurut ketentuan, aspartam boleh dikonsumsi maksimal 40 mg/kg berat badan/hari. Jika anda mempunyai berat badan 48 kg, berapa sachet maksimal minuman serbuk instan yang boleh anda konsumsi per hari? 11. Sebuah perusahaan mempunyai pegawai sebanyak 30 orang terdiri dari seorang manager, tiga orang supervisor dan sisanya karyawan dengan gaji per bulan masing-masing Rp ,00; Rp ,00; dan Rp ,00. Karena inflasi, perusahaan menaikkan gaji masing-masing Rp ,00. Berapa % total kenaikan gaji perusahaan? B Persamaan Linier Dua Variabel (PLDV) Persamaan linier dua variabel adalah persamaan yang mengandung dua variabel dimana pangkat/derajat setiap variabelnya sama dengan satu. Jadi persamaan-persamaan yang tidak termasuk persamaan linier adalah: Persamaan yang mempunyai pangkat selain satu (misalnya, Persamaan yang mempunyai produk dua variabel (misalnya, ) Bentuk umum persamaan linier dua variabel (PLDV) adalah: Matematika: PERSAMAAN LINIER - Sugiyono 4

5 dimana: disebut variabel-variabel dan C Sistem Persamaan Linier Dua Variabel (SPLDV) Sistem persamaan linier dua variabel adalah dua persamaan linier dua variabel (2 PLDV) yang mempunyai hubungan diantara keduanya dan mempunyai satu penyelesaian. Bentuk umum SPLDV adalah: dimana: disebut variabel disebut koefisien disebut konstanta D Penyelesaian SPLDV 1. Metode Substitusi Menggantikan satu variabel dengan variabel dari persamaan yang lain. Contoh: Carilah penyelesaian sistem persamaan: dan Kita ambil persamaan pertama yang akan disubstitusikan yaitu Kemudian persamaan tersebut kita ubah menjadi Kemudian persamaan yang diubah tersebut disubstitusikan ke persamaan -y=6 Kemudian masukkan nilai tersebut ke dalam salah satu persamaan: Matematika: PERSAMAAN LINIER - Sugiyono 5

6 Jadi penyelesaian sistem persamaan tersebut adalah dan. Himpunen penyelesaiannya : HP = {4, 2} 2. Metode Elmininasi Dengan cara mengeliminasi salah satu variabel atau. Contoh: Selesaikan soal di atas dengan cara eliminasi! Mengeliminasi variabel 2 1 Masukkan nilai ke dalam salah satu persamaan. Jadi HP = {4, 2} Mengeliminasi variabel 1 2 Masukkan nilai ke dalam salah satu persamaan. Jadi HP = {4, 2} Matematika: PERSAMAAN LINIER - Sugiyono 6

7 Contoh aplikasinya: Harga dua buah mangga dan tiga buah jeruk adalah Rp ,-- kemudian apabila membeli lima buah mangga dan empat buah jeruk adalah Rp ,--. Berapa jumlah uang yang harus dibayar apabila kita membeli empat buah mangga dan lima buah jeruk? Dalam menyelesaikan persoalan cerita seperti di atas diperlukan penggunaan model matematika. Misal harga 1 buah mangga adalah dan harga 1 buah jeruk adalah, maka model matematika soal tersebut adalah: Ditanyakan: Eliminasi variabel, sebagai berikut: 5 2 Masukkan ke dalam salah satu persamaan: Jadi uang yang harus dibayarkan untuk membeli 4 buah mangga dan 5 buah jeruk adalah: 3. Menggunakan Grafik Garis Lurus Penyelesaiannya didapatkan dengan menggunakan titik potong antara dua garis lurus tersebut pada grafik garis lurus. Contoh (sama dengan contoh di atas): Tentukanlah penyelesaian dari dan ( 1 ) ( 2 ) Langkah-langkah penyelesaiannya adalah sebagai berikut: Menentukan titik-titik potong kedua persamaan tersebut dengan sumbu dan. Matematika: PERSAMAAN LINIER - Sugiyono 7

8 Persamaan (1): Berpotongan dengan sumbu, jika, maka: Berpotongan dengan sumbu, jika, maka: Tabel rangkuman hasil hitung: Persamaan (2): Berpotongan dengan sumbu, jika, maka: Berpotongan dengan sumbu, jika, maka: Tabel rangkuman hasil hitung: Matematika: PERSAMAAN LINIER - Sugiyono 8

9 Membuat grafik garis lurus menggunakan tabel-tabel di atas: Menentukan titik potong kedua persamaan tersebut: Terlihat titik potongnya adalah Jadi HP = {4, 2} dan Matematika: PERSAMAAN LINIER - Sugiyono 9

10 4. Metode Determinan Determinan diberi lambang a. Bentuk umum atau keterangan: : elemen determinan : baris : kolom b. Determinan orde dua c. Determinan orde tiga (1) Definisi Saurus (menulis kolom I dan II di belakang kolom III) (2) Dengan perhitungan Matematika: PERSAMAAN LINIER - Sugiyono 10

11 Bentuk umum SPLDV adalah: Cara penyelesaian dengan metode determinan: Nilai adalah: Nilai adalah: Untuk contoh soal di atas: ( 1 ) ( 2 ) Jadi HP = {4, 2} Matematika: PERSAMAAN LINIER - Sugiyono 11

SISTEM PERSAMAAN LINEAR DUA VARIABEL

SISTEM PERSAMAAN LINEAR DUA VARIABEL SMP - 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL A. Pengertian persamaan linear dua variabel (PLDV) Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap

Lebih terperinci

12. PERSAMAAN GARIS LURUS

12. PERSAMAAN GARIS LURUS 12. PERSAMAAN GARIS LURUS A Persamaan Garis Lurus Persamaan garis lurus merupakan sebuah persamaan linier dua variabel (PLDV) dengan dua variabel yang tidak diketahui. Ilustrasi: Dari persamaan garis,

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA No. BAK/TBB/TKF201/04 Revisi : 00 Tgl. 19 Agustus 2009 Hal 1 dari 59 BAB I PRINSIP-PRINSIP DASAR MATEMATIKA Jawablah soal-soal persamaan matematika di bawah ini! 1. ax + b = 0 2. ax b = 0 x =... x =...

Lebih terperinci

Bab. Sistem Persamaan Linear Dua Variabel. Pengertian SPLDV Penyelesaian SPLDV Penerapan SPLDV

Bab. Sistem Persamaan Linear Dua Variabel. Pengertian SPLDV Penyelesaian SPLDV Penerapan SPLDV Bab Sumb er: Science Encylopedia, 1997 Sistem Persamaan Linear Dua Variabel Harga 3 buku tulis dan pensil adalah Rp13.00,00, sedangkan harga 5 buku tulis dan pensil adalah Rp15.000,00. Dapatkah kamu menghitung

Lebih terperinci

Sistem Persamaan Linear Dua Variabel

Sistem Persamaan Linear Dua Variabel Sistem Persamaan Linear Dua Variabel Harga 3 buku tulis dan 4 pensil adalah Rp13.200,00, sedangkan harga 5 buku tulis dan 2 pensil adalah Rp15.000,00. Dapatkah kamu menghitung harga satuan untuk buku tulis

Lebih terperinci

Sistem Persamaan linier

Sistem Persamaan linier Sistem Persamaan linier 5.1 Sistem Persamaan Linier Dua Peubah (Variabel) Bentuk Umum: a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 Dimana a 1, b 1, c 1, a 2, b 2, c 2 R. Himpunan pasangan berurutan (x, y)

Lebih terperinci

Sistem Persamaan Linear Dua Variabel

Sistem Persamaan Linear Dua Variabel Bab Sistem Persamaan Linear Dua Variabel Tujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Menyebutkan perbedaan persamaan linear dua variabel dan sistem persamaan linear dua variabel;

Lebih terperinci

A. Persamaan Linier Dua

A. Persamaan Linier Dua Apa yang akan Anda Pelajari? Mengenal PLDV dalam berbagai bentuk dan variabel Menentukan himpunan penyelesaian PLDV dan grafiknya Mengenal SPLDV dalam berbagai bentuk dan variabel Menentukan penyelesaian

Lebih terperinci

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi Bab 4 Sistem Persamaan Linier dan Variabel Standar Kompetensi Memahami sistem persamaan linear dua variabel, dan menggunakanna dalam pemecahan masalah Kompetensi Dasar.1 Menelesaikan sistem persamaan linear

Lebih terperinci

DEKAK-DEKAK. Fungsi alat peraga : - Menjelaskan nilai tempat - Memperagakan operasi penjumlahan dan pengurangan pada bilangan asli

DEKAK-DEKAK. Fungsi alat peraga : - Menjelaskan nilai tempat - Memperagakan operasi penjumlahan dan pengurangan pada bilangan asli DEKAK-DEKAK Menurut Standar Isi dalam pembelajaran matematika SD, dalam setiap kesempatan, pembelajaran matematika hendaknya dimulai dengan pengenalan masalah yang sesuai dengan situasi (contextual problem).

Lebih terperinci

PERSAMAAN & SISTEM PERSAMAAN LINEAR

PERSAMAAN & SISTEM PERSAMAAN LINEAR PERSAMAAN & SISTEM PERSAMAAN LINEAR Persamaan Sistem Persamaan Linear DEFINISI PERSAMAAN Persamaan adalah kalimat matematika terbuka yang memuat hubungan sama dengan. Sedangkan kalimat matematika tertutup

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

2 PECAHAN. Kata-Kata Kunci: jenis pecahan pengurangan pecahan bentuk pecahan perkalian pecahan penjumlahan pecahan pembagian pecahan

2 PECAHAN. Kata-Kata Kunci: jenis pecahan pengurangan pecahan bentuk pecahan perkalian pecahan penjumlahan pecahan pembagian pecahan PECAHAN Sebuah gelas jika terkena getaran dapat pecah berkeping-keping. Bagian pecahannya lebih kecil daripada ketika gelas masih utuh. Menurut kalian, samakah jumlah seluruh pecahan gelas dengan satu

Lebih terperinci

BAB MASALAH YANG MELIBATKAN UANG

BAB MASALAH YANG MELIBATKAN UANG BAB 4 MASALAH YANG MELIBATKAN UANG Tata dan Dio disuruh ibu pergi ke warung. Ibu memberi mereka 5 lembar uang seribuan, 4 keping uang logam lima ratusan, dan 6 keping mata uang logam seratusan. Jika barang

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

1 King s Learning. Nama Siswa. Kelas KOMPETENSI DASAR: x = 4. Untuk x = 4 disubstitusikan ke persamaan (1) 4 y = 2 y = 4 2. y = 2

1 King s Learning. Nama Siswa. Kelas KOMPETENSI DASAR: x = 4. Untuk x = 4 disubstitusikan ke persamaan (1) 4 y = 2 y = 4 2. y = 2 Nama Siswa Kelas : : KOMPETENSI DASAR: 3.3 Mendeskripsikan konsep sistem persamaan linier dua dan tiga variable serta pertidaksamaan linier dua variabel dan mampu menerapkan berbagai strategi yang efektif

Lebih terperinci

30 Rencana Pelaksanaan Pembelajaran Matematika Kelas IV

30 Rencana Pelaksanaan Pembelajaran Matematika Kelas IV Sekolah : SD Mata Pelajaran : Matematika Kelas/Semester : IV/2 Standar Kompetensi : 5. Menjumlahkan dan mengurangkan bilangan bulat. Kompetensi Dasar : 5.1 Mengurutkan bilangan bulat. Indikator : 5.1.1

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

Contoh Soal Sistem Persamaan Linear Dua Variabel dan Pembahasannya

Contoh Soal Sistem Persamaan Linear Dua Variabel dan Pembahasannya Contoh Soal Sistem Persamaan Linear Dua Variabel dan Pembahasannya Contoh Soal 1 Tentukan penyelesaian dari SPLDV berikut ini dengan metode substitusi: x + y = 8 2x + 3y = 19 Jawab : x + y = 8. (1) 2x

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis.

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / AKUNTANSI DAN PENJUALAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi bilangan

Lebih terperinci

BAB IV HASIL PENELITIAN. Tabel 4 Hasil Pekerjaan Siswa

BAB IV HASIL PENELITIAN. Tabel 4 Hasil Pekerjaan Siswa BAB IV HASIL PENELITIAN A. Deskripsi Subyek Penelitian Penelitian dilaksanakan di SMA Theresiana Salatiga Semester 1 pada Tahun Ajaran 2011/ 2012 yang terletak di jalan Cemara II Salatiga. Subyek penelitian

Lebih terperinci

Lembar Kegiatan Siswa 1

Lembar Kegiatan Siswa 1 Materi : Lembar Kegiatan Siswa 1 Pengertian program linier dan pengertian pertidaksamaan linier dua variabel Nama Kelompok: Kelas : Tanggal : Tujuan Pembelajaran: 1. Siswa dapat menyebutkan contoh kehidupan

Lebih terperinci

KETIDAKSAMAAN. A. Pengertian

KETIDAKSAMAAN. A. Pengertian A. Pengertian KETIDAKSAMAAN Ketidaksamaan dinotasikan dengan 1. < (lebih Kecil 2. ( lebih kecil atau sama dengan)) 3. > ( lebih besar) 4. ( lebih besar atau sama dengan) Tanda di atas digunakan untuk membuat

Lebih terperinci

Keterangan mengenai takaran saji merupakan informasi pertama yang tercantum dalam format Informasi Nilai Gizi.

Keterangan mengenai takaran saji merupakan informasi pertama yang tercantum dalam format Informasi Nilai Gizi. 5.1 TAKARAN SAJI Keterangan mengenai takaran saji merupakan informasi pertama yang tercantum dalam format Informasi Nilai Gizi. 5.1.1 Pengertian a. Takaran saji adalah jumlah produk pangan yang biasa dikonsumsi

Lebih terperinci

LAMPIRAN 1 FORMULIR FOOD RECALL 24 JAM

LAMPIRAN 1 FORMULIR FOOD RECALL 24 JAM LAMPIRAN 1 FORMULIR FOOD RECALL 24 JAM No. Responden : Nama : Umur : Jenis Kelamin : Tinggi Badan : Berat Badan : Waktu makan Pagi Nama makanan Hari ke : Bahan Zat Gizi Jenis Banyaknya Energi Protein URT

Lebih terperinci

Uang BAB. A. Mengenal Nilai Uang. Tujuan Pembelajaran

Uang BAB. A. Mengenal Nilai Uang. Tujuan Pembelajaran BAB 4 Uang Tujuan Pembelajaran Siswa diharapkan dapat: mengenal berbagai nilai mata uang rupiah. menentukan kesetaraan nilai uang dengan berbagai satuan uang lainnya. menaksir jumlah harga dari sekelompok

Lebih terperinci

KATA KUNCI. Sumber:

KATA KUNCI. Sumber: Bab 1 KATA KUNCI Sumber: www.pkpu.or.id Salah satu bentuk penanganan korban bencana adalah pemberian bantuan. Biasanya muncul masalah baru yaitu pembagiannya. Hal tersebut sepintas tampak rumit. Tapi sebenarnya

Lebih terperinci

Standar Kompetensi. Kompetensi Dasar 1.5 Melakukan penaksiran dan pembulatan 1.6 Memecahkan masalah yang melibatkan uang. Tujuan

Standar Kompetensi. Kompetensi Dasar 1.5 Melakukan penaksiran dan pembulatan 1.6 Memecahkan masalah yang melibatkan uang. Tujuan 1 : 2 Standar Kompetensi 1. Memahami dan menggunakan sifat sifat operasi hitung bilangan dalam pemecahan masalah Kompetensi Dasar 1.5 Melakukan penaksiran dan pembulatan 1.6 Memecahkan masalah yang melibatkan

Lebih terperinci

LAMPIRAN LAMPIRAN 1. PERHITUNGAN KARAKTERISTIK DAN KADAR NUTRISI.

LAMPIRAN LAMPIRAN 1. PERHITUNGAN KARAKTERISTIK DAN KADAR NUTRISI. LAMPIRAN LAMPIRAN 1. PERHITUNGAN KARAKTERISTIK DAN KADAR NUTRISI. 1.1. Hasil analisa kadar air Mi Instan dari Campuran Tepung Terigu dan. Penentuan kadar air Mi Instan dari campuran Tepung Terigu dan Berat

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

Pertemuan 13 persamaan linier NON HOMOGEN

Pertemuan 13 persamaan linier NON HOMOGEN Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara

Lebih terperinci

Silabus. Tugas individu, tugas kelompok, kuis.

Silabus. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / TEKNOLOGI, KESEHATAN, DAN PERTANIAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi

Lebih terperinci

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP)

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) Ponco Sujatmiko MODEL Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) MATEMATIKA KREATIF Konsep dan Terapannya untuk Kelas VIII SMP dan MTs Semester 1 2A Berdasarkan Permendiknas Nomor 22 Tahun 2006

Lebih terperinci

Operasi Hitung Bilangan 1

Operasi Hitung Bilangan 1 Operasi Hitung Bilangan 1 2 Ayo Belajar Matematika Kelas IV Bab 1 Operasi Hitung Bilangan Mari memahami dan menggunakan sifat-sifat operasi hitung bilangan dalam pemecahan masalah. Operasi Hitung Bilangan

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN File asli diunduh di 8-Spensasi.blogspot.com BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol

Lebih terperinci

Mengubah kalimat verbal menjadi model matematika

Mengubah kalimat verbal menjadi model matematika LEMBAR KEGIATAN SISWA 3 Materi : Mengubah kalimat verbal menjadi model matematika Kelas Kelompok : : Nama Anggota : Kalian telah mempelajari cara membuat kalimat matematika, membuat grafik dari kalimat

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR STANDAR KOMPETENSI LULUSAN 2. Memahami operasi bentuk aljabar, konsep persamaan dan pertidaksamaan linear, persamaan

Lebih terperinci

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel.

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel. Bab Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel. Kompetensi Dasar 1.1. Mengenali bentuk aljabar dan unsur-unsurnya. 1.. Melakukan

Lebih terperinci

BAB II KAJIAN TEORI. serta mempunyai cabang-cabang antara lain aritmatika, aljabar, geometri dan

BAB II KAJIAN TEORI. serta mempunyai cabang-cabang antara lain aritmatika, aljabar, geometri dan 6 BAB II KAJIAN TEORI 2.1 Matematika Sekolah Matematika adalah sebagai suatu bidang ilmu yang merupakan alat pikir, berkomunikasi, alat untuk memecahkan berbagai persoalan praktis yang unsurunsurnya logika

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin*

PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin* PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin* A. Aksioma Keterbagian Sebuah bilangan dikatakan habis dibagi (terbagi) dengan sebuah bilangan

Lebih terperinci

Sumber: Kamus Visual, 2004

Sumber: Kamus Visual, 2004 1 BILANGAN BULAT Pernahkah kalian memerhatikan termometer? Termometer adalah alat yang digunakan untuk mengukur suhu suatu zat. Pada pengukuran menggunakan termometer, untuk menyatakan suhu di bawah 0

Lebih terperinci

Operasi Hitung Penjumlahan dan Pengurangan

Operasi Hitung Penjumlahan dan Pengurangan BAB 2 Operasi Hitung Penjumlahan dan Pengurangan Tujuan Pembelajaran Siswa diharapkan dapat: menuliskan bilangan secara panjang (ribuan, ratusan, puluhan, dan satuan). menentukan nilai tempat sampai dengan

Lebih terperinci

MATEMATIKA BISNIS FUNGSI LINIER

MATEMATIKA BISNIS FUNGSI LINIER MODUL MATEMATIKA BISNIS 2 FUNGSI LINIER Definisi Fungsi linier adalah fungsi paling sederhana karena hanya mempunyai satu variabel bebas dan berpangkat satu pada variabel tersebut, atau dengan kata lain

Lebih terperinci

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat]

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat] 1 MODUL 3 BIDANG RATA Setelah mempelajari modul 1 dan 2 anda akan melanjutkan mempelajari modul 3 tentang bidang rata. Materi bidang rata ini berkaitan dengan materi pada modul sebelumnya. Pada modul 3

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Kelas / Semester : VIII / 1 (Satu) Alokasi Waktu : 2 X 40 menit

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Kelas / Semester : VIII / 1 (Satu) Alokasi Waktu : 2 X 40 menit 33 Lampiran 1.1 RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Nama Sekolah : SMP N 3 SLAHUNG Mata Pelajaran : Matematika Kelas / Semester : VIII / 1 (Satu) Alokasi Waktu : 2 X 40 menit Siklus : I Pertemuan :

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

PERTEMUAN 2-3 FUNGSI LINIER

PERTEMUAN 2-3 FUNGSI LINIER PERTEMUAN 2-3 FUNGSI LINIER Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lainnya. Unsur-unsur pembentuk

Lebih terperinci

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK TUGAS MATEMATIKA EKONOMI DISUSUN OLEH : DENY PRASETYA 01212074 IAN ANUGERAH 01212035 M. UMAR A 01212016 ARON GARDIKA 01212140 SAIFUL RAHMAN 01212020

Lebih terperinci

& & # = atau )!"* ( & ( ( (&

& & # = atau )!* ( & ( ( (& MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan

Lebih terperinci

Penyelesaian : Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. 3 x

Penyelesaian : Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. 3 x Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. y 3 x 9 3. Hubungan dua buah garis Letak dua buah garis y = m 1 x + c 1 dan y = m 2 x + c 2 dalam satu bidang

Lebih terperinci

Standar Kompetensi 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan masalah

Standar Kompetensi 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan masalah Apa yang akan Anda Pelajari? Bilangan pecahan biasa, campuran, desimal, persen, dan permil Mengubah bentuk pecahan ke bentuk yang lain Operasi hitung tambah, kurang, kali, bagi, dan pangkat dengan melibatkan

Lebih terperinci

Menggunakan Pecahan dalam Pemecahan Masalah

Menggunakan Pecahan dalam Pemecahan Masalah Bab Menggunakan Pecahan dalam Pemecahan Masalah Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan siswa dapat. mengetahui pecahan-pecahan yang senilai dan membedakan pecahan biasa dan campuran;.

Lebih terperinci

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di BAB IV PENYAJIAN DATA DAN ANALISIS DATA A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di SMA/MA Kecamatan Anjir Muara Berdasarkan BAB III telah diuraikan bahwa penelitian ini bertujuan

Lebih terperinci

Mengenal Bilangan Bulat

Mengenal Bilangan Bulat Mengenal Bilangan Bulat Kita sudah mempelajari bilangan-bilangan yang dimulai dari nol sampai tak terhingga. Selama ini yang kita pelajari 0 (nol) adalah bilangan terkecil. Tetapi tahukah kamu bahwa ada

Lebih terperinci

BAB II LANDASAN TEORI. lain, berarti kita berusaha agar apa yang disampaikan kepada orang lain tersebut

BAB II LANDASAN TEORI. lain, berarti kita berusaha agar apa yang disampaikan kepada orang lain tersebut 7 BAB II LANDASAN TEORI 2.1 Pengertian Komunikasi Istilah komunikasi berasal dari kata latin Communicare atau Communis yang berarti sama atau menjadikan milik bersama. Kalau kita berkomunikasi dengan orang

Lebih terperinci

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10.

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-9064 71 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Berdasarkan Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 81A Tahun 2013, guru harus mampu menciptakan strategi pembelajaran yang dapat meningkatkan

Lebih terperinci

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Standar Kompetensi Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Memahami dan dapat melakukan operasi bentuk aljabar, persamaan dan pertidaksamaan linear satu variabel, himpunan serta dapat menggunakan

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM TRY OUT UJIAN NASIONAL SMA/MA 2016 MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Matematika : SMA/MA : IPA WAKTU PELAKSANAAN

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

PERSAMAAN BIDANG RATA

PERSAMAAN BIDANG RATA 1 KEGIATAN BELAJAR 5 PERSAMAAN BIDANG RATA Setelah mempelajari kegiatan belajar 5 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan vektoris bidang rata 2. Menentukan persamaan linier bidang rata

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

Perkalian dan Pembagian

Perkalian dan Pembagian Bab 3 Perkalian dan Pembagian Tema Pekerjaan Pedagang Buah Tema 7 Gejala Alam dan Peristiwa Mengungsi Tema Rekreasi Bersepeda ke Taman Tujuan Pembelajaran Pembelajaran ini bertujuan agar kamu mampu: melakukan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 PANDUAN MATERI MATEMATIKA Kelompok Sosial, Administrasi Perkantoran, dan Akuntansi (Bisnis dan Manajemen) PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-59064 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN / Mata Pelajaran

Lebih terperinci

Pengembangan Media Pembelajaran Dalam Penentuan Penyelesaian Sistem Persamaan Linear Dua Variabel

Pengembangan Media Pembelajaran Dalam Penentuan Penyelesaian Sistem Persamaan Linear Dua Variabel Pengembangan Media Pembelajaran Dalam Penentuan Penyelesaian Sistem Persamaan Linear Dua Variabel Oleh : Dwijo Susanto 1) Mujiyem Sapti 2) 1) SMP Negeri 40 Purworejo 2) Jurusan Pendidikan Matematika FKIP

Lebih terperinci

Aisyah Purnama Dewi. MATEMATIKA WAJIB UNTUK SMA/MA Kelas X Semester 1 EDISI GURU. (Disertai Kunci Jawaban) Berbasis Teori Variasi

Aisyah Purnama Dewi. MATEMATIKA WAJIB UNTUK SMA/MA Kelas X Semester 1 EDISI GURU. (Disertai Kunci Jawaban) Berbasis Teori Variasi Aisyah Purnama Dewi Berbasis Teori Variasi MATEMATIKA WAJIB UNTUK SMA/MA Kelas X Semester 1 EDISI GURU 1 (Disertai Kunci Jawaban) LEMBAR KEGIATAN SISWA (LKS) SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear

Lebih terperinci

ADDENDUM DOKUMEN PENGADAAN

ADDENDUM DOKUMEN PENGADAAN ADDENDUM DOKUMEN PENGADAAN Pelelangan Sederhana Pascakualifikasi Pengadaan Bahan Makanan Dinsosnakertrans Kab. Nganjuk Semula : BAB IV. LEMBAR DATA PEMILIHAN LEMBAR DATA PEMILIHAN A. LINGKUP PEKERJAAN

Lebih terperinci

SILABUS PEMBELAJARAN. Sekolah :... : VII (Tujuh) Mata Pelajaran : Matematika

SILABUS PEMBELAJARAN. Sekolah :... : VII (Tujuh) Mata Pelajaran : Matematika SILABUS PEMBELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : I (satu) BILANGAN Standar : 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan

Lebih terperinci

RPP dan Silabus SMA Kelas X Kurikulum 2013

RPP dan Silabus SMA Kelas X Kurikulum 2013 RPP dan Silabus SMA Kelas X Kurikulum 2013 Disusun Oleh : 1. Nikmah Nurvicalesti (06121408007) 2. Ellin Juniarti (06121408012) 3. Rizki Septa Wiratna (06121408015) 4. Indah Oktriani (06121408018) Dasar

Lebih terperinci

BAB 1 PENDAHULUAN. penting. Saat ini minuman dijual dalam berbagai jenis dan bentuk, serta

BAB 1 PENDAHULUAN. penting. Saat ini minuman dijual dalam berbagai jenis dan bentuk, serta BAB 1 PENDAHULUAN A. Latar Belakang Masalah Minuman merupakan salah satu kebutuhan manusia yang paling penting. Saat ini minuman dijual dalam berbagai jenis dan bentuk, serta dikemas dengan berbagai kemasan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

PEMBELAJARAN PERSEN, PERBANDINGAN, DAN SKALA

PEMBELAJARAN PERSEN, PERBANDINGAN, DAN SKALA H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 8 PEMBELAJARAN PERSEN, PERBANDINGAN, DAN SKALA Pendahuluan Bahan belajar mandiri ini menyajikan pembahasan persen, perbandingan dan skala yang dibagi

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

Piramida Besar Khufu

Piramida Besar Khufu Sumber: Mesir Kuno Piramida Besar Khufu Peradaban bangsa Mesir telah menghasilkan satu peninggalan bersejarah yang diakui dunia sebagai salah satu dari tujuh keajaiban dunia, yaitu piramida. Konstruksi

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

matematika WAJIB Kelas X SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) K-13 A. Definisi Sistem Persamaan Linear Tiga Variabel

matematika WAJIB Kelas X SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) K-13 A. Definisi Sistem Persamaan Linear Tiga Variabel K-13 Kelas X matematika WAJIB SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi sistem persamaan

Lebih terperinci

4. Bentuk sederhana dari : a b

4. Bentuk sederhana dari : a b PAKET A. Pernyataan yang setara dengan Jika cuaca buruk, maka semua penerbangan ditunda adalah. A. Jika beberapa penerbangan tidak ditunda, maka cuaca baik. B. Jika semua penerbangan ditunda, maka cuaca

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN RPP pertemuan ke-1

RENCANA PELAKSANAAN PEMBELAJARAN RPP pertemuan ke-1 30 LAMPIRAN 1.1. RENCANA PELAKSANAAN PEMBELAJARAN RPP pertemuan ke-1 Satuan Pendidikan : KTSP Mata Pelajaran : Matematika Kelas/Semester : VIII/ Ganjil Topik : PLDV dan SPLDV Alokasi Waktu : 2 X 40 A.

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

SISTEM PERSAMAAN LINIER

SISTEM PERSAMAAN LINIER SISTEM PESAMAAN LINIE PESAMAAN LINIE Sebuah garis dalam bidang dan y secara umum dapat ditulis dalam bentuk a + a y = b Secara lebih umum didefinisikan sebuah persamaan linier dengan n buah variabel a

Lebih terperinci

Lampiran 1. Daftar Terjemah DAFTAR TERJEMAH. NO BAB KUTIPAN HAL. TERJEMAH 1. I Q.S. al Mujaadilah ayat 11:

Lampiran 1. Daftar Terjemah DAFTAR TERJEMAH. NO BAB KUTIPAN HAL. TERJEMAH 1. I Q.S. al Mujaadilah ayat 11: 11 Lampiran 1. Daftar Terjemah DAFTAR TERJEMAH NO BAB KUTIPAN HAL. TERJEMAH 1. I Q.S. al Mujaadilah ayat 11: 1 niscaya Allah akan meninggikan orangorang yang beriman di antaramu dan orang-orang yang diberi

Lebih terperinci

CATATAN PERKEMBANGAN. Dx Hari/Tanggal Pukul Tindakan Keperawatan Nutrisi Kamis, Menggali pengetahuan orang tua kurang dari

CATATAN PERKEMBANGAN. Dx Hari/Tanggal Pukul Tindakan Keperawatan Nutrisi Kamis, Menggali pengetahuan orang tua kurang dari Lampiran 1 CATATAN PERKEMBANGAN Dx Hari/Tanggal Pukul Tindakan Keperawatan Nutrisi Kamis, 04 10.00-4. Menggali pengetahuan orang tua kurang dari Mei 2017 12.00 tentang asupan nutrisi pada anak yaitu menggali

Lebih terperinci

Y. Putri H. Siregar MATEMATIKA. untuk Siswa SD/MI Kelas III

Y. Putri H. Siregar MATEMATIKA. untuk Siswa SD/MI Kelas III Y. Putri H. Siregar MATEMATIKA untuk Siswa SD/MI Kelas III i Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Matematika untuk Siswa SD/MI Kelas III Jilid 3 Penulis Y. Putri H. Siregar

Lebih terperinci

KESETIMBANGAN ENERGI

KESETIMBANGAN ENERGI KESETIMBANGAN ENERGI Soal 1 Tentukan panas spesifik dengan persamaan Siebel dari sari buah dengan jumlah padatan 45%. Jawaban : 2679,5 J / (kg.k) c avg = 837,36 (0,45) + 4186,8 (0,55) Soal 2 Lima kg es

Lebih terperinci

Soal dan Jawaban Tes

Soal dan Jawaban Tes lampiran 38 Lampiran1 Soal dan jawaban tes Soal dan Jawaban Tes 1. Santi dan Hasna mengikuti dua kali tes matematika dan bahasa inggris. Tes yang pertama santi dan hasna mendapat nilai 80 untuk pelajaran

Lebih terperinci