Kegiatan Belajar 2. Identitas Trigonometri

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kegiatan Belajar 2. Identitas Trigonometri"

Transkripsi

1 Kegiatan Belaja A. Tujuan Pembelajaan Setelah mempelajai kegiatan belaja, dihaapkan siswa dapat a. Menggunakan identitas tigonometi dalam penelesaian b. Membuktikan identitas tigonometi sedehana dengan menggunakan umus hubungan antaa pebandingan tigonometi c. Memahami hubungan antaa koodinat kutub dan koodinat catesius suatu titik. B. Uaian Matei Identitas Tigonometi a). Identitas Pthagoas P (, ) θ Pada gamba di atas belaku : + Sehingga titik P (, ) kita bisa menuliskan menjadi P ( cos θ, sin θ) dengan menggunkan teoema Pthagoas maka akan didapat + ( ) + ( ) cos sin ( cos θ + sin θ ) cos θ + sin θ cos θ + sin θ θ + θ

2 Hubungan dai pesamaan-pesamaan di atas disebut identitas tigonometi dan seing disebut dengan identitas Pthagoas. Dai identitas di atas dapat dituunkan menjadi bebeapa identitas, diantaana. a).+ tan θ sec θ b).+ cot θ cosec θ b). Identitas Kebalikan. atau cosecθ cosecθ sin. atau secθ secθ 3. tanθ atau cotθ cotθ tanθ c). Identitas Pebandingan (Kuesien). tanθ. cotθ Contoh : 5. Jika diketahui tan A dan 90 o < A < 80 o tentukan a. sec A b. sin A Penelesaian a. Dengan menggunakan identitas Pthagoas maka + tan A Sec A 5 + sec A 5 sec A sec A sec A 44 3 sec A

3 Kaena 90 o < A < 80 o 3 teletak dikuadan II maka sec A b. Dengan menggunakan identitas kebalikan sec A 3 3 Selanjutna diselesaikan dengan identitas pebandingan sin A tan A sin A tan A 5 sin A 3 5 sin A 3. Buktikan bahwa sec A tan A + + sin A Penelesaian Kita ubah uas kanan sec A sin cos sin A sec A sec A sec A sec A A + A + sin A sin A + sin sec A sin A + sec A ( + sin A) + cos ( + sin A) A + cos ( + sin A) ( + sin A) ( tebukti) A.cos A Jadi, tebukti sec A tan A + + sin A A

4 3. Sedehanakan bentuk dai tan θ a. Penelesaian b. 3 3 cos θ a.. tan θ sin θ sin θ tanθ sin θ b. 3 3 cos θ 3 3 ( sin θ) sin θ 3sin θ

5 Koodinat kutub P (3, 3) θ 3 Dengan menggunakan pebandingan tigonometi maka nilai θ pada gamba di atas adalah 45 o. titik P (3, 3) dapat ditulis dalam bentuk lain, akni P ( 3, 45 o ). Titik P(3, 3) disebut koodinat catesius sedangkang P ( 3, 45 o ) disebut sebagai koodinat kutub. Secaa umum koodinat catesius dapat ditulis P(, ) dan koodinat kutub P(, θ) Kita telah mengetahui bahwa maka kita temukan hubungan antaa koodinat catesius dan koodinat kutub.. + atau Contoh. Tentukan koodinat catesius titik R (4, 50 o ) Penelesaian

6 4 4 θ 50 o 4cos50 3 4sin50 4 o 3 o R(4, 50 o ) 50 o Jadi koodinat titik R ( 3, ). Tentukan koodinat kutub dai Q(6, 3) Penelesaian θ ,447 o 0 Jadi, koodinat kutub dai P(6,3) adalah P ( 3 5, 7 ) θ P (6, 3)

7 C. Rangkuman. Jenis-jenis identitas tigonometi a. Identitas Pthagoas cos θ + sin θ + tan θ sec θ + cot θ cosec θ b. Identitas Pebandingan tan θ cot θ c. Identitas kebalikan sin θ atau cosecθ cosecθ cos θ atau secθ secθ tan θ atau cotθ cotθ tanθ sin. Hubungan koodinat catesius dan koodinat kutub sin θ cos θ.. + atau atau

8 D. Lemba Keja. Sedehanakanlah a. cos.tan b. sin. cot + cos. tan c. sec. tan. cos Buktikan bahwa a. (sin cos) sin cos b. (sin θ + cos θ) + (sin θ cos θ) cos c. tan cos sin sin 3 3 sin A + d. sin Acos A sin A + e. cosec θ cotθ +

9 3. Natakan bentuk aka beikut ini ke dalam bentuk fungsi tigonometi sedehana dengan mensubtitusikan ang dibeikan. a. 9 ; untuk 6sinα b. 6 ; untuk 4cos β c. 4 + ; untuk tanθ

10 4. Tentukan koodinat catesius dai titik a. R (6, 30 o ) c. P (5, 40 o ) b. Q (, 0 o ) d. T (8, 300 o ) 5. Tentukan koodinat kutub dai a. R (5, 3) c. P ( 5, 0 ) b. Q (- 4, 7) d. T (- 5, - 5)

11 6. Sebuah peahu belaa dai pelabuhan dengan aah 037 o. kecepatan ata-ata peahu itu adalah KM/jam, setelah 5 jam hitunglah: a. Jaak dai pelabuhan b. jaak dai timu pelabuhan c. jaak dai utaa pelabuhan 7. Gamba di samping adalah bandul B ang diaun ke kanan sebesa 30 o. jika panjang tali 30 cm, hitunglah a. Bandul pada posisi tesebut tehadap posisi tali (BA) b. Bandul pada posisi tesebut tehadap posisi atap (BC) Atap C 30 o Tali B A Bandul

12 E. Tes Fomatif. Jika 0 θ π, maka cos θ identik dengan a. b. c. sec θ d. cos θ sec θ tanθ e. secθ cotθ cosecθ secθ. cosecθ 4 4 sin cos. Betnuk sedehana dai... sin cos a. sin 3 cos d. sin cos b. sin 3 + cos 3 e. sin + cos c. sin cos 3. Bentuk ang senilai dengan 5.tan + 3 adalah. 5 a. sin 5 b. cos 5 c. + 3 sin 3 d. + sin e. + 5 cos cos 4. Bentuk ang senilai dengan bentuk adalah sin sin a. + cos cos b. sin sin c. cos cos d. + cos sin e. + cos 5. Bentuk ( sin A) tan A dapat disedehanakan menjadi a. sin A d. sin A b. sin a + cos A e. cos A + c. cos A

13 .tan 6. Nilai dai adalah + tan a.. sin. cos d. sin b. sin cos e. cos c. sin + sec 7. Bentuk sedehana dai tan + sin adalah a. sec d. cosec b. sin e. cos c. tan 8. Diketahui p q cos dan pq sin maka p + q.. a. sin + cos d. sin + sin b. sin + cos e. cos sin c. sin cos 9. Untuk setiap sudut β, maka bentuk ( sin β)( + tan β) dapat disedehanakan menjadi a. + sin β d. b. sin β cos β e. sin β c. + cos β 0. Bentuk sedehana dai tan A + adalah + sin A a. sec A d. tan A b. e. cosec A c. cot A. Koodinat kutub (8, 30 o ) jika dinatakan dalam koodinat catesius adalah. a. ( 4, 4 3) d. ( 4, 4 3) b. ( 4 3, 4) e. ( 4, 4 ) c. ( 4, 4)

14 . Koodinat kutub dai titik (, 3) a. (, 0 o ) d. (, 330 o ) b. (, 40 o ) e. (, 360 o ) c. (, 300 o ) adalah.. 3. Koodinat catesius dai titik P (, ) dan koodinat kutubna adalah P (, β o ), jika titik P teletak di kuadan I. maka nilai dan β betuut-tuut adalah a. 3 dan 30 o d. dan 5 o b. dan 45 o e. dan 35 o c. dan 35 o 4. Koodinat titik P adalah (3, 30 o ). posisi P pada koodinat catesius adalah a., 3 d. 3, b. 3, e. 3,3 3 c. 3, 5. Koodinat titik Q adalah,. Posisi Q dalam koodinat kutub adalah.. a., π d., π 3 4 b., π e., π 6 3 c., π 3

IDENTITAS TRIGONOMETRI. Tujuan Pembelajaran

IDENTITAS TRIGONOMETRI. Tujuan Pembelajaran Kuikulum 03 Kelas X matematika WAJIB IDENTITAS TRIGONOMETRI Tujuan Pembelajaan Setelah mempelajai matei ini, kamu dihaapkan memiliki kemampuan beikut.. Memahami jenis-jenis identitas tigonometi.. Dapat

Lebih terperinci

trigonometri 4.1 Perbandingan Trigonometri

trigonometri 4.1 Perbandingan Trigonometri tigonometi 4.1 Pebandingan Tigonometi 0 Y x P(x,y) y X x disebut absis y disebut odinat jai-jai sudut positif diuku dai sumbu X belawanan aah putaan jaum jam Definisi : = x + y sin = y cos = x tan = y

Lebih terperinci

Perbandingan dan Fungsi Trigonometri

Perbandingan dan Fungsi Trigonometri Pebandingan dan Fungsi Tignmeti Standa Kmpetensi Memahami knsep pebandingan, fungsi, pesamaan dan identitas tignmeti, atuan sinus dan ksinus seta menggunakan dalam pemecahan masalah Kmpetensi Dasa. Melakukan

Lebih terperinci

Geometri Analitik Bidang (Lingkaran)

Geometri Analitik Bidang (Lingkaran) 9 Geometi nalitik idang Lingkaan) li Mahmudi Juusan Pendidikan Matematika FMIP UNY) KOMPETENSI Kompetensi ang dihaapkan dikuasai mahasiswa setelah mempelajai ab ini adalah sebagai beikut. Menjelaskan pengetian

Lebih terperinci

UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

UNIVERSITAS SWADAYA GUNUNG JATI CIREBON TRIGONOMETRI disusun untuk memenuhi salah satu tugas akhi Semeste Pendek mata kuliah Tigonometi Dosen : Fey Fedianto, S.T., M.Pd. Oleh Nia Apiyanti (207022) F PRODI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Sekolah : SMA Mata Pelajaan : Matematika Kelas/Semeste :X/ Matei pokok : Identitas Tigonometi Alokasi Waktu : JP ( @ 45 menit ) A. Kompetensi Inti Kompetensi Sikap

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Tigonometi Matiks GY A Y O M AT E M A T AK A R Makaban, M.Si. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN

Lebih terperinci

1 Sistem Koordinat Polar

1 Sistem Koordinat Polar 1 Sistem Koodinat ola ada kuliah sebelumna, kita selalu menggunakan sistem koodinat Katesius untuk menggambakan lintasan patikel ang begeak. Koodinat Katesius mudah digunakan saat menggambakan geak linea

Lebih terperinci

Demikian, semoga modul ini dapat bermanfaat bagi kita semua, khususnya bagi para siswa SMA/SMK. Cirebon, Oktober 2013.

Demikian, semoga modul ini dapat bermanfaat bagi kita semua, khususnya bagi para siswa SMA/SMK. Cirebon, Oktober 2013. Kata Penganta Puji suku kami panjatkan ke hadiat Tuhan Yang Maha Esa atas kaunia dan hidaah-na, sehingga kami dapat menusun modul ini. Modul ini disusun semaksimal mungkin untuk memenuhi tugas mata kuliah

Lebih terperinci

II. KINEMATIKA PARTIKEL

II. KINEMATIKA PARTIKEL II. KINEMATIKA PARTIKEL Kinematika adalah bagian dai mekanika ang mempelajai tentang geak tanpa mempehatikan apa/siapa ang menggeakkan benda tesebut. Bila gaa penggeak ikut dipehatikan, maka apa ang dipelajai

Lebih terperinci

6. Fungsi Trigonometri Sudaryatno Sudirham

6. Fungsi Trigonometri Sudaryatno Sudirham 6. Fungsi Tignmeti Sudaatn Sudiham 6.. Peubah Bebas Besatuan Deajat Beikut ini adalah fungsi-fungsi tignmeti dengan sudut θ sebagai peubah-bebas. = sin θ; = cs θ sin θ cs θ 3 = tan θ = ; 4 = ct θ = cs

Lebih terperinci

Gerak melingkar beraturan

Gerak melingkar beraturan 13/10/01 Geak melingka beatuan geak melingka beatuan adalah geak dimensi dengan laju tetap, Aahnya beubah kecepatan beubah v i = vekto kecepatan awal v f = vekto kecepatan akhi θ = pepindahan sudut Gamba

Lebih terperinci

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I Trigonometri umumnya terdiri dari beberapa bab yang dibahas secara bertahap sesuai dengan tingkatannya. untuk kelas X, biasanya pelajaran trigonometri

Lebih terperinci

Hand Out Fisika II MEDAN LISTRIK. Medan listrik akibat muatan titik Medan listrik akibat muatan kontinu Sistem Dipol Listrik

Hand Out Fisika II MEDAN LISTRIK. Medan listrik akibat muatan titik Medan listrik akibat muatan kontinu Sistem Dipol Listrik MDAN LISTRIK Medan listik akibat muatan titik Medan listik akibat muatan kontinu Sistem Dipol Listik Mach 7 Definisi Medan Listik () Medan listik pada muatan uji q didefinisikan sebagai gaya listik pada

Lebih terperinci

Kata. Kunci. E ureka. A Gerak Melingkar Beraturan

Kata. Kunci. E ureka. A Gerak Melingkar Beraturan Kata Kunci Geak melingka GM (Geak Melingka eatuan) GM (Geak Melingka eubah eatuan) Hubungan oda-oda Pada bab sebelumnya, kita sudah mempelajai geak luus. Di bab ini, kita akan mempelajai geak dengan lintasan

Lebih terperinci

LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI

LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI NAMA : KELAS : A. RUMUS PENJUMLAHAN DAN PENGURANGAN SUDUT TRIGONOMETRI 1. Rumus Penjumlahan dan Pengurangan Sin dan Cos Kegiatan 1 Perhatikan segitiga ABC di Samping! LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI

Lebih terperinci

PERBANDINGAN DAN FUNGSI TRIGONOMETRI

PERBANDINGAN DAN FUNGSI TRIGONOMETRI PERBANDINGAN DAN FUNGSI TRIGONOMETRI E Gaik Funsi Tionometi Untuk memahami unsi tionometi secaa umum, telebih dahulu kita akan membahas aik unsi tionometi dasa, aitu aik unsi = sin, = cos dan = tan Gaik

Lebih terperinci

Fungsi dan Grafik 7/23/2013. Pembatasan. Pokok Bahasan mencakup

Fungsi dan Grafik 7/23/2013. Pembatasan. Pokok Bahasan mencakup 7// Sudaatno Sudiham Pokok Bahasan mencakup Fungsi dan Gafik. Pengetian Tentang Fungsi. Fungsi Linie. Gabungan Fungsi Linie. Mononom dan Polinom 5. Bangun Geometis. Fungsi Tigonometi 7. Gabungan Fungsi

Lebih terperinci

FISIKA DASAR II. Kode MK : FI SKS : 3 Program Studi : Fisika Instrumentasi (S-1) Kelas : Reguler MATERI 1

FISIKA DASAR II. Kode MK : FI SKS : 3 Program Studi : Fisika Instrumentasi (S-1) Kelas : Reguler MATERI 1 FISIKA DASAR II Kode MK : FI 0 SKS : 3 Pogam Studi : Fisika Instumentasi (S-) Kelas : Regule MATERI TA 00/0 KRITERIA PENILAIAN Jika kehadian melampaui 75 %, Nilai Akhi mahasiswa ditentukan dai komponen

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaatno Sudiham Studi Mandii Fungsi dan Gafik Difeensial dan Integal ii Dapublic BAB 7 Koodinat Pola Sampai dengan bahasan sebelumna kita membicaakan fungsi dengan kuva-kuva ang digambakan dalam koodinat

Lebih terperinci

Fungsi dan Grafik. Fungsi 8/3/2013. Pembatasan. Pokok Bahasan mencakup

Fungsi dan Grafik. Fungsi 8/3/2013. Pembatasan. Pokok Bahasan mencakup // Sudaatno Sudiham Pokok Bahasan mencakup Fungsi dan Gafik. Pengetian Tentang Fungsi. Fungsi Linie. Gabungan Fungsi Linie. Mononom dan Polinom 5. Bangun Geometis. Fungsi Tigonometi 7. Gabungan Fungsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Segitiga Data 1. engetian Segitiga Dibeikan tiga buah titik A, B, dan C yang tidak segais. Titik A dihubungkan dengan titik B, titik B dihubungkan dengan titik C, dan titik C dihubungkan

Lebih terperinci

Hand Out Fisika 6 (lihat di Kuat Medan Listrik atau Intensitas Listrik (Electric Intensity).

Hand Out Fisika 6 (lihat di Kuat Medan Listrik atau Intensitas Listrik (Electric Intensity). Hand Out Fisika 6 (lihat di http:).1. Pengetian Medan Listik. Medan Listik meupakan daeah atau uang disekita benda yang bemuatan listik dimana jika sebuah benda bemuatan lainnya diletakkan pada daeah itu

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaatno Sudiham Studi Mandii Fungsi dan Gafik Difeensial dan Integal oleh Sudaatno Sudiham i Dapublic Hak cipta pada penulis, 010 SUDIRHAM, SUDARYATNO Fungsi dan Gafik, Difeensial dan Integal Oleh: Sudaatmo

Lebih terperinci

GRAFITASI. F = G m m 1 2. F = Gaya grafitasi, satuan : NEWTON. G = Konstanta grafitasi, besarnya : G = 6,67 x 10-11

GRAFITASI. F = G m m 1 2. F = Gaya grafitasi, satuan : NEWTON. G = Konstanta grafitasi, besarnya : G = 6,67 x 10-11 GRAFITASI Si Isaac Newton yang tekenal dengan hukum-hukum Newton I, II dan III, juga tekenal dengan hukum Gafitasi Umum. Didasakan pada patikel-patikel bemassa senantiasa mengadakan gaya taik menaik sepanjang

Lebih terperinci

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER BAB II MDAN ISTRIK DI SKITAR KONDUKTOR SIINDR II. 1 Hukum Coulomb Chales Augustin Coulomb (1736-1806), adalah oang yang petama kali yang melakukan pecobaan tentang muatan listik statis. Dai hasil pecobaannya,

Lebih terperinci

TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA

TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA Hingga sejauh ini kita sudah mempelajai tentang momentum, gaya-gaya pada fluida statik, dan ihwal fluida begeak dalam hal neaca massa dan neaca enegi.

Lebih terperinci

TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri :

TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri : SMA - TRIGONOMETRI Pengertian Sinus, Cous dan Tangen Sin r y r y Cos r x x Tan x y Hubungan Fungsi Trigonometri :. + cos. tan 3. sec cos cos 4. cosec 5. cotan cos 6. tan + sec + cos + cos cos cos cos tan

Lebih terperinci

Fisika I. Gerak Dalam 2D/3D. Koefisien x, y dan z merupakan lokasi parikel dalam koordinat. Posisi partikel dalam koordinat kartesian diungkapkan sbb:

Fisika I. Gerak Dalam 2D/3D. Koefisien x, y dan z merupakan lokasi parikel dalam koordinat. Posisi partikel dalam koordinat kartesian diungkapkan sbb: Posisi dan Pepindahan Geak Dalam D/3D Posisi patikel dalam koodinat katesian diungkapkan sbb: xi ˆ + yj ˆ + zk ˆ :57:35 Koefisien x, y dan z meupakan lokasi paikel dalam koodinat katesian elatif tehadap

Lebih terperinci

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap :

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap : TRIGONOMETRI 5. tan (A + B) tan A + tan B tan A.tan B Pengertian Sinus, Cosinus dan Tangen r Hubungan Fungsi Trigonometri :. sin +. tan. sec 4. cosec 5. cotan 6. 7. cos sin cos cos sin cos sin tan + cot

Lebih terperinci

MOMENTUM LINEAR DAN TUMBUKAN

MOMENTUM LINEAR DAN TUMBUKAN MOMENTUM LINEAR DAN TUMBUKAN 1. MOMENTUM LINEAR Momentum sebuah patikel adalah sebuah vekto P yang didefinisikan sebagai pekalian antaa massa patikel m dengan kecepatannya, v, yaitu: P = mv (1) Isac Newton

Lebih terperinci

Ini merupakan tekanan suara p(p) pada sembarang titik P dalam wilayah V seperti yang. (periode kedua integran itu).

Ini merupakan tekanan suara p(p) pada sembarang titik P dalam wilayah V seperti yang. (periode kedua integran itu). 7.3. Tansmisi Suaa Melalui Celah 7.3.1. Integal Kichhoff Cukup akses yang bebeda untuk tik-tik difaksi disediakan oleh difaksi yang tepisahkan dapat dituunkan dai teoema Geen dalam analisis vekto. Hal

Lebih terperinci

BAB VII. TRIGONOMETRI

BAB VII. TRIGONOMETRI BAB VII. TRIGONOMETRI 5. tan (A + B) tan A + tan B tan A.tan B Pengertian Sinus, Cosinus dan Tangen r x Hubungan Fungsi Trigonometri :. sin +. tan 3. sec 4. cosec 5. cotan cos sin cos cos sin cos sin Sin

Lebih terperinci

CNH2G4/ KOMPUTASI NUMERIK

CNH2G4/ KOMPUTASI NUMERIK CNHG4/ KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT SOLUSI NUMERIK PERSAMAAN DIFERENSIAL BIASA Pendahuluan Pesamaan Diffeensial : Gabungan dai fungsi ang tidak diketahui dengan

Lebih terperinci

BAB PENERAPAN HUKUM-HUKUM NEWTON

BAB PENERAPAN HUKUM-HUKUM NEWTON 1 BAB PENERAPAN HUKUM-HUKUM NEWTON Sebelumnya telah dipelajai tentang hukum Newton: hukum I tentang kelembaban benda, yang dinyatakan oleh pesamaan F = 0; hukum II tentang hubungan gaya dan geak, yang

Lebih terperinci

Gerak Melingkar. Gravitasi. hogasaragih.wordpress.com

Gerak Melingkar. Gravitasi. hogasaragih.wordpress.com Geak Melingka Gavitasi Kinematika Geak Melingka Beatuan Sebuah benda yang begeak membentuk suatu lingkaan dengan laju konstan v dikatakan mengalami geak melingka beatuan. Besa kecapatan dalam hal ini tetap

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Garis

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Garis Pogam Pekuliahan Dasa Umum Sekolah Tinggi Teknologi Telkom Integal Gais [MA] Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a t b maka

Lebih terperinci

Gelombang Elektromagnetik

Gelombang Elektromagnetik Gelombang Miko 5 Gelombang Miko 6 Gelombang lektomagnetik Gelombang elektomagnetik (em) tedii dai gelombang medan listik dan medan magnit ang menjala besama dengan kecepatan sama dengan kecepatan cahaa.

Lebih terperinci

dengan dimana adalah vektor satuan arah radial keluar. F r q q

dengan dimana adalah vektor satuan arah radial keluar. F r q q MEDAN LISTRIK 1 2.1 Medan Listik Gaya Coulomb di sekita suatu muatan listik akan membentuk medan listik. Dalam membahas medan listik, digunakan pengetian kuat medan. Untuk medan gaya Coulomb, kuat medan

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1 Pehitungan Pegeakan Robot Dai analisis geakan langkah manusia yang dibahas pada bab dua, maka dapat diambil bebeapa analisis untuk membuat ancangan geakan langkah

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Univesitas Indonusa Esa Unggul Fakultas Ilmu Kompute Teknik Infomatika Integal Gais Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a

Lebih terperinci

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama.

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama. Gracia Education Page 1 of 6 Trigonometri Pengertian Dasar Jumlah sudut-sudut dalam suatu segitiga selalu 180. Segitiga-segitiga istimewa: 1. Segitiga Siku-siku (Right-angled Triangle) - Salah satu sudutnya

Lebih terperinci

Bab. Garis Singgung Lingkaran. A. Pengertian Garis Singgung Lingkaran B. Garis Singgung Dua Lingkaran C. Lingkaran Luar dan Lingkaran Dalam Segitiga

Bab. Garis Singgung Lingkaran. A. Pengertian Garis Singgung Lingkaran B. Garis Singgung Dua Lingkaran C. Lingkaran Luar dan Lingkaran Dalam Segitiga ab 7 Sumbe: www.homepages.tesco Gais Singgung Lingkaan Lingkaan mungkin meupakan salah satu bentuk bangun data yang paling tekenal. Konsep lingkaan yang meliputi unsu-unsu lingkaan, luas lingkaan, dan

Lebih terperinci

Gerak Melingkar. B a b 4. A. Kecepatan Linear dan Kecepatan Anguler B. Percepatan Sentripetal C. Gerak Melingkar Beraturan

Gerak Melingkar. B a b 4. A. Kecepatan Linear dan Kecepatan Anguler B. Percepatan Sentripetal C. Gerak Melingkar Beraturan B a b 4 Geak Melingka Sumbe: www.ealcoastes.com Pada bab ini, Anda akan diajak untuk dapat meneapkan konsep dan pinsip kinematika dan dinamika benda titik dengan caa menganalisis besaan Fisika pada geak

Lebih terperinci

TRIGONOMETRI. Untuk SMA dan Sederajat. Penerbit. Husein Tampomas

TRIGONOMETRI. Untuk SMA dan Sederajat. Penerbit. Husein Tampomas TRIGONOMETRI Untuk SM dan Sedeajat Husein Tampomas Penebit 0 Husein Tampomas, Tigonometi, Unntuk SM dan Sedeajat, 018 PENGERTIN 1 PENGNTR KE FUNGSI TRIGONOMETRI Dalam bahasa Yunani, tigonometi tedii dai

Lebih terperinci

PENGUKURAN. Disampaikan pada Diklat Instruktur/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

PENGUKURAN. Disampaikan pada Diklat Instruktur/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGUKURAN Disampaikan pada Diklat Instuktu/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Da. Pujiati,M. Ed. Widyaiswaa PPPG Matematika Yogyakata =================================================================

Lebih terperinci

TRIGONOMETRI BAB 7. A. Perbandingan Trigonometri pada Segitiga Siku-siku

TRIGONOMETRI BAB 7. A. Perbandingan Trigonometri pada Segitiga Siku-siku BAB 7 TRIGONOMETRI A. Perbandingan Trigonometri pada Segitiga Siku-siku Gambar disamping menunjukkan segitiga dengan besar sudut α o c a Sisi di hadapan sudut siku-siku yaitu sisi c disebut sisi miring

Lebih terperinci

HUKUM COULOMB Muatan Listrik Gaya Coulomb untuk 2 Muatan Gaya Coulomb untuk > 2 Muatan Medan Listrik untuk Muatan Titik

HUKUM COULOMB Muatan Listrik Gaya Coulomb untuk 2 Muatan Gaya Coulomb untuk > 2 Muatan Medan Listrik untuk Muatan Titik HKM CMB Muatan istik Gaya Coulomb untuk Muatan Gaya Coulomb untuk > Muatan Medan istik untuk Muatan Titik FISIKA A Semeste Genap 6/7 Pogam Studi S Teknik Telekomunikasi nivesitas Telkom M A T A N Pengamatan

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari aplikasi Fisika Kuantum dalam fisika atom

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari aplikasi Fisika Kuantum dalam fisika atom PENDAHULUAN Di dalam modul ini Anda akan mempelaai aplikasi Fisika Kuantum dalam fisika atom dan fisika molekul yang mencakup: Fisika atom dan Fisika Molekul. Oleh kaena itu, sebelum mempelaai modul ini

Lebih terperinci

Gambar 4.3. Gambar 44

Gambar 4.3. Gambar 44 1 BAB HUKUM NEWTON TENTANG GERAK Pada bab kita telah membahas sifat-sifat geak yang behubungan dengan kecepatan dan peceaptan benda. Pembahasan pada Bab tesesbut menjawab petanyaan Bagaimana sebuah benda

Lebih terperinci

FISIKA 2 (PHYSICS 2) 2 SKS

FISIKA 2 (PHYSICS 2) 2 SKS Lab Elektonika Industi isika SILABI a. Konsep Listik b. Sumbe Daya Listik c. Resistansi dan Resisto d. Kapasistansi dan Kapasito e. Rangkaian Listik Seaah f. Konsep Elekto-Magnetik g. Induktansi dan Indukto

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

BAB II Tinjauan Teoritis

BAB II Tinjauan Teoritis BAB II Tinjauan Teoitis BAB II Tinjauan Teoitis 2.1 Antena Mikostip 2.1.1 Kaakteistik Dasa Antena mikostip tedii dai suatu lapisan logam yang sangat tipis ( t

Lebih terperinci

BAB 5 (Minggu ke 7) SISTEM REFERENSI TAK INERSIA

BAB 5 (Minggu ke 7) SISTEM REFERENSI TAK INERSIA 7 BAB 5 (Minggu ke 7) SISTEM REFERENSI TAK INERSIA PENDAHULUAN Leaning Outcome: Setelah mengikuti kuliah ini, mahasiswa dihaapkan : Mampu menjelaskan konsep Sistem Koodinat Dipecepat dan Gaya Inesial Mampu

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

Trigonometri. Trigonometri

Trigonometri. Trigonometri Penggunaan Rumus Sinus dan Cosinus Jumlah Dua Sudut, Selisih ; Dua Sudut, dan Sudut Ganda Rumus Jumlah dan Selisih Sinus dan Cosinus ; Menggunakan Rumus Jumlah dan Selisih Sinus dan Cosinus ; Pernahkah

Lebih terperinci

PERBANDINGAN DAN FUNGSI TRIGONOMETRI

PERBANDINGAN DAN FUNGSI TRIGONOMETRI PERBANDINGAN DAN FUNGSI TRIGONOMETRI D. Rumus Perbandingan Trigonometri di Semua Kuadran Dalam pembahasan sebelumna, kita telah melihat nilai perbandingan trigonometri untuk sudut sudut istimewa ang besarna

Lebih terperinci

BAB IV GERAK DALAM BIDANG DATAR

BAB IV GERAK DALAM BIDANG DATAR BAB IV GERAK DALAM BIDANG DATAR 4.1 Kecepatan Geak Melengkung Hingga saat ini telah dibahas geakan patikel dalam satu dimensi yaitu geakan seaah sumbu-x. Beikut akan dibahas geakan patikel dalam dua dimensi

Lebih terperinci

Hukum Coulomb Dan Medan Listrik

Hukum Coulomb Dan Medan Listrik BAB Hukum Coulomb Dan Medan Listik Pendahuluan Istilah kelistikan sudah seing di gunakan dalam kehidupan sehai-hai. Akan tetapi oang tidak banyak yang memikikan tentang hal itu. Pengamatan tentang gaya

Lebih terperinci

BAB II KAJIAN TEORI DAN HIPOTESIS. suatu usaha yang dilakukan oleh seseorang untuk memperoleh suatu perubahan tingkah laku

BAB II KAJIAN TEORI DAN HIPOTESIS. suatu usaha yang dilakukan oleh seseorang untuk memperoleh suatu perubahan tingkah laku BAB II KAJIAN TEORI DAN HIPOTESIS. Tinjauan Tentang Hasil Belaja Menuut Slameto ( 99:78 ) secaa psikologis, belaja dapat didefinisikan sebagai suatu usaha ang dilakukan oleh seseoang untuk mempeoleh suatu

Lebih terperinci

LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI

LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI NAMA : KELAS : A. RUMUS PENJUMLAHAN DAN PENGURANGAN SUDUT TRIGONOMETRI Rumus Penjumlahan dan Pengurangan Sin dan Cos Kegiatan 1 Perhatikan segitiga ABC di Samping! LEMBAR AKTIVITAS SISWA RUMUS TRIGONOMETRI

Lebih terperinci

BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1

BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1 BAB 11 GRAVITASI Hukum gavitasi univesal yang diumuskan oleh Newton, diawali dengan bebeapa pemahaman dan pengamatan empiis yang telah dilakukan oleh ilmuwan-ilmuwan sebelumnya. Mula-mula Copenicus membeikan

Lebih terperinci

BAB 17. POTENSIAL LISTRIK

BAB 17. POTENSIAL LISTRIK DFTR ISI DFTR ISI... 7. POTENSIL LISTRIK... 7. Potensial dan eda Potensial... 7. Dipole Listik...6 7.3 Kapasitansi Listik...9 7.4 Dielektikum... 7.5 Penyimpanan Enegi Listik...5 7.6 Pealatan : Tabung Sina

Lebih terperinci

BAB MEDAN DAN POTENSIAL LISTRIK

BAB MEDAN DAN POTENSIAL LISTRIK BAB MEDAN DAN POTENSIAL LISTRIK Contoh. Soal pemahaman konsep Anda mungkin mempehatikan bahwa pemukaan vetikal laya televisi anda sangat bedebu? Pengumpulan debu pada pemukaan vetikal televisi mungkin

Lebih terperinci

Trigonometri - IPA. Tahun 2005

Trigonometri - IPA. Tahun 2005 Trigonometri - IPA Tahun 5. Sebuah kapal berlayar ke arah timur sejauh mil. Kemudian kapal melanjutkan perjalanan dengan arah sejauh 6 mil. Jarak kapal terhadap posisi saat kapal berangkat adalah... A.

Lebih terperinci

FISIKA. Kelas X HUKUM NEWTON TENTANG GRAVITASI K-13. A. Hukum Gravitasi Newton

FISIKA. Kelas X HUKUM NEWTON TENTANG GRAVITASI K-13. A. Hukum Gravitasi Newton K- Kelas X ISIKA HUKUM NEWON ENANG GAVIASI UJUAN PEMELAJAAN Setelah mempelajai matei ini, kamu dihaapkan memiliki kemampuan beikut.. Menjelaskan hukum gavitasi Newton.. Memahami konsep gaya gavitasi dan

Lebih terperinci

MUATAN LISTRIK DAN HUKUM COULOMB. ' r F -F

MUATAN LISTRIK DAN HUKUM COULOMB. ' r F -F MUATAN LISTRIK AN HUKUM COULOMB q k ' qq' ˆ - - Matei Kuliah isika asa II (Pokok Bahasan 1) MUATAN LISTRIK AN HUKUM COULOMB s. Ishafit, M.Si. Pogam Stui Peniikan isika Univesitas Ahma ahlan, 5 Muatan Listik

Lebih terperinci

: 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah.

: 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah. Latar belakang penyusunan: Lembar kerja siswa ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari dengan lebih mudah. Kami menyajikan materi dalam modul ini berusaha mengacu

Lebih terperinci

Bab 2 Gravitasi Planet dalam Sistem Tata Surya

Bab 2 Gravitasi Planet dalam Sistem Tata Surya PEA KONSEP Bab Gavitasi Planet dalam Sistem ata Suya Gavitasi Gavitasi planet Hukum Gavitasi Newton Hukum Keple Menentukan massa bumi Obit satelit bumi Hukum I Keple Hukum II Keple Hukum III Keple 0 Fisika

Lebih terperinci

Dari gerakan kumbang dan piringan akan kita dapatkan hubungan

Dari gerakan kumbang dan piringan akan kita dapatkan hubungan Contact Peson : OSN Fisika 2017 Numbe 1 GERAKAN KUMBANG DI PINGGIR PIRINGAN Sebuah piingan lingkaan (massa M, jai-jai a) digantung pada engsel/sumbu simeti mendata tanpa gesekan yang melalui titik pusat

Lebih terperinci

BAB II KAJIAN PUSTAKA. dapat berasal dari mana saja seperti guru, buku, teman, atau lingkungan

BAB II KAJIAN PUSTAKA. dapat berasal dari mana saja seperti guru, buku, teman, atau lingkungan BAB II KAJIAN PUSTAKA A. Deskipsi Teoi. Pembelajaan Matematika Menuut Kamus Besa Bahasa Indonesia (2008: 24) pembelajaan beasal dai kata belaja ang beati beusaha mengetahui sesuatu, beusaha mempeoleh ilmu

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

GROUP 1 ORDINARY DIFFERENTIAL HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. EQUATIONS

GROUP 1 ORDINARY DIFFERENTIAL HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. EQUATIONS GROUP HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. ORDINARY DIFFERENTIAL EQUATIONS DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

FISIKA LISTRIK. Esti Puspitaningrum, S.T., M.Eng.

FISIKA LISTRIK. Esti Puspitaningrum, S.T., M.Eng. FISIKA LISTRIK Esti Puspitaningum, S.T., M.Eng. A 1 MUATAN LISTRIK & HUKUM OULOM A 1 MUATAN LISTRIK & HUKUM OULOM MUATAN LISTRIK Matei yg kelebihan elekton akan bemuatan negatif Matei yang kekuangan/kehilangan

Lebih terperinci

KORELASI. menghitung korelasi antar variabel yang akan dicari hubungannya. Korelasi. kuatnya hubungan dinyatakan dalam besarnya koefisien korelasi.

KORELASI. menghitung korelasi antar variabel yang akan dicari hubungannya. Korelasi. kuatnya hubungan dinyatakan dalam besarnya koefisien korelasi. KORELASI Tedapat tiga macam bentuk hubungan anta vaiabel, yaitu hubungan simetis, hubungan sebab akibat (kausal) dan hubungan Inteaktif (saling mempengauhi). Untuk mencai hubungan antaa dua vaiabel atau

Lebih terperinci

Perpindahan Panas Konduksi. Steady-state satu arah pada permukaan datar, silinder, dan bola

Perpindahan Panas Konduksi. Steady-state satu arah pada permukaan datar, silinder, dan bola Pepindahan Panas Konduksi Steady-state satu aah pada pemukaan data, silinde, dan bola Minggu ke- OULINE Pokok Bahasan dan Sub Pokok Bahasan Kontak belaja Penganta pepindahan panas Pepindahan panas konduksi

Lebih terperinci

FISIKA DASAR 2 PERTEMUAN 2 MATERI : POTENSIAL LISTRIK

FISIKA DASAR 2 PERTEMUAN 2 MATERI : POTENSIAL LISTRIK UNIVERSITAS BUANA PERJUANGAN KARAWANG Teknik Industi FISIKA DASAR PERTEMUAN MATERI : POTENSIAL LISTRIK SILABI FISIKA DASAR Muatan dan Medan Listik Potensial Listik Kapasito dan Dielektik Aus dan Resistansi

Lebih terperinci

FIsika KTSP & K-13 HUKUM NEWTON TENTANG GRAVITASI. K e l a s A. HUKUM GRAVITASI NEWTON

FIsika KTSP & K-13 HUKUM NEWTON TENTANG GRAVITASI. K e l a s A. HUKUM GRAVITASI NEWTON KSP & K- FIsika K e l a s XI HUKUM NEWON ENANG GAVIASI ujuan Pembelajaan Setelah mempelajai matei ini, kamu dihaapkan mampu: menjelaskan hukum avitasi Newton; memahami konsep aya avitasi dan medan avitasi;

Lebih terperinci

Ukuran Sudut. Perbandingan trigonometri. 1 putaran = 360 derajat (360 ) = 2π radian. Catatan:

Ukuran Sudut. Perbandingan trigonometri. 1 putaran = 360 derajat (360 ) = 2π radian. Catatan: Ukuran Sudut 1 putaran = 360 derajat (360 ) = 2π radian Perbandingan trigonometri Catatan: Sin = sinus Cos = cosinus Tan/Tg = tangens Sec = secans Cosec/Csc = cosecans Cot/Ctg = cotangens Dari gambar tersebut

Lebih terperinci

BAB MEDAN DAN POTENSIAL LISTRIK

BAB MEDAN DAN POTENSIAL LISTRIK 1 BAB MEDAN DAN POTENSIAL LISTRIK 4.1 Hukum Coulomb Dua muatan listik yang sejenis tolak-menolak dan tidak sejenis taik menaik. Ini beati bahwa antaa dua muatan tejadi gaya listik. Bagaimanakah pengauh

Lebih terperinci

: Dr. Budi Mulyanti, MSi. Pertemuan ke-2 CAKUPAN MATERI 1. MEDAN LISTRIK 2. INTENSITAS/ KUAT MEDAN LISTRIK 3. GARIS GAYA DAN FLUKS LISTRIK

: Dr. Budi Mulyanti, MSi. Pertemuan ke-2 CAKUPAN MATERI 1. MEDAN LISTRIK 2. INTENSITAS/ KUAT MEDAN LISTRIK 3. GARIS GAYA DAN FLUKS LISTRIK MATA KULIAH KOD MK Dosen : FISIKA DASAR II : L-1 : D. Budi Mulyanti, MSi Petemuan ke- CAKUPAN MATRI 1. MDAN LISTRIK. INTNSITAS/ KUAT MDAN LISTRIK 3. GARIS GAYA DAN FLUKS LISTRIK SUMBR-SUMBR: 1. Fedeick

Lebih terperinci

LAMPIRAN A. (Beberapa Besaran Fisika, Faktor konversi dan Alfabet Yunani)

LAMPIRAN A. (Beberapa Besaran Fisika, Faktor konversi dan Alfabet Yunani) LAMPIRAN A (Bebeapa Besaan Fisika, Fakto konvesi dan Alfabet Yunani) Bebeapa Tetapan dan Besaan Fisika Massa matahai Jai-jai matahai Massa bumi Kecepatan cahaya Konstanta gavitasi = 1,99 10 30 kg = 6,9599

Lebih terperinci

Mata Pelajaran : FISIKA Satuan Pendidikan : SMA. Jumlah Soal : 40 Bentuk Soal : Pilihan Ganda

Mata Pelajaran : FISIKA Satuan Pendidikan : SMA. Jumlah Soal : 40 Bentuk Soal : Pilihan Ganda F 1 F Mata Pelajaan : FISIKA Satuan Pendidikan : SMA Pogam : IPA Jumlah Soal : 40 Bentuk Soal : Pilihan Ganda 1. Posisi skala utama dan skala nonius sebuah jangka soong ditunjukkan sepeti pada gamba beikut

Lebih terperinci

INTEGRAL TENTU. x 3. a=x 1. x 2. c 1. c 2. panjang selang bagian terpanjang dari partisi P. INTEGRAL LIPAT DUA

INTEGRAL TENTU. x 3. a=x 1. x 2. c 1. c 2. panjang selang bagian terpanjang dari partisi P. INTEGRAL LIPAT DUA INTEGAL TENTU Pehatian Gamba beiut: f D D a b a c c. n b Gamba Gamba P : panjang selang bagian tepanjang dai patisi P. Definisi: Misal f fungsi ang tedefinisi pada selang tetutup [a,b]. Jia lim n P i f

Lebih terperinci

SUMBER MEDAN MAGNET. Oleh : Sabar Nurohman,M.Pd. Ke Menu Utama

SUMBER MEDAN MAGNET. Oleh : Sabar Nurohman,M.Pd. Ke Menu Utama SUMER MEDAN MAGNET Oleh : Saba Nuohman,M.Pd Ke Menu Utama Medan Magnetik Sebuah Muatan yang egeak Hasil-hasil ekspeimen menunjukan bahwa besanya medan magnet () akibat adanya patikel bemuatan yang begeak

Lebih terperinci

Bab. Bangun Ruang Sisi Lengkung. A. Tabung B. Kerucut C. Bola

Bab. Bangun Ruang Sisi Lengkung. A. Tabung B. Kerucut C. Bola Bab Sumbe: www.contain.ca Bangun Ruang Sisi Lengkung Di Sekolah Dasa, kamu telah mengenal bangun-bangun uang sepeti tabung, keucut, dan bola. Bangun-bangun uang tesebut akan kamu pelajai kembali pada bab

Lebih terperinci

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1 PERSIAPAN TES SKL X, MATEMATIKA 1. Pangkat, Akar dan Logaritma Menentukan hasil operasi bentuk pangkat (1 6) Menentukan hasil operasi bentuk akar (7 11) Menentukan hasil operasi bentuk logarithma (12 15)

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-31) Topik hai ini (minggu ) Geak dalam Satu Dimensi (Kinematika) Keangka Acuan & Sistem Koodinat Posisi dan Pepindahan Kecepatan Pecepatan GLB dan GLBB Geak Jatuh Bebas Mekanika Bagian

Lebih terperinci

SMAN 1 BONTOA PERSIAPAN UJIAN NASIONAL 2009 MATEMATIAK IPA

SMAN 1 BONTOA PERSIAPAN UJIAN NASIONAL 2009 MATEMATIAK IPA SMAN 1 BONTOA PERSIAPAN UJIAN NASIONAL 2009 MATEMATIAK IPA SMAN 1 BONTOA PERSIAPAN UJIAN NASIONAL 2009 MATEMATIAK IPA PETUNJUK: Jawablah soal di bawah ini dengan membeikan tanda silang (X) pada huuf a,

Lebih terperinci

BAB III EKSPEKTASI BANYAKNYA PENGGANTIAN KOMPONEN LISTRIK MOTOR BERDASARKAN FREE REPLACEMENT WARRANTY DUA DIMENSI

BAB III EKSPEKTASI BANYAKNYA PENGGANTIAN KOMPONEN LISTRIK MOTOR BERDASARKAN FREE REPLACEMENT WARRANTY DUA DIMENSI BAB III EKSPEKTASI BANYAKNYA PENGGANTIAN KOMPONEN LISTRIK MOTOR BERDASARKAN FREE REPLACEMENT WARRANTY DUA DIMENSI 3. Pendahuluan Tujuan penelitian ini adalah untuk mendapatkan ekspektasi banyaknya komponen

Lebih terperinci

PENYELESAIAN SOAL SOAL INSTALASI CAHAYA

PENYELESAIAN SOAL SOAL INSTALASI CAHAYA PENYELESAAN SOAL SOAL NSTALAS CAHAYA 1. Sebuah lampu pija dai W dengan flux Cahaya spesifik 16 lm/w ditempatkan dalam sebuah bola kaca putih susu. Kacanya meneuskan 75% dai flux Cahaya lampu. Kalau luminansi

Lebih terperinci

Lampiran 1. Instrumen Penelitian 1.1 RPP Kelas Eksperimen Pertama 1.2 RPP Kelas Eksperimen Kedua 1.3 LKS Kelas Eksperimen Pertama 1.

Lampiran 1. Instrumen Penelitian 1.1 RPP Kelas Eksperimen Pertama 1.2 RPP Kelas Eksperimen Kedua 1.3 LKS Kelas Eksperimen Pertama 1. Lampiran 1. Instrumen Penelitian 1.1 RPP Kelas Eksperimen Pertama 1.2 RPP Kelas Eksperimen Kedua 1.3 LKS Kelas Eksperimen Pertama 1.4 LKS Kelas Eksperimen Kedua 1.5 Lembar Observasi Keterlaksanaan Pembelajaran

Lebih terperinci

1 ANGKET PERSEPSI SISWA TERH

1 ANGKET PERSEPSI SISWA TERH 48 Lampian ANGKET PERSEPSI SISWA TERHADAP PERANAN ORANG TUA DAN MINAT BELAJAR DALAM PENINGKATAN HASIL BELAJAR BIOLOGI SISWA KELAS XI IPA SMA NEGERI 8 MEDAN Nama : Kelas : A. Petunjuk Pengisian. Bacalah

Lebih terperinci

MEDAN LIST S RIK O eh : S b a a b r a Nu N r u oh o m h an a, n M. M Pd

MEDAN LIST S RIK O eh : S b a a b r a Nu N r u oh o m h an a, n M. M Pd MEDAN LISTRIK Oleh : Saba Nuohman, M.Pd Ke Menu Utama Pehatikan Video Beikut: Mengapa itu bisa tejadi? Muatan Listik Penjelasan seputa atom : Diamete inti atom Massa potonmassa neton Massa elekton Muatan

Lebih terperinci

Bahan Ajar Listrik Statis Iqro Nuriman, S.Si, M.Pd SMA Negeri 1 Maja LISTRIK STATIS

Bahan Ajar Listrik Statis Iqro Nuriman, S.Si, M.Pd SMA Negeri 1 Maja LISTRIK STATIS SMA Negei Maja LISTRIK STATIS KLISTRIKAN Fisikawan Du Fay menunjukkan adanya dua macam pelistikan (eletifikasi). Bebeapa isolato tetentu, bila digosok dalam keadaan tetentu, menyebabkan gaya tolak. Hasil

Lebih terperinci

Solusi Persamaan Ricci Flow dalam Ruang Empat Dimensi Bersimetri Bola

Solusi Persamaan Ricci Flow dalam Ruang Empat Dimensi Bersimetri Bola Bab 3 Solusi Pesamaan Ricci Flow dalam Ruang Empat Dimensi Besimeti Bola Bedasakan bentuk kanonik metik besimeti bola.18, dapat dibuat sebuah metik besimeti bola yang begantung paamete non-koodinat τ sebagai,

Lebih terperinci

TES UNIT II MEKANIKA SABTU, 08 DESEMBER 2007 JAM

TES UNIT II MEKANIKA SABTU, 08 DESEMBER 2007 JAM TES UNIT II MEKANIKA SABTU, 08 DESEMBER 007 JAM 09.00-.30 PILIHAN GANDA Pilihlah jawab yang bena dan nyatakan keyakinanmu dengan mengisi () jika tidak yakin () kuang yakin (3) Agak yakin dan (4) Yakin

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II Program Peruliahan asar Umum Seolah Tinggi Tenologi Telom Integral Lipat ua [MA4] Integral Lipat ua Misalan z f(,) terdefinisi pada merupaan suatu persegi panjang tertutup, aitu : {(, ) : a b, c d} b a

Lebih terperinci

1. Sebuah benda dipindahkan 12 kaki ke barat dan 5 kaki ke utara. Berapa besar dan arah resultan perpindahan?

1. Sebuah benda dipindahkan 12 kaki ke barat dan 5 kaki ke utara. Berapa besar dan arah resultan perpindahan? Bab Vektor Bagian A 1. Sebuah benda dipindahkan 12 kaki ke barat dan 5 kaki ke utara. Berapa besar dan arah resultan perpindahan? Perhatikan gambar berikut: 5 kaki ke utara perpindahan θ 5 kaki ke barat

Lebih terperinci