CNH2G4/ KOMPUTASI NUMERIK
|
|
|
- Suharto Tedja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 CNHG4/ KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT SOLUSI NUMERIK PERSAMAAN DIFERENSIAL BIASA
2 Pendahuluan Pesamaan Diffeensial : Gabungan dai fungsi ang tidak diketahui dengan tuunanna. Kategoi Pesamaan Diffeensial : PD Biasa : Pesamaan Diffeensial ang hana memiliki satu vaiabel bebas. Bedasakan tuunan tetinggi ang dimiliki, PDB dikategoikan menjadi : PDB Ode : tuunan tetinggina adalah tuunan petama PDB Ode : tuunan kedua meupakan tuunan tetinggi PDB Ode 3 : tuunan ketiga meupakan tuunan tetinggina. Dan seteusna PD Pasial Pesamaan Diffeensial ang memiliki lebih dai satu vaiabel bebas. //7
3 Pendahuluan Cont. Contoh Pesamaan : d d Tuunan dilambangkan dengan : d/d atau f atau, sedangkan fungsi ang tidak diketahui dilambangkan dengan kebeadaan vaiabel teikatna. sepeti contoh di atas, maka : Tuunan dilambangkan dengan d/d dan fungsi ang tidak diketahui diwakili dengan vaiabel. 3 //7
4 4 Pendahuluan Cont. ' Kategoikan : PD / bukan PD / PDP / PDB? d d 3 ' ' ' Sin Cos '' ' ''' 3 u u t Sin t u 4 ' f 7; 3 ' 5 3 t f t t. PDB ode. PDP 3. Bukan PD 4. PDB ode 5. PDB ode 3 6. Bukan PD 7. PDP 8. PDB ode e u u 6 //7
5 Pendahuluan Cont. Solusi PDB : solusi analitik : salah satuna dengan teknik integal solusi numeik : menggunakan metode hampian. Solusi Numeik : mencai nilai fungsi di +, dimana menunjukkan jumlah langkah atau iteasi. Langkah/iteasi memiliki jaak ang sama h = +h; =,,,,n 5 //7
6 PDB Ode Satu Bentuk baku PDB ode satu : Contoh : d f ' ' f, d ' ; ' ' ; ' Metode penelesaian : Eule Heun Runge-Kutta 6 //7
7 7 Metode Eule Bentuk baku : Penuunan Deet Talo : uaikan + disekita Dipotong sampai ode : Kaena = f, dan + - = h, maka : h f f d d ;, ' '... ''! '! ; ''! '! t t n h O hf,...,,, ;, //7
8 Metode Eule Cont. Penuunan secaa geometis : f, adalah pesamaan diffeensial ang dapat digambakan sebagai gadien gais singgung di titik,. Gais singgung ditaik meninggung titik, untuk menemukan nilai, pada titik, ditaik lagi gais ang meninggung titik tesebut dengan fungsi f, untuk mendapatkan f dan seteusna. 8 //7
9 Metode Eule Cont ,,, 3,3 4,4 5,5 6,6 7, ,8 d/d 9 //7
10 Y+ sejati Y+ hampian Y sejati A B C gal at h,,, ' hf hf h AB BC f m Metode Eule Cont. //7
11 Metode Eule Cont. Galat Galat Pemotongan Ep h '' t O h sebanding dengan kuadat ukuan langkah Galat Kumulatif E kumulatif n h '' t nh '' b a h h b a h'' t '' t O h //7
12 Metode Eule Cont. Contoh Soal : Diketahui d/d = + ; =. Beapa. dengan langkah h =. dan h =.5, jika diketahui fungsi asli adalah = e --, langkah mana ang lebih teliti? h =.5 = = =.5.5 = +.5+ = =.. = =.5 h =. = = =.. = +.+ = =.4.4 = +..+ =.4 =.6.6 = =.8 =.8.8 = =.436 =.. = = = e. -.- =.5798 Langkah h =. lebih teliti //7
13 Metode Heun Meupakan pebaikan metode Eule. Solusi Eule dijadikan solusi pekiaan awal dan dipebaiki dengan metode Heun. Pebaikan gadien ang digunakan meupakan ata-ata gadien dai titik ang ada. 3 //7
14 Metode Heun Cont. Dai satu titik awal,, iteasi dan gadien didapatkan pekiaan nilai + selanjutna +, + beseta gadienna. Dai dua gadien ang ada dicai ata-atana kemudian digunakan untuk menghitung kembali nilai +., f,, ; f hf ; f, f h f,,,, f, Misal : Awal iteasi dimiliki, dan f, Kemudian digunakan untuk menghitung dan didapatkan f, Hitung kembali dengan gadien f, +f, / atau ditulis sekaligus sebagai beikut h f, f, hf, 4 //7
15 Metode Heun Cont. Secaa geometis : , +, + f, fat, f+, + _eule _heun.5 5 //7
16 Metode Runge-Kutta Bentuk umum Runge Kutta Ode n: + = + a k + a k + + a n k n Dengan a,a,a 3,,a n adalah konstanta k = hf, k = hf +p h, +q k k 3 = hf +p h, +q k +q k k 4 = hf +p 3 h, +q 3 k +q 3 k +q 33 k 3 k n = h +p n- h, +q n-, k +q n-, k + +q n-,n- k n- Galat Pe langkah Runge Kuta ode n : Oh n+ Kumulatif ode n :Oh n 6 //7
17 Metode Runge Kutta Cont. Ode k = hf, + = + a k ; a = didapat + = + hf, Metode Eule Galat : Pe langkah : Oh Kumulatif : Oh 7 //7
18 Metode Runge Kutta Cont. Ode k = hf, k = hf +p h, +q k + = + a k + a k Dengan penuunan umus ang sudah ada didapatkan : a = -a = -t p = /a = /t q = /a = /t Atina ada tak behingga fomula ode dua. Dengan a =a = ½, q =, p = k = hf, k = hf +h, +k + = + ½ k + k Metode Heun 8 //7
19 Metode Runge Kutta Cont. Ode 3 k = hf, k = hf +p h, +q k k 3 = hf +p h, +q k +q k + = + a k + a k + a 3 k 3 dengan menggunakan penuunan umus ang ada didapatkan : k = hf, k = hf +/ h, +/ k k 3 = hf +h, -k +k + = + /6 k + 4k + k 3 9 //7
20 Ode 4 Metode Runge Kutta Cont. k = hf, k = hf +p h, +q k k 3 = hf +p h, +q k +q k k 4 = hf +p 3 h, +q 3 k +q 3 k +q 33 k 3 + = + a k + a k + a 3 k 3 + a 4 k 4 dengan menggunakan penuunan umus ang ada didapatkan : k = hf, k = hf +/ h, +/ k k 3 = hf +/h, +/ k k 4 = hf +h, +k 3 + = + /6 k + k + k 3 + k 4 //7
21 THANK YOU
GROUP 1 ORDINARY DIFFERENTIAL HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. EQUATIONS
GROUP HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. ORDINARY DIFFERENTIAL EQUATIONS DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN
Geometri Analitik Bidang (Lingkaran)
9 Geometi nalitik idang Lingkaan) li Mahmudi Juusan Pendidikan Matematika FMIP UNY) KOMPETENSI Kompetensi ang dihaapkan dikuasai mahasiswa setelah mempelajai ab ini adalah sebagai beikut. Menjelaskan pengetian
BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER
BAB II MDAN ISTRIK DI SKITAR KONDUKTOR SIINDR II. 1 Hukum Coulomb Chales Augustin Coulomb (1736-1806), adalah oang yang petama kali yang melakukan pecobaan tentang muatan listik statis. Dai hasil pecobaannya,
Solusi Persamaan Diferensial Biasa
Bab 8 Solusi Pesamaan Difeensial Biasa Penalaan adala metode yang lambat dan beliku-liku dengan mana meeka yang tidak mengetaui kebenaan menemukannya. Hati mempunyai penalaan sendii sedangkan penalaan
SolusiPersamaanNirlanjar
SolusiPesamaanNilanja (Bagian2) Bahan Kuliah IF4058 Topik Khusus Infomatika I Oleh; Rinaldi Muni(IF-STEI ITB) Rinaldi Muni - Topik Khusus Infomatika I 1 MetodeSecant Posedu lelaan metode Newton-Raphson
1 Sistem Koordinat Polar
1 Sistem Koodinat ola ada kuliah sebelumna, kita selalu menggunakan sistem koodinat Katesius untuk menggambakan lintasan patikel ang begeak. Koodinat Katesius mudah digunakan saat menggambakan geak linea
IDENTITAS TRIGONOMETRI. Tujuan Pembelajaran
Kuikulum 03 Kelas X matematika WAJIB IDENTITAS TRIGONOMETRI Tujuan Pembelajaan Setelah mempelajai matei ini, kamu dihaapkan memiliki kemampuan beikut.. Memahami jenis-jenis identitas tigonometi.. Dapat
FISIKA. Sesi LISTRIK STATIK A. GAYA COULOMB
ISIKA KELAS XII IPA - KURIKULUM GABUNGAN 04 Sesi NGAN LISTRIK STATIK A. GAYA COULOMB Jika tedapat dua atau lebih patikel bemuatan, maka antaa patikel tesebut akan tejadi gaya taik-menaik atau tolak-menolak
II. KINEMATIKA PARTIKEL
II. KINEMATIKA PARTIKEL Kinematika adalah bagian dai mekanika ang mempelajai tentang geak tanpa mempehatikan apa/siapa ang menggeakkan benda tesebut. Bila gaa penggeak ikut dipehatikan, maka apa ang dipelajai
FISIKA. Kelas X HUKUM NEWTON TENTANG GRAVITASI K-13. A. Hukum Gravitasi Newton
K- Kelas X ISIKA HUKUM NEWON ENANG GAVIASI UJUAN PEMELAJAAN Setelah mempelajai matei ini, kamu dihaapkan memiliki kemampuan beikut.. Menjelaskan hukum gavitasi Newton.. Memahami konsep gaya gavitasi dan
BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1
BAB 11 GRAVITASI Hukum gavitasi univesal yang diumuskan oleh Newton, diawali dengan bebeapa pemahaman dan pengamatan empiis yang telah dilakukan oleh ilmuwan-ilmuwan sebelumnya. Mula-mula Copenicus membeikan
Kegiatan Belajar 2. Identitas Trigonometri
Kegiatan Belaja A. Tujuan Pembelajaan Setelah mempelajai kegiatan belaja, dihaapkan siswa dapat a. Menggunakan identitas tigonometi dalam penelesaian b. Membuktikan identitas tigonometi sedehana dengan
BAB III EKSPEKTASI BANYAKNYA PENGGANTIAN KOMPONEN LISTRIK MOTOR BERDASARKAN FREE REPLACEMENT WARRANTY DUA DIMENSI
BAB III EKSPEKTASI BANYAKNYA PENGGANTIAN KOMPONEN LISTRIK MOTOR BERDASARKAN FREE REPLACEMENT WARRANTY DUA DIMENSI 3. Pendahuluan Tujuan penelitian ini adalah untuk mendapatkan ekspektasi banyaknya komponen
BAB IV HASIL DAN PEMBAHASAN. banyaknya komponen listrik motor yang akan diganti berdasarkan Renewing Free
BAB IV HASIL DAN PEMBAHASAN 4. Pendahuluan Bedasakan tujuan penelitian ini, yaitu mendapatkan ekspektasi banyaknya komponen listik moto yang akan diganti bedasakan Renewing Fee Replacement Waanty dua dimensi,
Gelombang Elektromagnetik
Gelombang Miko 5 Gelombang Miko 6 Gelombang lektomagnetik Gelombang elektomagnetik (em) tedii dai gelombang medan listik dan medan magnit ang menjala besama dengan kecepatan sama dengan kecepatan cahaa.
FISIKA DASAR 2 PERTEMUAN 2 MATERI : POTENSIAL LISTRIK
UNIVERSITAS BUANA PERJUANGAN KARAWANG Teknik Industi FISIKA DASAR PERTEMUAN MATERI : POTENSIAL LISTRIK SILABI FISIKA DASAR Muatan dan Medan Listik Potensial Listik Kapasito dan Dielektik Aus dan Resistansi
KORELASI. menghitung korelasi antar variabel yang akan dicari hubungannya. Korelasi. kuatnya hubungan dinyatakan dalam besarnya koefisien korelasi.
KORELASI Tedapat tiga macam bentuk hubungan anta vaiabel, yaitu hubungan simetis, hubungan sebab akibat (kausal) dan hubungan Inteaktif (saling mempengauhi). Untuk mencai hubungan antaa dua vaiabel atau
GRAFITASI. F = G m m 1 2. F = Gaya grafitasi, satuan : NEWTON. G = Konstanta grafitasi, besarnya : G = 6,67 x 10-11
GRAFITASI Si Isaac Newton yang tekenal dengan hukum-hukum Newton I, II dan III, juga tekenal dengan hukum Gafitasi Umum. Didasakan pada patikel-patikel bemassa senantiasa mengadakan gaya taik menaik sepanjang
Bab. Garis Singgung Lingkaran. A. Pengertian Garis Singgung Lingkaran B. Garis Singgung Dua Lingkaran C. Lingkaran Luar dan Lingkaran Dalam Segitiga
ab 7 Sumbe: www.homepages.tesco Gais Singgung Lingkaan Lingkaan mungkin meupakan salah satu bentuk bangun data yang paling tekenal. Konsep lingkaan yang meliputi unsu-unsu lingkaan, luas lingkaan, dan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika
Fungsi dan Grafik Diferensial dan Integral
Sudaatno Sudiham Studi Mandii Fungsi dan Gafik Difeensial dan Integal ii Dapublic BAB 7 Koodinat Pola Sampai dengan bahasan sebelumna kita membicaakan fungsi dengan kuva-kuva ang digambakan dalam koodinat
Sejarah. Charles Augustin de Coulomb ( )
Medan Listik Sejaah Fisikawan Peancis Piestley yang tosi balance asumsi muatan listik Gaya (F) bebanding tebalik kuadat Pengukuan secaa matematis bedasakan ekspeimen Coulomb Chales Augustin de Coulomb
TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA
TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA Hingga sejauh ini kita sudah mempelajai tentang momentum, gaya-gaya pada fluida statik, dan ihwal fluida begeak dalam hal neaca massa dan neaca enegi.
LISTRIK STATIS. Nm 2 /C 2. permitivitas ruang hampa atau udara 8,85 x C 2 /Nm 2
LISTIK STATIS A. Hukum Coulomb Jika tedapat dua muatan listik atau lebih, maka muatan-muatan listik tesebut akan mengalami gaya. Muatan yang sejenis akan tolak menolak sedangkan muatan yang tidak sejenis
Bab 2 Gravitasi Planet dalam Sistem Tata Surya
PEA KONSEP Bab Gavitasi Planet dalam Sistem ata Suya Gavitasi Gavitasi planet Hukum Gavitasi Newton Hukum Keple Menentukan massa bumi Obit satelit bumi Hukum I Keple Hukum II Keple Hukum III Keple 0 Fisika
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : [email protected] FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 009 ANALISIS KORELASI 1. Koefisien Koelasi Peason Koefisien Koelasi Moment
Ini merupakan tekanan suara p(p) pada sembarang titik P dalam wilayah V seperti yang. (periode kedua integran itu).
7.3. Tansmisi Suaa Melalui Celah 7.3.1. Integal Kichhoff Cukup akses yang bebeda untuk tik-tik difaksi disediakan oleh difaksi yang tepisahkan dapat dituunkan dai teoema Geen dalam analisis vekto. Hal
BAB III RANCANGAN PENELITIAN. tujuan utama yang ingin dicapai melalui penelitian ini adalah untuk memperoleh
44 BAB III RACAGA PEELITIA.. Tujuan Penelitian Bedasakan pokok pemasalahan yang telah diuaikan dalam Bab I, maka tujuan utama yang ingin dicapai melalui penelitian ini adalah untuk mempeoleh jawaban atas
Chap 6 Model-Gas Real dan Ekspansi Virial. 1. Ekspansi Virial 2. Gugus Mayer
Chap 6 Model-Gas Real dan Ekspansi Viial. Ekspansi Viial. Gugus Maye Fungsi Patisi Kanonik Untuk Gas Dengan Inteaksi Lemah Misalkan tedapat inteaksi (potensial) anta patikel : u ij, sehingga Hamiltonian
III. METODE PENELITIAN. menggunakan kuesioner sebagai teknik pokok. Penelitian yang bersifat
III. METODE PENELITIAN A. Metode Penelitian Penelitian ini menggunakan metode penelitian kuantitatif, kaena dalam pengumpulan data, penulis menghimpun infomasi dai paa esponden menggunakan kuesione sebagai
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah
ATURAN-ATURAN DASAR GAMBAR TEKNIK
TURN-TURN DSR GMR TEKNIK. HURUF dan NGK TEKNIK Huuf dan angka yang biasa digunakan dalam gamba teknik ada dua type, yaitu :. Type ( Tegak/miing 75 0 ) : Untuk huuf besa/kapital, tebal gais /4 h, dimana
III. TEORI DASAR. Metoda gayaberat menggunakan hukum dasar, yaitu Hukum Newton tentang
14 III. TEORI DASAR A. Hukum Newton Metoda gayabeat menggunakan hukum dasa, yaitu Hukum Newton tentang gavitasi dan teoi medan potensial. Newton menyatakan bahwa besa gaya taik menaik antaa dua buah patikel
Teori Dasar Medan Gravitasi
Modul Teoi Dasa Medan Gavitasi Teoi medan gavitasi didasakan pada hukum Newton tentang medan gavitasi jagat aya. Hukum medan gavitasi Newton ini menyatakan bahwa gaya taik antaa dua titik massa m dan m
Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika
Univesitas Indonusa Esa Unggul Fakultas Ilmu Kompute Teknik Infomatika Integal Gais Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a
Listrik statis (electrostatic) mempelajari muatan listrik yang berada dalam keadaan diam.
LISTRIK STATIS Listik statis (electostatic) mempelajai muatan listik yang beada dalam keadaan diam. A. Hukum Coulomb Hukum Coulomb menyatakan bahwa, Gaya taik atau tolak antaa dua muatan listik sebanding
PERSAMAAN GARIS SINGGUNG SEKUTU DUA LINGKARAN
EMN GI INGGUNG EKUTU DU LINGKN Oleh: nang Wibowo,.d M Negei onoogo Mei EMN GI INGGUNG EKUTU DU LINGKN Eail : [email protected] Blog : www.atikzone.co.cc www.atikzone.wodpess.co H : 8 8 8 8 (M onl) Hak Cipta
Persamaan Garis Singgung Sekutu 2 Buah Lingkaran
Matei esaaan Gais inggung ekutu Buah Lingkaan Oleh: nang Wibowo.d pil MatikZone s eies Eail : [email protected] Blog : www.atikzone.wodpess.co H : 8 897 897 Hak Cipta Dilindungi Undang-undang. Dilaang engkutip
BAB II METODE PENELITIAN. penelitian korelasional dengan menggunakan pendekatan kuantitatif dan
BAB II METODE PENELITIAN A. Metode Penelitian Bentuk penelitian yang dipegunakan dalam penelitian ini adalah bentuk penelitian koelasional dengan menggunakan pendekatan kuantitatif dan menggunakan umus
PERSAMAAN GARIS SINGGUNG SEKUTU DUA LINGKARAN
MN GI INGGUNG KUTU DU LINGKN Oleh: nang Wibowo.d WWW.MTIKZON.WOD.COM pil www.atikzone.wodpess.co [email protected] MN GI INGGUNG KUTU DU LINGKN ail : [email protected] Blog : www.atikzone.wodpess.co www.etung.wodpess.co
Fisika I. Gerak Dalam 2D/3D. Koefisien x, y dan z merupakan lokasi parikel dalam koordinat. Posisi partikel dalam koordinat kartesian diungkapkan sbb:
Posisi dan Pepindahan Geak Dalam D/3D Posisi patikel dalam koodinat katesian diungkapkan sbb: xi ˆ + yj ˆ + zk ˆ :57:35 Koefisien x, y dan z meupakan lokasi paikel dalam koodinat katesian elatif tehadap
UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
TRIGONOMETRI disusun untuk memenuhi salah satu tugas akhi Semeste Pendek mata kuliah Tigonometi Dosen : Fey Fedianto, S.T., M.Pd. Oleh Nia Apiyanti (207022) F PRODI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN
SUMBER MEDAN MAGNET. Oleh : Sabar Nurohman,M.Pd. Ke Menu Utama
SUMER MEDAN MAGNET Oleh : Saba Nuohman,M.Pd Ke Menu Utama Medan Magnetik Sebuah Muatan yang egeak Hasil-hasil ekspeimen menunjukan bahwa besanya medan magnet () akibat adanya patikel bemuatan yang begeak
Konstruksi Fungsi Lyapunov untuk Menentukan Kestabilan
JURNAL SAINS DAN SENI ITS Vol. 6, No., (27) 2337-352 (23-928X Pint) A 28 Konstuksi Fungsi Lyapunov untuk Menentukan Kestabilan Reni Sundai dan Ena Apiliani Juusan Matematika, Fakultas Matematika dan Ilmu
LISTRIK STATIS. F k q q 1. Gambar. Saling tarik menarik. Saling tolak-menolak. Listrik Statis * MUATAN LISTRIK.
* MUATAN LISTRIK. LISTRIK STATIS Suatu pengamatan dapat mempelihatkan bahwa bila sebatang gelas digosok dengan kain wool atau bulu domba; batang gelas tesebut mampu menaik sobekan-sobekan ketas. Ini menunjukkan
BAB IV ANALISIS HUBUNGAN UMPAN BALIK DENGAN MOTIVASI BELAJAR PENDIDIKAN AGAMA ISLAM SISWA SMP NEGERI 9 BATANG
BAB IV ANALISIS HUBUNGAN UMPAN BALIK DENGAN MOTIVASI BELAJAR PENDIDIKAN AGAMA ISLAM SISWA SMP NEGERI 9 BATANG Setelah data dai kedua vaiabel yaitu vaiabel X dan vaiabel Y tekumpul seta adanya teoi yang
Bab 3. Solusi Persamaan Nirlanjar
Bab 3 Solusi Pesamaan Nilanja Saya tidak tahu bagaimana saya tampak pada dunia; tetapi bagi saya sendii saya nampaknya hanyalah sepeti seoang anak laki-laki yang bemain-main di pantai, dan mengalihkan
LISTRIK STATIS. F k q q 1. k 9.10 Nm C 4. 0 = permitivitas udara atau ruang hampa. Handout Listrik Statis
LISTIK STATIS * HUKUM COULOM. ila dua buah muatan listik dengan haga q dan q, saling didekatkan, dengan jaak pisah, maka keduanya akan taik-menaik atau tolak-menolak menuut hukum Coulomb adalah: ebanding
6. Fungsi Trigonometri Sudaryatno Sudirham
6. Fungsi Tignmeti Sudaatn Sudiham 6.. Peubah Bebas Besatuan Deajat Beikut ini adalah fungsi-fungsi tignmeti dengan sudut θ sebagai peubah-bebas. = sin θ; = cs θ sin θ cs θ 3 = tan θ = ; 4 = ct θ = cs
dengan dimana adalah vektor satuan arah radial keluar. F r q q
MEDAN LISTRIK 1 2.1 Medan Listik Gaya Coulomb di sekita suatu muatan listik akan membentuk medan listik. Dalam membahas medan listik, digunakan pengetian kuat medan. Untuk medan gaya Coulomb, kuat medan
BAB 7 Difraksi dan Hamburan
BAB 7 Difaksi dan Hambuan Bedasakan bab sebelumnya yang menjelaskan tentang sebuah gelombang yang datang di pantulkan oleh suatu bidang pembatas meupakan gelombang data dan tidak behingga. Jika sebuah
Fungsi dan Grafik Diferensial dan Integral
Sudaatno Sudiham Studi Mandii Fungsi dan Gafik Difeensial dan Integal oleh Sudaatno Sudiham i Dapublic Hak cipta pada penulis, 010 SUDIRHAM, SUDARYATNO Fungsi dan Gafik, Difeensial dan Integal Oleh: Sudaatmo
Bab. Bangun Ruang Sisi Lengkung. A. Tabung B. Kerucut C. Bola
Bab Sumbe: www.contain.ca Bangun Ruang Sisi Lengkung Di Sekolah Dasa, kamu telah mengenal bangun-bangun uang sepeti tabung, keucut, dan bola. Bangun-bangun uang tesebut akan kamu pelajai kembali pada bab
BAB MEDAN DAN POTENSIAL LISTRIK
1 BAB MEDAN DAN POTENSIAL LISTRIK 4.1 Hukum Coulomb Dua muatan listik yang sejenis tolak-menolak dan tidak sejenis taik menaik. Ini beati bahwa antaa dua muatan tejadi gaya listik. Bagaimanakah pengauh
trigonometri 4.1 Perbandingan Trigonometri
tigonometi 4.1 Pebandingan Tigonometi 0 Y x P(x,y) y X x disebut absis y disebut odinat jai-jai sudut positif diuku dai sumbu X belawanan aah putaan jaum jam Definisi : = x + y sin = y cos = x tan = y
BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.
BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.
Perbandingan dan Fungsi Trigonometri
Pebandingan dan Fungsi Tignmeti Standa Kmpetensi Memahami knsep pebandingan, fungsi, pesamaan dan identitas tignmeti, atuan sinus dan ksinus seta menggunakan dalam pemecahan masalah Kmpetensi Dasa. Melakukan
Contoh Proposal Skripsi Makalahmudah.blogspot.com
BAB I PENDAHULUAN.. Lata Belakang Masalah Peanan pemasaan dalam kebehasilan peusahaan telah diakui di kalangan pengusaha untuk mempetahankan kebeadaanya dalam mengembangkan usaha dan mendapatkan keuntungan.
Analisis Reliabilitas dan Availabilitas pada Mesin Produksi dengan Sistem Seri Menggunakan Pendekatan Analisis Markov di PT. X
JURNAL SAINS DAN SENI ITS Vol. 4, No., (05) 337-350 (30-98X Pint) D-7 Analisis Reliabilitas dan Availabilitas pada Mesin Poduksi dengan Sistem Sei Menggunakan Pendekatan Analisis Makov di PT. X Luh Ade
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3. Jenis dan Lokasi Penelitian 3.. Jenis Penelitian Jenis penelitian yang digunakan adalah penelitian ekspeimen semu (quasi ekspeimental eseach, kaena penelitian yang akan dilakukan
MEDAN LISTRIK STATIS
Listik Statis 1 * MUATAN LISTRIK. MEDAN LISTRIK STATIS Suatu pengamatan dapat mempelihatkan bahwa bila sebatang gelas digosok dengan kain wool atau bulu domba; batang gelas tesebut mampu menaik sobekan-sobekan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1.1 Latar Belakang BAB 1 PENDAHULUAN Persamaan diferensial adalah suatu persamaan yang mengandung derivatif dari variabel terikat terhadap satu atau lebih variabel bebas. Persamaan diferensial sendiri
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem
HUKUM COULOMB Muatan Listrik Gaya Coulomb untuk 2 Muatan Gaya Coulomb untuk > 2 Muatan Medan Listrik untuk Muatan Titik
HKM CMB Muatan istik Gaya Coulomb untuk Muatan Gaya Coulomb untuk > Muatan Medan istik untuk Muatan Titik FISIKA A Semeste Genap 6/7 Pogam Studi S Teknik Telekomunikasi nivesitas Telkom M A T A N Pengamatan
FIsika KTSP & K-13 HUKUM NEWTON TENTANG GRAVITASI. K e l a s A. HUKUM GRAVITASI NEWTON
KSP & K- FIsika K e l a s XI HUKUM NEWON ENANG GAVIASI ujuan Pembelajaan Setelah mempelajai matei ini, kamu dihaapkan mampu: menjelaskan hukum avitasi Newton; memahami konsep aya avitasi dan medan avitasi;
BAB 3 ANALISIS DAN MINIMISASI RIAK ARUS SISI AC
BAB 3 ANALISIS DAN MINIMISASI RIAK ARUS SISI AC 3.1 Pendahuluan Pada penelitian sebelumnya[7] telah dibuktikan bahwa sinyal efeensi optimum yang dapat menghasilkan iak aus keluaan yang minimum pada invete
Dari gerakan kumbang dan piringan akan kita dapatkan hubungan
Contact Peson : OSN Fisika 2017 Numbe 1 GERAKAN KUMBANG DI PINGGIR PIRINGAN Sebuah piingan lingkaan (massa M, jai-jai a) digantung pada engsel/sumbu simeti mendata tanpa gesekan yang melalui titik pusat
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Garis
Pogam Pekuliahan Dasa Umum Sekolah Tinggi Teknologi Telkom Integal Gais [MA] Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a t b maka
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis
Bahan Ajar Listrik Statis Iqro Nuriman, S.Si, M.Pd SMA Negeri 1 Maja LISTRIK STATIS
SMA Negei Maja LISTRIK STATIS KLISTRIKAN Fisikawan Du Fay menunjukkan adanya dua macam pelistikan (eletifikasi). Bebeapa isolato tetentu, bila digosok dalam keadaan tetentu, menyebabkan gaya tolak. Hasil
PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari
PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan
Gerak Melingkar. Gravitasi. hogasaragih.wordpress.com
Geak Melingka Gavitasi Kinematika Geak Melingka Beatuan Sebuah benda yang begeak membentuk suatu lingkaan dengan laju konstan v dikatakan mengalami geak melingka beatuan. Besa kecapatan dalam hal ini tetap
PENYELESAIAN SOAL SOAL INSTALASI CAHAYA
PENYELESAAN SOAL SOAL NSTALAS CAHAYA 1. Sebuah lampu pija dai W dengan flux Cahaya spesifik 16 lm/w ditempatkan dalam sebuah bola kaca putih susu. Kacanya meneuskan 75% dai flux Cahaya lampu. Kalau luminansi
Data dan Metode Pengolahan Data
Bab III Data dan Metode Pengolahan Data III. Data a) Tansvol ARLINDO di selat Makassa yang meupakan hasil simulasi model baotopik untuk tahun El Niño (97/73, 98/83, dan 997/98), tahun La Niña (973/74 dan
Hand Out Fisika II MEDAN LISTRIK. Medan listrik akibat muatan titik Medan listrik akibat muatan kontinu Sistem Dipol Listrik
MDAN LISTRIK Medan listik akibat muatan titik Medan listik akibat muatan kontinu Sistem Dipol Listik Mach 7 Definisi Medan Listik () Medan listik pada muatan uji q didefinisikan sebagai gaya listik pada
Gerak melingkar beraturan
13/10/01 Geak melingka beatuan geak melingka beatuan adalah geak dimensi dengan laju tetap, Aahnya beubah kecepatan beubah v i = vekto kecepatan awal v f = vekto kecepatan akhi θ = pepindahan sudut Gamba
Perkuliahan Fisika Dasar II FI-331. Oleh Endi Suhendi 1
Pekuliahan Fisika Dasa II FI-331 Oleh Endi Suhendi 1 Menu hai ini (1 minggu): Muatan Listik Gaya Listik Medan Listik Dipol Distibusi Muatan Kontinu Oleh Endi Suhendi Muatan Listik Dua jenis muatan listik:
BAB III METODE PENELITIAN. mengenai Identifikasi Variabel Penelitian, Definisi Variabel Penelitian,
BAB III METODE PENELITIAN Pembahasan pada bagian metode penelitian ini akan menguaikan mengenai Identifikasi Vaiabel Penelitian, Definisi Vaiabel Penelitian, Populasi, Sampel dan Teknik Pengambilan Sampel,
BAB III METODE PENELITIAN. adalah untuk mengetahui kontribusi motivasi dan minat bekerja di industri
BAB III METODE PENELITIAN A. Jenis Penelitian Bedasakan pemasalahan, maka penelitian ini temasuk penelitian koelasional yang besifat deskiptif, kaena tujuan utama dai penelitian ini adalah untuk mengetahui
Medan Listrik. Medan : Besaran yang terdefinisi di dalam ruang dan waktu, dengan sifat-sifat tertentu.
Medan Listik Pev. Medan : Besaan yang tedefinisi di dalam uang dan waktu, dengan sifat-sifat tetentu. Medan ada macam : Medan skala Cnthnya : - tempeatu dai sebuah waktu - apat massa Medan vekt Cnthnya
FISIKA 2 (PHYSICS 2) 2 SKS
Lab Elektonika Industi isika SILABI a. Konsep Listik b. Sumbe Daya Listik c. Resistansi dan Resisto d. Kapasistansi dan Kapasito e. Rangkaian Listik Seaah f. Konsep Elekto-Magnetik g. Induktansi dan Indukto
Komponen Struktur Tekan
Mata Kuliah : Peancangan Stuktu Baja Kode : CIV 303 SKS : 3 SKS Komponen Stuktu Tekan Petemuan 4, 5 Sub Pokok Bahasan : Panjang Tekuk Tekuk Lokal Tekuk Batang Desain Batang Tekan Batang batang tekan yang
Untuk mempermudah memahami materi ini, perhatikan peta konsep berikut ini. Listrik Statis. membahas. Muatan Listrik. ditinjau menurut.
Bab 7 Listik Statis Pada minggu yang ceah, Icha menyetika baju seagamnya. Sambil menunggu panasnya setika, ia menggosok-gosokkan setika pada bajunya yang tipis. Tenyata Icha melihat dan measakan seakan-akan
PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH
METODE ITERASI SEDERHANA
METODE ITERASI SEDERHANA Kelompok 4 Adnan Widya I (M0513003) Bara Okta P. J. (M0513012) Moh. Alvan P. U (M0513032) Shofwah Dinillah (M0513043) METODE EULER Bentuk umum: menghitung penyelesaian persamaan
ANALISIS KORELASI. Konsep. Konsep (lanjutan) Arah hubungan. Agus Susworo Dwi Marhaendro
ANALISIS KORELASI Agus Suswoo Dwi Mahaendo Konsep Metode analisis tehadap data, tidak hanya yang tedii dai satu kaakteistik saja. Banyak pesoalan atau fenomena yang meliputi lebih dai sebuah vaiabel: beat
3Dok(xx) campuran salah satu strain R. Trifolii dengan
Kandungan nitogen pada tanaman Red Clove (mg) yang diinkubasi dengan stain Rhizobium tifolii ditambah dengan gabungan dai 5 stain alfalfa, Rhizobium melitoti. Pelakuan Ulangan Jumlah 3Dok(xx) campuan salah
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB PENDAHULUAN. Lata belakang Pekembangan suatu teknologi sangat dipengauhi dengan pekembangan suatu ilmu pengetahuan. Tanpa peanan ilmu pengetahuan, bisa dipastikan teknologi akan sulit untuk bekembang
Hand Out Fisika 6 (lihat di Kuat Medan Listrik atau Intensitas Listrik (Electric Intensity).
Hand Out Fisika 6 (lihat di http:).1. Pengetian Medan Listik. Medan Listik meupakan daeah atau uang disekita benda yang bemuatan listik dimana jika sebuah benda bemuatan lainnya diletakkan pada daeah itu
MODUL FISIKA SMA IPA Kelas 11
SMA IPA Kelas 11 Mendeskipsikan gejala alam dan keteatuannya dalam cakupan mekanika benda titik. Mengevaluasi pemikian diinya tehadap keteatuan geak planet dalam tat susya bedasakan hukum Newton. Gesekan
BAB 17. POTENSIAL LISTRIK
DFTR ISI DFTR ISI... 7. POTENSIL LISTRIK... 7. Potensial dan eda Potensial... 7. Dipole Listik...6 7.3 Kapasitansi Listik...9 7.4 Dielektikum... 7.5 Penyimpanan Enegi Listik...5 7.6 Pealatan : Tabung Sina
Hukum Coulomb Dan Medan Listrik
BAB Hukum Coulomb Dan Medan Listik Pendahuluan Istilah kelistikan sudah seing di gunakan dalam kehidupan sehai-hai. Akan tetapi oang tidak banyak yang memikikan tentang hal itu. Pengamatan tentang gaya
BAB III METODE PENELITIAN. Desain penelitian merupakan rencana atau metode yang akan ditempuh
BAB III METODE PENELITIAN 3.1 Desain Penelitian Desain penelitian meupakan encana atau metode yang akan ditempuh dalam penelitian, sehingga umusan masalah dan hipotesis yang akan diajukan dapat dijawab
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Segitiga Data 1. engetian Segitiga Dibeikan tiga buah titik A, B, dan C yang tidak segais. Titik A dihubungkan dengan titik B, titik B dihubungkan dengan titik C, dan titik C dihubungkan
BAB III. METODOLOGI PENELITIAN. hasil. Sedangkan menurut Suharsimi Arikunto (2002:136) metode penelitian
7 BAB III. METODOLOGI PENELITIAN A. Metode Penelitian Metode adalah suatu caa atau jalan yang ditempuh untuk mencapai suatu hasil. Sedangkan menuut Suhasimi Aikunto (00:36) metode penelitian adalah caa
