Geometri Analitik Bidang (Lingkaran)

Ukuran: px
Mulai penontonan dengan halaman:

Download "Geometri Analitik Bidang (Lingkaran)"

Transkripsi

1 9 Geometi nalitik idang Lingkaan) li Mahmudi Juusan Pendidikan Matematika FMIP UNY) KOMPETENSI Kompetensi ang dihaapkan dikuasai mahasiswa setelah mempelajai ab ini adalah sebagai beikut. Menjelaskan pengetian lingkaan. Menentukan pesamaan umum lingkaan. Menentukan pesamaan gais singgung pada lingkaan dengan titik singgung tetentu, dengan gadien tetentu, dan dai suatu titik di lua lingkaan. Menentukan pesamaan gais kutub pada lingkaan. Menentukan titik kutub jika diketahui suatu gais dan lingkaan. Menentukan kuasa suatu titik tehadap suatu lingkaan. Menentukan pesamaan gais kuasa dua buah lingkaan. Menentukan titik kuasa pada lingkaan. Menentukan pesamaan lingkaan ang melalui titik-titik potong dua buah lingkaan dengan menggunakan konsep bekas lingkaan. Menentukan saat analitik dai elasi dua buah lingkaan ang bepotongan tegak luus dan membagi dua sama besa).

2 0. Pengetian Lingkaan Lingkaan didefinisikan sebagai himpunan titik-titik ang bejaak sama tehadap suatu titik tetentu. Dapat juga dikatakan, lingkaan adalah tempat kedudukan titik-titik ang bejaak sama tehadap suatu titik tetentu. Jaak ang sama itu disebut jai-jai lingkaan dan titik tetentu itu disebut titik pusat lingkaan. edasakan definisi itu, dapat ditentukan pesamaan lingkaan. Koodinat titik P, ) ang bejaak tehadap titik Pa, b) akan memenuhi pesamaan beikut ini. b a) ) = atau a b Dengan demikian, tempat kedudukan titik-titik ang bejaak tehadap titik Pa, b) mempunai pesamaan sebagai beikut. L: a b Ini adalah pesamaan lingkaan dengan titik pusat Pa, b) dan bejai-jai. Lingkaan dengan pusat P dan bejai-jai seing ditulis dengan LP, ). Dapat mudah dipahami bahwa pesamaan lingkaan ang bepusat di O0, 0) dan bejai-jai adalah: L: + = Ini seing disebut pesamaan pusat lingkaan.

3 . entuk Umum Pesamaan Lingkaan Dai pesamaan lingkaan dengan pusat Pa,b) dan bejai-jai, akni L: b a dipeoleh + a b + a + b = 0 ang dapat ditulis: Ini adalah bentuk umum pesamaan lingkaan. Pesamaan ini dapat juga ditulis sebagai beikut. C. Pehatikan bahwa ini adalah pesamaan lingkaan dengan pusat P, dan bejai-jai C. Dengan mempehatikan nilai ini, maka akan tedapat bebeapa kemungkinan jenis lingkaan sebagai beikut. Jika 0 C, maka lingkaanna nata Jika 0 C, maka lingkaanna imajine Jika 0 C, maka lingkaanna adalah lingkaan titik ang bejai-jai nol. L: C = 0

4 C. Pesamaan Paamete Suatu Lingkaan Y Pa, b) T, ) O X Gamba IV. Pada gamba di atas, koodinat titik T, ) ang teletak pada lingkaan dengan pusat Pa, b) dan bejai-jai akan memenuhi pesamaan beikut ini. = a + cos = b + sin Dalam hal ini, adalah suatu paamete. Dikatakan, pesamaan di atas adalah pesamaan paamete suatu lingkaan. Secaa lebih jelas, dengan mengeliminasi paamete akan dipeoleh pesamaan sebagai beikut. a b

5 3 D. Gais Singgung. Gais Singgung Pada Lingkaan dengan Titik Singgung Tetentu g Y T, ) O X Gamba IV. Misal T, ) adalah titik singgung pada lingkaan. Gais singgung g ang melalui T, ) bebentuk = m ). Kaena gais singgung ini tegak luus dengan jaijai OT, maka nilai gadien gais singgung ini adalah m. Sehingga pesamaan gais singgung ang dimaksud adalah atau.*) Kaena titik T, ) teletak pada lingkaan, maka dipenuhi. Dengan demikian pesamaan gais singgung pada lingkaan dengan titik singgung T, ) adalah: Sebagai latihan, dengan caa seupa, tunjukkan bahwa pesamaan gais singgung pada lingkaan a b dengan titik singgung T a a b b, adalah:

6 . Gais Singgung Pada lingkaan dengan Gadien ang telah ditentukan. Pesamaan gais luus dengan gadien m dinatakan dengan g: = m + n. Jika gais ini dipotongkan dengan lingkaan L: + m + n) = atau, didapat m + ) + mn + n = 0.. *) Ini adalah pesamaan kuadat dalam. Gais g akan meninggung lingkaan L: bila diskiminan pesamaan *) adalah nol, akni D = m n m ) n ) atau = n m ) = 0 n = m atau n m Dengan mensubtitusikan nilai ini ke pesamaan gais g, akan dipeoleh pesamaan gais singgung pada lingkaan L: dengan gadien m, akni: m m Sebagai latihan, dengan caa seupa, tunjukkan bahwa pesamaan gais singgung pada lingkaan a b dengan gadien m adalah: a m a) m

7 5 3. Gais Singgung dai Suatu Titik di lua lingkaan S 0, 0) T, ) Gamba IV.3 Misal titik T, ) adalah titik di lua lingkaan dan S 0, ) adalah titik singgung pada 0 lingkaan. Pesamaan gais singgung ang elalui S 0, ) adalah: i) Gais singgung ini melalui T, ), sehingga belaku ii) Kaena S 0, ) teletak pada lingkaan, maka dipenuhi iii) Dengan menelesaikan pesamaan ii) dan iii) akan didapat nilai 0 dan 0. Setelah nilai 0 dan 0 ini disubtitusikan ke pesamaan i), akan dipeoleh pesamaan gais singgung pada lingkaan dipeoleh? ang melalui titik T, ). da beapa gais singgung ang

8 6 E. Gais Kutub g g S 0, 0) O T, ) g S 0 ', 0 ') Gamba IV. Dai titik T, ) dibuat gais-gais singgung pada lingkaan L: + =. Misal titik-titik singgung pada lingkaan itu adalah S 0, 0 ) dan S singgung pada lingkaan L dengan titik-titik singgung S dan S adalah o ', 0 '. Pesamaan gais g : 0 0 dan g : 0 ' 0 ' Gais-gais singgung g dan g melalui T, ), sehingga belaku pesamaan beikut i) 0 ' 0 '.. ii) Pada pesamaan i) dan ii), tampak bahwa koodinat titik-titik S dan S memenuhi pesamaan beikut. g :

9 7 Ini adalah pesamaan gais ang melalui titik-titik singgung S dan S dan disebut tali busu singgung. Pehatikan bahwa pesamaan tali busu singgung g bentukna sama dengan pesamaan gais singgung pada lingkaan L dengan titik singgung T. Oleh kaena itu, tanpa melihat letak titik T di dalam, dilua, atau pada lingkaan), maka pesamaan pesamaan gais kutub titik T, ) tehadap lingkaan L: + = adalah: g: Dai uaian di atas, didapat, jika T, ) di lua lingkaan, maka gais kutub g meupakan tali busu singgung. Coba selidiki bagaimana kedudukan gais kutub ini jika T, ) teletak pada lingkaan atau di dalam lingkaan. Sebagai latihan, dengan caa seupa, coba tunjukkan bahwa pesamaan gais kutub P, ) tehadap lingkaan a a b b a b adalah Tunjukkan juga bahwa pesamaan gais kutub dai titik T, ) tehadap lingkaan L: C = 0 adalah ) ) C 0 F. Menentukan Kutub dai Suatu Gais Luus Misal diketahui sebuah lingkaan L: C = 0 dan sebuah gais g: P + Q + R = 0. Misal kutub gais g adalah T, ), maka pesamaan gais kutub T, ) tehadap lingkaan L adalah h: ) ) C 0

10 8 Gais h ini beimpit dengan gais g, sehingga hauslah dipenuhi pesamaan beikut. P Q R C Dai pesamaan ini, nilai dan dapat ditentukan, sehingga kutub dai gais g tehadap lingkaan L dapat ditentukan pula. G. Kuasa Suatu Titik Pada gamba beikut, titik T, ) teletak di lua lingkaan L. 3 P 3 T, ) Gamba IV.5 Melalui T, ) ditaik gais-gais ang memotong lingkaan. Misal titik-titik potong ini adalah i dan i. edasakan teoema pada geometi, belaku T Pehatikan bahwa T T T 3T 3 T T, dan seteusna. T 3T 3 TP )TP ) TP Nilai TP didefinisikan sebagai kuasa titik, ) T tehadap lingkaan LP, ).

11 9 Jika pesamaan lingkaan L P, ) itu adalah L: C = 0 dengan pusat P, dan kuadat jai-jai C. Kuasa titik T, ) tehadap lingkaan LP, ) adalah TP = atau. C Pehatikan bahwa kuasa titik T, ) tehadap lingkaan L: C = 0 dapat dipeoleh dengan caa menggantikan dan pada pesamaan lingkaan itu dengan dan. Dengan mempehatikan definisina, coba selidiki bagaimanakah nilai tanda) kuasa titik T pada lingkaan jika T di lua lingkaan, teletak pada lingkaan, atau di dalam lingkaan. H. Gais Kuasa Misal diketahui dua buah lingkaan. Pikikan suatu titik ang mempunai kuasa sama tehadap dua lingkaan tesebut. Himpunan tempat kedudukan) titik-titik ang demikian, akni mempunai kuasa ang sama tehadap dua lingkaan tetentu disebut gais kuasa kedua lingkaan itu. Misal diketahui dua lingkaan sebagai beikut. L : C 0 dan L : C 0

12 0 Jika titik T, ) mempunai kuasa ang sama tehadap lingkaan L dan L, maka dipenuhi pesamaan beikut. C atau = C C C 0 Hal ini akan belaku pada setiap titik ang kuasana tehadap kedua lingkaan itu sama. Dengan demikian, gais kuasa ang meupakan tempat kedudukan titik-titik ang mempunai kuasa ang sama tehadap lingkaan L dan L adalah sebagai beikut. g: C C 0 Kaena secaa simbolis lingkaan dapat dinatakan sebagai L, ) = 0 atau L, ) = C 0, maka kuasa titik T, ) tehadap lingkaan L, ) dapat ditulis dengan L, ). Jadi pesamaan gais kuasa lingkaan L, ) = 0 dan L, ) = 0 dapat ditulis sebagai beikut. L, ) L, ) = 0 atau L L = 0 Pehatikan bahwa gais kuasa mempunai gadien m =. Titik pusat lingkaan L dan L betuut-tuut adalah P, dan P,. Gadien gais sental atau gais penghubung kedua pusat lingkaan ini adalah m =. Kaena m.m = -, maka gais kuasa dua buah lingkaan akan tegak luus dengan gais sental penghubung titik-titik pusat) kedua lingkaan tesebut.

13 g: L L = 0 L L P P Gamba IV.6 agaimana kedudukan gais kuasa dua buah lingkaan jika kedua lingkaan tesebut bepotongan atau besinggunga? pakah gais kuasana memotong kedua lingkaan? I. Titik Kuasa Tempat kedudukan titik-titik ang mempunai kuasa ang sama tehadap dua lingkaan adalah suatu gais luus. Jadi kalau ada tiga buah lingkaan, akan tedapat sebuah titik ang mempunai kuasa ang sama tehadap ketiga lingkaan tesebut. Titik ang demikian disebut titik kuasa. Pehatikan Gamba IV.7 beikut ini. L L = 0 M M K L L 3 = 0 M 3 L L 3 = 0 Gamba IV.7

14 Titik K adalah suatu titik ang kuasana tehadap L = 0 dan L = 0 sama, kaena K teletak pada L L = 0. K mempunai kuasa ang sama pula tehadap L = 0 dan L 3 = 0, kaena K teletak pada L L 3 = 0. Jadi K mempunai kuasa ang sama tehadap L = 0, L = 0, dan L 3 = 0 dan disebut titik kuasa ketiga lingkaan tesebut. Pesamaan titik kuasa dapat ditulis secaa simbolis sebagai beikut. L = L = L 3 Contoh Tentukan koodinat-koodinat dai titik kuasa lingkaan-lingkaan beikut ini. L = = 0, L = + = 3, dan L 3 = = 0. Penelesaian L L = 0, didapat + = 0 L 3 L = 0, didapat 3 3 = 0 Dai kedua pesamaan itu didapat = 3 dan = -. Sehingga titik kuasa ketiga lingkaan itu adalah K3, -). J. Dua Lingkaan ang epotongan Sudut antaa dua buah lingkaan didefinisikan sebagai sudut ang dibentuk oleh gais-gais singgung pada kedua lingkaan itu di titik potongna. Dua lingkaan dikatakan saling memotong tegak luus jika sudut antaa gais-gais singgung di titik potongna adalah 90. Pehatikan gamba beikut.

15 3 P M M Gamba IV.8 Misal diketahui dua lingkaan sebagai beikut ini. L : C 0 L : C 0 Kedua lingkaan itu akan bepotongan tegak luus apabila gais-gais singgung beimpit dengan jai-jai kedua lingkaan. P M M L = 0 L = 0 Gamba IV.9

16 Pehatikan bahwa tegak luus, sehingga M M P adalah segitiga siku-siku. Diketahui:,, M,, M C dan C Sehingga belaku: ) M M atau C C atau Inilah saat dua lingkaan saling tegak luus. Sebuah lingkaan dapat juga memotong lingkaan lain sedemikian sehingga membagi dua sama besa lingkaan tesebut. Pehatikan gamba beikut. P Gamba IV.0 + = C + C M M L = 0 L = 0

17 5 Jika lingkaan L membagi dua sama besa lingkaan L, maka dalam M PM belaku M M ) Jadi, supaa suatu lingkaan membagi dua sama besa lingkaan lain, hauslah kuadat jaak titik-titik pusatna sama dengan selisih kuadat jai-jaina. K. ekas Lingkaan Misal diketahui dua buah lingkaan: L : C 0 L : C 0 Kita dapat membentuk pesamaan L + L = 0 atau +) + +) + + ) + + ) + C + C ) = 0 Nilai dapat kita bei nilai ang bemacam-macam dan untuk setiap nilai pesamaan di atas menunjukkan pesamaan lingkaan. Jika = 0, maka L = 0 dan jika =, maka L = 0. Pesamaan L + L = 0 disebut pesamaan bekas lingkaan dengan anggota dasa L = 0 dan L = 0. Jika = -, akan tedapat suatu gais luus ang dapat dianggap sebagai suatu lingkaan anggota bekas dengan jai-jai tak tehingga. Jika suatu titik teletak pada lingkaan L = 0 dan juga pada L = 0, maka titik itu tentu juga teletak pada setiap anggota dai bekas itu. Semua anggota bekas lingkaan melalui titik-titik potong nata atau imajine) L = 0 dan L = 0. Titik-titik ini disebut titik-titik dasa atau titik-titik basis. Jadi setiap lingkaan ang melalui titik-titik potong L = 0 dan L = 0 pesamaana bebentuk L + L = 0.

18 6 L. Soal Latihan. Tentukan pesamaan lingkaan ang a. bepusat P, 3) dan melalui O b. melalui titik-titik 3, ) dan -, 3) seta titik pusatna teletak pada gais g: 3 = 0.. Cailah titik pusat dan jai-jai lingkaan-lingkaan dengan pesamaan: a. L : 5 0 b. L : 0 3. Tentukan pesamaan lingkaan ang titik pusatna teletak pada gais = 0, melalui titik, ), dan meninggung sumbu X. Tentukan pesamaan paamete lingkaan ang bepusat P-, 3) dan bejai-jai 5. Tenukan pula pesamaanna dalam sistem koodinat Katesius. 5. Tentukan pesamaan lingkaan lua suatu segitiga ang tebentuk oleh gais-gais g: + 5 = 0; h: + 7 = 0; dan k: + = Tentukan pesamaan lingkaan ang bepusat C, -) dan meninggung gais g: = Diketahui lingkaan L: Tentukan haga-haga k sedemikian hingga gais = k a. memotong lingkaan b. meninggung lingkaan itu c. tidak memotong lingkaan itu

19 7 8. Tentukan pesamaan-pesamaan gais singgung dengan gadient - pada lingkaan L: Tentukan pesamaan-pesamaan gais singgung dai titik O0, 0) pada lingkaan L: Tentukan apakah titik-titik beikut ini teletak di dalam, di lua, atau pada lingkaan L: , ); -5, ); C3, -) D6, -). Tentukan pesamaan gais kutub dai titik T-, 3) tehadap lingkaan L : 0 6. Tentukan pula kutub dai gais g: 3 5 = 0 tehadap lingkaan L : 0. Tentukan besa sudut antaa lingkaan L : 8 ) 3) dan L : ) ) 3. Tentukan koodinat titik kuasa lingkaan-lingkaan beikut. L : 5 ; L : ; dan L 3 : Tentukan pesamaan gais kuasa lingkaan-lingkaan beikut. L : 0 3 dan L : Tentukan koodinat suatu titik pada gais g: = 0 ang mempunai kuasa ang sama tehadap lingkaan L : ) dan L : 5 3) 6. Tentukan pesamaan lingkaan ang melalui, -) dan melalui titik-titik potong lingkaan-lingkaan L : 0 3 dan L :

20 8 7. Tentukan pesamaan gais-gais kuasa lingkaan-lingkaan L : 0; L : 7 0, dan L 3 : Tentukan pula titik kuasana. 8. Tentukan pesamaan lingkaan ang memotong tegak luus lingkaan L: 5 5 0, melalui titik 6, ), dan pusatna teletak pada gais g: 9 + = uktikan bahwa kedua lingkaan L : dan L : saling besinggungan. Tentukan titik singgungna.

Bab. Garis Singgung Lingkaran. A. Pengertian Garis Singgung Lingkaran B. Garis Singgung Dua Lingkaran C. Lingkaran Luar dan Lingkaran Dalam Segitiga

Bab. Garis Singgung Lingkaran. A. Pengertian Garis Singgung Lingkaran B. Garis Singgung Dua Lingkaran C. Lingkaran Luar dan Lingkaran Dalam Segitiga ab 7 Sumbe: www.homepages.tesco Gais Singgung Lingkaan Lingkaan mungkin meupakan salah satu bentuk bangun data yang paling tekenal. Konsep lingkaan yang meliputi unsu-unsu lingkaan, luas lingkaan, dan

Lebih terperinci

Kegiatan Belajar 2. Identitas Trigonometri

Kegiatan Belajar 2. Identitas Trigonometri Kegiatan Belaja A. Tujuan Pembelajaan Setelah mempelajai kegiatan belaja, dihaapkan siswa dapat a. Menggunakan identitas tigonometi dalam penelesaian b. Membuktikan identitas tigonometi sedehana dengan

Lebih terperinci

Perbandingan dan Fungsi Trigonometri

Perbandingan dan Fungsi Trigonometri Pebandingan dan Fungsi Tignmeti Standa Kmpetensi Memahami knsep pebandingan, fungsi, pesamaan dan identitas tignmeti, atuan sinus dan ksinus seta menggunakan dalam pemecahan masalah Kmpetensi Dasa. Melakukan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaatno Sudiham Studi Mandii Fungsi dan Gafik Difeensial dan Integal ii Dapublic BAB 7 Koodinat Pola Sampai dengan bahasan sebelumna kita membicaakan fungsi dengan kuva-kuva ang digambakan dalam koodinat

Lebih terperinci

IDENTITAS TRIGONOMETRI. Tujuan Pembelajaran

IDENTITAS TRIGONOMETRI. Tujuan Pembelajaran Kuikulum 03 Kelas X matematika WAJIB IDENTITAS TRIGONOMETRI Tujuan Pembelajaan Setelah mempelajai matei ini, kamu dihaapkan memiliki kemampuan beikut.. Memahami jenis-jenis identitas tigonometi.. Dapat

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaatno Sudiham Studi Mandii Fungsi dan Gafik Difeensial dan Integal oleh Sudaatno Sudiham i Dapublic Hak cipta pada penulis, 010 SUDIRHAM, SUDARYATNO Fungsi dan Gafik, Difeensial dan Integal Oleh: Sudaatmo

Lebih terperinci

Bab. Bangun Ruang Sisi Lengkung. A. Tabung B. Kerucut C. Bola

Bab. Bangun Ruang Sisi Lengkung. A. Tabung B. Kerucut C. Bola Bab Sumbe: www.contain.ca Bangun Ruang Sisi Lengkung Di Sekolah Dasa, kamu telah mengenal bangun-bangun uang sepeti tabung, keucut, dan bola. Bangun-bangun uang tesebut akan kamu pelajai kembali pada bab

Lebih terperinci

GRAFITASI. F = G m m 1 2. F = Gaya grafitasi, satuan : NEWTON. G = Konstanta grafitasi, besarnya : G = 6,67 x 10-11

GRAFITASI. F = G m m 1 2. F = Gaya grafitasi, satuan : NEWTON. G = Konstanta grafitasi, besarnya : G = 6,67 x 10-11 GRAFITASI Si Isaac Newton yang tekenal dengan hukum-hukum Newton I, II dan III, juga tekenal dengan hukum Gafitasi Umum. Didasakan pada patikel-patikel bemassa senantiasa mengadakan gaya taik menaik sepanjang

Lebih terperinci

Lampiran 3 FLOWCHART DAN BAGAN MULTIMEDIA INTERAKTIF TOPIK LINGKARAN

Lampiran 3 FLOWCHART DAN BAGAN MULTIMEDIA INTERAKTIF TOPIK LINGKARAN 184 Lampian 3 FLOWCHART DAN BAGAN MULTIMEDIA INTERAKTIF TOPIK LINGKARAN 185 186 187 188 189 190 Lampian 4 PEMBELAJARAN TOPIK LINGKARAN DENGAN MULTIMEDIA INTERAKTIF 191 Pengetian Lingkaan Kegiatan 1A Aga

Lebih terperinci

II. KINEMATIKA PARTIKEL

II. KINEMATIKA PARTIKEL II. KINEMATIKA PARTIKEL Kinematika adalah bagian dai mekanika ang mempelajai tentang geak tanpa mempehatikan apa/siapa ang menggeakkan benda tesebut. Bila gaa penggeak ikut dipehatikan, maka apa ang dipelajai

Lebih terperinci

UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

UNIVERSITAS SWADAYA GUNUNG JATI CIREBON TRIGONOMETRI disusun untuk memenuhi salah satu tugas akhi Semeste Pendek mata kuliah Tigonometi Dosen : Fey Fedianto, S.T., M.Pd. Oleh Nia Apiyanti (207022) F PRODI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN

Lebih terperinci

Kata. Kunci. E ureka. A Gerak Melingkar Beraturan

Kata. Kunci. E ureka. A Gerak Melingkar Beraturan Kata Kunci Geak melingka GM (Geak Melingka eatuan) GM (Geak Melingka eubah eatuan) Hubungan oda-oda Pada bab sebelumnya, kita sudah mempelajai geak luus. Di bab ini, kita akan mempelajai geak dengan lintasan

Lebih terperinci

Vol. 3, No. 1, Juni 2007: INVERSI DAN TITIK-TITIK HARMONIS

Vol. 3, No. 1, Juni 2007: INVERSI DAN TITIK-TITIK HARMONIS Vol. 3, No. 1, Juni 007: 7884 INVERSI DAN TITIK-TITIK HARMONIS Himmawati P.L dan Catuiyati Juusan Pendidikan Matematika FMIPA Univesitas Negei Yogyakata Abstact Given a cicle cente O and adius in R, the

Lebih terperinci

1 Sistem Koordinat Polar

1 Sistem Koordinat Polar 1 Sistem Koodinat ola ada kuliah sebelumna, kita selalu menggunakan sistem koodinat Katesius untuk menggambakan lintasan patikel ang begeak. Koodinat Katesius mudah digunakan saat menggambakan geak linea

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Univesitas Indonusa Esa Unggul Fakultas Ilmu Kompute Teknik Infomatika Integal Gais Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a

Lebih terperinci

FISIKA. Kelas X HUKUM NEWTON TENTANG GRAVITASI K-13. A. Hukum Gravitasi Newton

FISIKA. Kelas X HUKUM NEWTON TENTANG GRAVITASI K-13. A. Hukum Gravitasi Newton K- Kelas X ISIKA HUKUM NEWON ENANG GAVIASI UJUAN PEMELAJAAN Setelah mempelajai matei ini, kamu dihaapkan memiliki kemampuan beikut.. Menjelaskan hukum gavitasi Newton.. Memahami konsep gaya gavitasi dan

Lebih terperinci

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER BAB II MDAN ISTRIK DI SKITAR KONDUKTOR SIINDR II. 1 Hukum Coulomb Chales Augustin Coulomb (1736-1806), adalah oang yang petama kali yang melakukan pecobaan tentang muatan listik statis. Dai hasil pecobaannya,

Lebih terperinci

TRIGONOMETRI. Untuk SMA dan Sederajat. Penerbit. Husein Tampomas

TRIGONOMETRI. Untuk SMA dan Sederajat. Penerbit. Husein Tampomas TRIGONOMETRI Untuk SM dan Sedeajat Husein Tampomas Penebit 0 Husein Tampomas, Tigonometi, Unntuk SM dan Sedeajat, 018 PENGERTIN 1 PENGNTR KE FUNGSI TRIGONOMETRI Dalam bahasa Yunani, tigonometi tedii dai

Lebih terperinci

SUMBER MEDAN MAGNET. Oleh : Sabar Nurohman,M.Pd. Ke Menu Utama

SUMBER MEDAN MAGNET. Oleh : Sabar Nurohman,M.Pd. Ke Menu Utama SUMER MEDAN MAGNET Oleh : Saba Nuohman,M.Pd Ke Menu Utama Medan Magnetik Sebuah Muatan yang egeak Hasil-hasil ekspeimen menunjukan bahwa besanya medan magnet () akibat adanya patikel bemuatan yang begeak

Lebih terperinci

dengan dimana adalah vektor satuan arah radial keluar. F r q q

dengan dimana adalah vektor satuan arah radial keluar. F r q q MEDAN LISTRIK 1 2.1 Medan Listik Gaya Coulomb di sekita suatu muatan listik akan membentuk medan listik. Dalam membahas medan listik, digunakan pengetian kuat medan. Untuk medan gaya Coulomb, kuat medan

Lebih terperinci

PP' OP = OP' PERSAMAAN UMUM LINGKARAN

PP' OP = OP' PERSAMAAN UMUM LINGKARAN Bab III : Lingkaran 30 Lingkaran adalah tempat kedudukan titik-titik ang berjarak sama terhadap suatu titik tetap. Jarak ang sama itu disebut jari-jari sedangkan titik tetap dinamakan pusat lingkaran 3..

Lebih terperinci

GEOMETRI DAN PENGUKURAN. Oleh: Al. Krismanto, M.Sc

GEOMETRI DAN PENGUKURAN. Oleh: Al. Krismanto, M.Sc GEOMETRI N PENGUKURN Oleh: l. Kismanto, M.Sc 1 I. PENHULUN. Memahami pengetian dan penyataan Kita mengenal penalaan induktif dan deduktif. Penalaan induktif beangkat dai hal-hal khusus sehingga dapat digenealisasikan.

Lebih terperinci

CNH2G4/ KOMPUTASI NUMERIK

CNH2G4/ KOMPUTASI NUMERIK CNHG4/ KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT SOLUSI NUMERIK PERSAMAAN DIFERENSIAL BIASA Pendahuluan Pesamaan Diffeensial : Gabungan dai fungsi ang tidak diketahui dengan

Lebih terperinci

PERSAMAAN GARIS SINGGUNG SEKUTU DUA LINGKARAN

PERSAMAAN GARIS SINGGUNG SEKUTU DUA LINGKARAN MN GI INGGUNG KUTU DU LINGKN Oleh: nang Wibowo.d WWW.MTIKZON.WOD.COM pil www.atikzone.wodpess.co [email protected] MN GI INGGUNG KUTU DU LINGKN ail : [email protected] Blog : www.atikzone.wodpess.co www.etung.wodpess.co

Lebih terperinci

Persamaan Garis Singgung Sekutu 2 Lingkaran

Persamaan Garis Singgung Sekutu 2 Lingkaran esaaan Gais inggung ekutu Lingkaan oleh: Anang Wibowo.d Nop MatikZone s eies ail : [email protected] Blog : www.atikzone.wodpess.co H : 85 897 897 Hak Cipta Dilindungi Undang-undang. Dilaang engkutip sebagian

Lebih terperinci

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2008 Nomor Soal: 81-90

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2008 Nomor Soal: 81-90 Slusi Pengayaan Matematika disi 9 Maet Pekan Ke-, 008 Nm Sal: 8-90 8. ua ubin pesegi dai sisi 30 cm ditempatkan pada pjk dai satu pusat yang lain. uas daeah yang diasi adalah.... 900 cm. 35 cm. 5 cm. 5

Lebih terperinci

PERSAMAAN GARIS SINGGUNG SEKUTU DUA LINGKARAN

PERSAMAAN GARIS SINGGUNG SEKUTU DUA LINGKARAN EMN GI INGGUNG EKUTU DU LINGKN Oleh: nang Wibowo,.d M Negei onoogo Mei EMN GI INGGUNG EKUTU DU LINGKN Eail : [email protected] Blog : www.atikzone.co.cc www.atikzone.wodpess.co H : 8 8 8 8 (M onl) Hak Cipta

Lebih terperinci

Persamaan Garis Singgung Sekutu 2 Buah Lingkaran

Persamaan Garis Singgung Sekutu 2 Buah Lingkaran Matei esaaan Gais inggung ekutu Buah Lingkaan Oleh: nang Wibowo.d pil MatikZone s eies Eail : [email protected] Blog : www.atikzone.wodpess.co H : 8 897 897 Hak Cipta Dilindungi Undang-undang. Dilaang engkutip

Lebih terperinci

BANGUN RUANG SISI LENGKUNG

BANGUN RUANG SISI LENGKUNG MGMP MATEMATIKA SMP KOTA MALANG BANGUN RUANG SISI LENGKUNG MODUL/BAHAN AJAR KELAS 9 PENYUSUN Ds.WIJANARKO EDITOR ANIK SUJIATI,S.Pd. MM BANGUN RUANG SISI LENGKUNG BAB 2BANGUN RUANG SISI LENGKUNG Setelah

Lebih terperinci

Gelombang Elektromagnetik

Gelombang Elektromagnetik Gelombang Miko 5 Gelombang Miko 6 Gelombang lektomagnetik Gelombang elektomagnetik (em) tedii dai gelombang medan listik dan medan magnit ang menjala besama dengan kecepatan sama dengan kecepatan cahaa.

Lebih terperinci

GROUP 1 ORDINARY DIFFERENTIAL HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. EQUATIONS

GROUP 1 ORDINARY DIFFERENTIAL HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. EQUATIONS GROUP HELEN P. SYIFA N. A. DITA W. A. LILIK H. HIDAYATUL M. AGUSYARIF R. N. RIDHO A. ORDINARY DIFFERENTIAL EQUATIONS DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

Hukum Coulomb Dan Medan Listrik

Hukum Coulomb Dan Medan Listrik BAB Hukum Coulomb Dan Medan Listik Pendahuluan Istilah kelistikan sudah seing di gunakan dalam kehidupan sehai-hai. Akan tetapi oang tidak banyak yang memikikan tentang hal itu. Pengamatan tentang gaya

Lebih terperinci

Teori Dasar Medan Gravitasi

Teori Dasar Medan Gravitasi Modul Teoi Dasa Medan Gavitasi Teoi medan gavitasi didasakan pada hukum Newton tentang medan gavitasi jagat aya. Hukum medan gavitasi Newton ini menyatakan bahwa gaya taik antaa dua titik massa m dan m

Lebih terperinci

FIsika KTSP & K-13 HUKUM NEWTON TENTANG GRAVITASI. K e l a s A. HUKUM GRAVITASI NEWTON

FIsika KTSP & K-13 HUKUM NEWTON TENTANG GRAVITASI. K e l a s A. HUKUM GRAVITASI NEWTON KSP & K- FIsika K e l a s XI HUKUM NEWON ENANG GAVIASI ujuan Pembelajaan Setelah mempelajai matei ini, kamu dihaapkan mampu: menjelaskan hukum avitasi Newton; memahami konsep aya avitasi dan medan avitasi;

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL LINGKARAN

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL LINGKARAN . UN 0 SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL 0 0 LINGKARAN Pesamaan gais singgung pada lingkaan 55 0 adalah... A. 5 0 0 dan 5 58 0 B. 5 0 0 dan 5 0 0 C. 5 0 0 dan 5 0 0 D. 5 0 dan 5 58 E. 5 0 dan

Lebih terperinci

: Dr. Budi Mulyanti, MSi. Pertemuan ke-2 CAKUPAN MATERI 1. MEDAN LISTRIK 2. INTENSITAS/ KUAT MEDAN LISTRIK 3. GARIS GAYA DAN FLUKS LISTRIK

: Dr. Budi Mulyanti, MSi. Pertemuan ke-2 CAKUPAN MATERI 1. MEDAN LISTRIK 2. INTENSITAS/ KUAT MEDAN LISTRIK 3. GARIS GAYA DAN FLUKS LISTRIK MATA KULIAH KOD MK Dosen : FISIKA DASAR II : L-1 : D. Budi Mulyanti, MSi Petemuan ke- CAKUPAN MATRI 1. MDAN LISTRIK. INTNSITAS/ KUAT MDAN LISTRIK 3. GARIS GAYA DAN FLUKS LISTRIK SUMBR-SUMBR: 1. Fedeick

Lebih terperinci

trigonometri 4.1 Perbandingan Trigonometri

trigonometri 4.1 Perbandingan Trigonometri tigonometi 4.1 Pebandingan Tigonometi 0 Y x P(x,y) y X x disebut absis y disebut odinat jai-jai sudut positif diuku dai sumbu X belawanan aah putaan jaum jam Definisi : = x + y sin = y cos = x tan = y

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Garis

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Garis Pogam Pekuliahan Dasa Umum Sekolah Tinggi Teknologi Telkom Integal Gais [MA] Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a t b maka

Lebih terperinci

Hand Out Fisika II MEDAN LISTRIK. Medan listrik akibat muatan titik Medan listrik akibat muatan kontinu Sistem Dipol Listrik

Hand Out Fisika II MEDAN LISTRIK. Medan listrik akibat muatan titik Medan listrik akibat muatan kontinu Sistem Dipol Listrik MDAN LISTRIK Medan listik akibat muatan titik Medan listik akibat muatan kontinu Sistem Dipol Listik Mach 7 Definisi Medan Listik () Medan listik pada muatan uji q didefinisikan sebagai gaya listik pada

Lebih terperinci

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2009 Nomor Soal: 81-90

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2009 Nomor Soal: 81-90 Slusi Pengayaan Matematika disi 9 Maet Pekan Ke-, 009 Nm Sal: 8-90 8. Pehatikan diagam beikut ini yang menunjukkan denah jalan emaa di Pagelaan g. Jaak jalan = 00 m, = 00 m, ke ke = 00 m. Jalan dan jalan

Lebih terperinci

Hand Out Fisika 6 (lihat di Kuat Medan Listrik atau Intensitas Listrik (Electric Intensity).

Hand Out Fisika 6 (lihat di Kuat Medan Listrik atau Intensitas Listrik (Electric Intensity). Hand Out Fisika 6 (lihat di http:).1. Pengetian Medan Listik. Medan Listik meupakan daeah atau uang disekita benda yang bemuatan listik dimana jika sebuah benda bemuatan lainnya diletakkan pada daeah itu

Lebih terperinci

MEDAN LIST S RIK O eh : S b a a b r a Nu N r u oh o m h an a, n M. M Pd

MEDAN LIST S RIK O eh : S b a a b r a Nu N r u oh o m h an a, n M. M Pd MEDAN LISTRIK Oleh : Saba Nuohman, M.Pd Ke Menu Utama Pehatikan Video Beikut: Mengapa itu bisa tejadi? Muatan Listik Penjelasan seputa atom : Diamete inti atom Massa potonmassa neton Massa elekton Muatan

Lebih terperinci

ATURAN-ATURAN DASAR GAMBAR TEKNIK

ATURAN-ATURAN DASAR GAMBAR TEKNIK TURN-TURN DSR GMR TEKNIK. HURUF dan NGK TEKNIK Huuf dan angka yang biasa digunakan dalam gamba teknik ada dua type, yaitu :. Type ( Tegak/miing 75 0 ) : Untuk huuf besa/kapital, tebal gais /4 h, dimana

Lebih terperinci

Gerak Melingkar. B a b 4. A. Kecepatan Linear dan Kecepatan Anguler B. Percepatan Sentripetal C. Gerak Melingkar Beraturan

Gerak Melingkar. B a b 4. A. Kecepatan Linear dan Kecepatan Anguler B. Percepatan Sentripetal C. Gerak Melingkar Beraturan B a b 4 Geak Melingka Sumbe: www.ealcoastes.com Pada bab ini, Anda akan diajak untuk dapat meneapkan konsep dan pinsip kinematika dan dinamika benda titik dengan caa menganalisis besaan Fisika pada geak

Lebih terperinci

HUKUM NEWTON TENTANG GRAVITASI DAN GERAK PLANET

HUKUM NEWTON TENTANG GRAVITASI DAN GERAK PLANET HUKUM NEWTON TENTANG GAVITASI DAN GEAK PLANET Kompetensi Dasa 3. Mengevaluasi pemikian diinya tehadap keteatuan geak planet dalam tatasuya bedasakan hukum-hukum Newton Penahkah Anda mempehatikan dan memikikan

Lebih terperinci

Gerak Melingkar. Gravitasi. hogasaragih.wordpress.com

Gerak Melingkar. Gravitasi. hogasaragih.wordpress.com Geak Melingka Gavitasi Kinematika Geak Melingka Beatuan Sebuah benda yang begeak membentuk suatu lingkaan dengan laju konstan v dikatakan mengalami geak melingka beatuan. Besa kecapatan dalam hal ini tetap

Lebih terperinci

FISIKA DASAR II. Kode MK : FI SKS : 3 Program Studi : Fisika Instrumentasi (S-1) Kelas : Reguler MATERI 1

FISIKA DASAR II. Kode MK : FI SKS : 3 Program Studi : Fisika Instrumentasi (S-1) Kelas : Reguler MATERI 1 FISIKA DASAR II Kode MK : FI 0 SKS : 3 Pogam Studi : Fisika Instumentasi (S-) Kelas : Regule MATERI TA 00/0 KRITERIA PENILAIAN Jika kehadian melampaui 75 %, Nilai Akhi mahasiswa ditentukan dai komponen

Lebih terperinci

TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA

TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA TRANSFER MOMENTUM TINJAUAN MIKROSKOPIK GERAKAN FLUIDA Hingga sejauh ini kita sudah mempelajai tentang momentum, gaya-gaya pada fluida statik, dan ihwal fluida begeak dalam hal neaca massa dan neaca enegi.

Lebih terperinci

BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1

BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1 BAB 11 GRAVITASI Hukum gavitasi univesal yang diumuskan oleh Newton, diawali dengan bebeapa pemahaman dan pengamatan empiis yang telah dilakukan oleh ilmuwan-ilmuwan sebelumnya. Mula-mula Copenicus membeikan

Lebih terperinci

PENGUKURAN. Disampaikan pada Diklat Instruktur/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

PENGUKURAN. Disampaikan pada Diklat Instruktur/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGUKURAN Disampaikan pada Diklat Instuktu/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Da. Pujiati,M. Ed. Widyaiswaa PPPG Matematika Yogyakata =================================================================

Lebih terperinci

FISIKA DASAR 2 PERTEMUAN 2 MATERI : POTENSIAL LISTRIK

FISIKA DASAR 2 PERTEMUAN 2 MATERI : POTENSIAL LISTRIK UNIVERSITAS BUANA PERJUANGAN KARAWANG Teknik Industi FISIKA DASAR PERTEMUAN MATERI : POTENSIAL LISTRIK SILABI FISIKA DASAR Muatan dan Medan Listik Potensial Listik Kapasito dan Dielektik Aus dan Resistansi

Lebih terperinci

BAB 17. POTENSIAL LISTRIK

BAB 17. POTENSIAL LISTRIK DFTR ISI DFTR ISI... 7. POTENSIL LISTRIK... 7. Potensial dan eda Potensial... 7. Dipole Listik...6 7.3 Kapasitansi Listik...9 7.4 Dielektikum... 7.5 Penyimpanan Enegi Listik...5 7.6 Pealatan : Tabung Sina

Lebih terperinci

FISIKA. Sesi LISTRIK STATIK A. GAYA COULOMB

FISIKA. Sesi LISTRIK STATIK A. GAYA COULOMB ISIKA KELAS XII IPA - KURIKULUM GABUNGAN 04 Sesi NGAN LISTRIK STATIK A. GAYA COULOMB Jika tedapat dua atau lebih patikel bemuatan, maka antaa patikel tesebut akan tejadi gaya taik-menaik atau tolak-menolak

Lebih terperinci

BAB MEDAN DAN POTENSIAL LISTRIK

BAB MEDAN DAN POTENSIAL LISTRIK BAB MEDAN DAN POTENSIAL LISTRIK Contoh. Soal pemahaman konsep Anda mungkin mempehatikan bahwa pemukaan vetikal laya televisi anda sangat bedebu? Pengumpulan debu pada pemukaan vetikal televisi mungkin

Lebih terperinci

6. Fungsi Trigonometri Sudaryatno Sudirham

6. Fungsi Trigonometri Sudaryatno Sudirham 6. Fungsi Tignmeti Sudaatn Sudiham 6.. Peubah Bebas Besatuan Deajat Beikut ini adalah fungsi-fungsi tignmeti dengan sudut θ sebagai peubah-bebas. = sin θ; = cs θ sin θ cs θ 3 = tan θ = ; 4 = ct θ = cs

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Segitiga Data 1. engetian Segitiga Dibeikan tiga buah titik A, B, dan C yang tidak segais. Titik A dihubungkan dengan titik B, titik B dihubungkan dengan titik C, dan titik C dihubungkan

Lebih terperinci

BAB MEDAN DAN POTENSIAL LISTRIK

BAB MEDAN DAN POTENSIAL LISTRIK 1 BAB MEDAN DAN POTENSIAL LISTRIK 4.1 Hukum Coulomb Dua muatan listik yang sejenis tolak-menolak dan tidak sejenis taik menaik. Ini beati bahwa antaa dua muatan tejadi gaya listik. Bagaimanakah pengauh

Lebih terperinci

2 a 3 GM. = 4 π ( ) 3/ 2 3/ 2 3/ 2 3/ a R. = 1 dengan kata lain periodanya tidak berubah.

2 a 3 GM. = 4 π ( ) 3/ 2 3/ 2 3/ 2 3/ a R. = 1 dengan kata lain periodanya tidak berubah. 1.109. Anggap kita memuat suatu model sistem tata suya dengan peandingan skala η. Anggap keapatan mateial planet dan matahai tidak euah. Apakah peioda evolusi planet ikut euah? Jawa: Menuut hukum Kepple

Lebih terperinci

Gerak Melingkar. K ata Kunci. Tujuan Pembelajaran

Gerak Melingkar. K ata Kunci. Tujuan Pembelajaran Bab III Geak Melingka Tujuan Pembelajaan nda dapat menganalisis besaan fisika pada geak melingka dengan laju konstan. Sumbe: Jendela Iptek, Gaya dan Geak Pehatikan gamba di atas! Saat pengendaa sepeda

Lebih terperinci

Bab 2 Gravitasi Planet dalam Sistem Tata Surya

Bab 2 Gravitasi Planet dalam Sistem Tata Surya PEA KONSEP Bab Gavitasi Planet dalam Sistem ata Suya Gavitasi Gavitasi planet Hukum Gavitasi Newton Hukum Keple Menentukan massa bumi Obit satelit bumi Hukum I Keple Hukum II Keple Hukum III Keple 0 Fisika

Lebih terperinci

LISTRIK STATIS. F k q q 1. k 9.10 Nm C 4. 0 = permitivitas udara atau ruang hampa. Handout Listrik Statis

LISTRIK STATIS. F k q q 1. k 9.10 Nm C 4. 0 = permitivitas udara atau ruang hampa. Handout Listrik Statis LISTIK STATIS * HUKUM COULOM. ila dua buah muatan listik dengan haga q dan q, saling didekatkan, dengan jaak pisah, maka keduanya akan taik-menaik atau tolak-menolak menuut hukum Coulomb adalah: ebanding

Lebih terperinci

BAB PENERAPAN HUKUM-HUKUM NEWTON

BAB PENERAPAN HUKUM-HUKUM NEWTON 1 BAB PENERAPAN HUKUM-HUKUM NEWTON Sebelumnya telah dipelajai tentang hukum Newton: hukum I tentang kelembaban benda, yang dinyatakan oleh pesamaan F = 0; hukum II tentang hubungan gaya dan geak, yang

Lebih terperinci

Gambar 4.3. Gambar 44

Gambar 4.3. Gambar 44 1 BAB HUKUM NEWTON TENTANG GERAK Pada bab kita telah membahas sifat-sifat geak yang behubungan dengan kecepatan dan peceaptan benda. Pembahasan pada Bab tesesbut menjawab petanyaan Bagaimana sebuah benda

Lebih terperinci

Demikian, semoga modul ini dapat bermanfaat bagi kita semua, khususnya bagi para siswa SMA/SMK. Cirebon, Oktober 2013.

Demikian, semoga modul ini dapat bermanfaat bagi kita semua, khususnya bagi para siswa SMA/SMK. Cirebon, Oktober 2013. Kata Penganta Puji suku kami panjatkan ke hadiat Tuhan Yang Maha Esa atas kaunia dan hidaah-na, sehingga kami dapat menusun modul ini. Modul ini disusun semaksimal mungkin untuk memenuhi tugas mata kuliah

Lebih terperinci

BAB II Tinjauan Teoritis

BAB II Tinjauan Teoritis BAB II Tinjauan Teoitis BAB II Tinjauan Teoitis 2.1 Antena Mikostip 2.1.1 Kaakteistik Dasa Antena mikostip tedii dai suatu lapisan logam yang sangat tipis ( t

Lebih terperinci

Ini merupakan tekanan suara p(p) pada sembarang titik P dalam wilayah V seperti yang. (periode kedua integran itu).

Ini merupakan tekanan suara p(p) pada sembarang titik P dalam wilayah V seperti yang. (periode kedua integran itu). 7.3. Tansmisi Suaa Melalui Celah 7.3.1. Integal Kichhoff Cukup akses yang bebeda untuk tik-tik difaksi disediakan oleh difaksi yang tepisahkan dapat dituunkan dai teoema Geen dalam analisis vekto. Hal

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-321) Topik hai ini (minggu 7) Geak Rotasi Kinematika Rotasi Dinamika Rotasi Kekekalan Momentum Sudut Geak Menggelinding Kinematika Rotasi Pepindahan Sudut Riview geak linea: Pepindahan,

Lebih terperinci

BAB 13 LISTRIK STATIS DAN DINAMIS

BAB 13 LISTRIK STATIS DAN DINAMIS 397 BAB 3 LISTRIK STATIS DAN DINAMIS Penahkah anda melihat peti? atau penahkah anda tekejut kaena sengatan pada tangan anda ketika tangan menyentuh laya TV atau monito kompute? Peti meupakan peistiwa alam

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-31) Topik hai ini (minggu ) Geak dalam Satu Dimensi (Kinematika) Keangka Acuan & Sistem Koodinat Posisi dan Pepindahan Kecepatan Pecepatan GLB dan GLBB Geak Jatuh Bebas Mekanika Bagian

Lebih terperinci

BAB 4 PERSAMAAN LINGKARAN

BAB 4 PERSAMAAN LINGKARAN STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan

Lebih terperinci

Fisika I. Gerak Dalam 2D/3D. Koefisien x, y dan z merupakan lokasi parikel dalam koordinat. Posisi partikel dalam koordinat kartesian diungkapkan sbb:

Fisika I. Gerak Dalam 2D/3D. Koefisien x, y dan z merupakan lokasi parikel dalam koordinat. Posisi partikel dalam koordinat kartesian diungkapkan sbb: Posisi dan Pepindahan Geak Dalam D/3D Posisi patikel dalam koodinat katesian diungkapkan sbb: xi ˆ + yj ˆ + zk ˆ :57:35 Koefisien x, y dan z meupakan lokasi paikel dalam koodinat katesian elatif tehadap

Lebih terperinci

Gerak melingkar beraturan

Gerak melingkar beraturan 13/10/01 Geak melingka beatuan geak melingka beatuan adalah geak dimensi dengan laju tetap, Aahnya beubah kecepatan beubah v i = vekto kecepatan awal v f = vekto kecepatan akhi θ = pepindahan sudut Gamba

Lebih terperinci

Sejarah. Charles Augustin de Coulomb ( )

Sejarah. Charles Augustin de Coulomb ( ) Medan Listik Sejaah Fisikawan Peancis Piestley yang tosi balance asumsi muatan listik Gaya (F) bebanding tebalik kuadat Pengukuan secaa matematis bedasakan ekspeimen Coulomb Chales Augustin de Coulomb

Lebih terperinci

UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA. Bahan Ajar 1: Kelistrikan (Minggu ke 1 dan 2)

UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA. Bahan Ajar 1: Kelistrikan (Minggu ke 1 dan 2) UNIVRSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Bahan Aja 1: Kelistikan (Minggu ke 1 dan 2) FISIKA DASAR II Semeste 2/3 sks/mff 1012 Oleh Muhammad Fachani Rosyid Dengan dana BOPTN P3-UGM tahun anggaan

Lebih terperinci

LISTRIK STATIS. F k q q 1. Gambar. Saling tarik menarik. Saling tolak-menolak. Listrik Statis * MUATAN LISTRIK.

LISTRIK STATIS. F k q q 1. Gambar. Saling tarik menarik. Saling tolak-menolak. Listrik Statis * MUATAN LISTRIK. * MUATAN LISTRIK. LISTRIK STATIS Suatu pengamatan dapat mempelihatkan bahwa bila sebatang gelas digosok dengan kain wool atau bulu domba; batang gelas tesebut mampu menaik sobekan-sobekan ketas. Ini menunjukkan

Lebih terperinci

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut.

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. LINGKARAN Lingkaran merupakan tempat kedudukan titik-titik ang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. r P Titik P disebut pusat, sedangkan Jarak P ke lingkaran dinamakan jari-jari.

Lebih terperinci

Fisika Dasar II Listrik - Magnet

Fisika Dasar II Listrik - Magnet Fisika Dasa II Listik - Magnet Sua Dama, M.Sc Depatemen Fisika UI Silabus Listik Medan Listik: Distibusi Muatan Diskit Distibusi Muatan Kontinu Potensial Listik Kapasitansi, Dielektik, dan negi lektostatik

Lebih terperinci

Bab II. Konsep Dasar

Bab II. Konsep Dasar Bab II Konsep Dasa Konsep dasa mengenai gaf dan jaingan dikutip dai Bondy dan Muty [1], Diestel [2], dan Fleische [3]. Beikut ini dibeikan bebeapa notasi himpunan untuk memudahkan pendefinisian gaf dan

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-321) Topik hai ini (minggu 7) Geak Rotasi Kinematika Rotasi Dinamika Rotasi Kekekalan Momentum Sudut Geak Menggelinding Kinematika Rotasi RIVIEW Riview geak linea: Pepindahan, kecepatan,

Lebih terperinci

uranus mars venus bumi yupiter saturnus

uranus mars venus bumi yupiter saturnus Bab II Gavitasi Tujuan Pembelajaan Anda dapat menganalisis keteatuan geak planet dalam tata suya bedasakan hukum-hukum Newton. uanus neptunus mekuius matahai mas venus bumi yupite satunus Sumbe: Encata

Lebih terperinci

PENURUNAN FORMULA LUAS PERMUKAAN BOLA; DARI BERPIKIR TINGKAT RENDAH HINGGA BERPIKIR TINGKAT TINGGI Oleh: Purwoko* puwokomsi@yahoo.

PENURUNAN FORMULA LUAS PERMUKAAN BOLA; DARI BERPIKIR TINGKAT RENDAH HINGGA BERPIKIR TINGKAT TINGGI Oleh: Purwoko* puwokomsi@yahoo. PENURUNAN FORMULA LUAS PERMUKAAN BOLA; DARI BERPIKIR TINGKAT RENDAH HINGGA BERPIKIR TINGKAT TINGGI Oleh: Puwoko* [email protected] Abstak Bangun uang sisi lengkung meupakan pokok bahasan yang elatif

Lebih terperinci

Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern

Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern Fisika Dasa II Listik, Magnet, Gelombang dan Fisika Moden Pokok Bahasan Medan listik & Hukum Gauss Abdul Wais Rizal Kuniadi Novitian Spaisoma Viidi 1 Repesentasi dai medan listik Gais-gais medan listik

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Tigonometi Matiks GY A Y O M AT E M A T AK A R Makaban, M.Si. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN

Lebih terperinci

ELEKTROSTATIKA. : Dr. Budi Mulyanti, MSi. Pertemuan ke-1 CAKUPAN MATERI 1. MUATAN LISTRIK 2. HUKUM COULOMB

ELEKTROSTATIKA. : Dr. Budi Mulyanti, MSi. Pertemuan ke-1 CAKUPAN MATERI 1. MUATAN LISTRIK 2. HUKUM COULOMB MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-1 : D. Budi Mulyanti, MSi Petemuan ke-1 CAKUPAN MATERI 1. MUATAN LISTRIK. HUKUM COULOMB SUMBER-SUMBER: 1. Fedeick Bueche & David L. Wallach, Technical Physics,

Lebih terperinci

KORELASI. menghitung korelasi antar variabel yang akan dicari hubungannya. Korelasi. kuatnya hubungan dinyatakan dalam besarnya koefisien korelasi.

KORELASI. menghitung korelasi antar variabel yang akan dicari hubungannya. Korelasi. kuatnya hubungan dinyatakan dalam besarnya koefisien korelasi. KORELASI Tedapat tiga macam bentuk hubungan anta vaiabel, yaitu hubungan simetis, hubungan sebab akibat (kausal) dan hubungan Inteaktif (saling mempengauhi). Untuk mencai hubungan antaa dua vaiabel atau

Lebih terperinci

II. MOMEN INERSIA BIDANG DATAR

II. MOMEN INERSIA BIDANG DATAR FAKULTAS TEKNK JURUSAN TEKNK SPL. MOMEN NERSA BDANG DATAR. Pendauluan Momen inesia dapat diseut juga Momen Kedua atau Momen Kelemaman. Data momen inesia suatu penampang dai komponen stuktu akan dipelukan

Lebih terperinci

Gerak Melingkar. Edisi Kedua. Untuk SMA kelas XI. (Telah disesuaikan dengan KTSP)

Gerak Melingkar. Edisi Kedua. Untuk SMA kelas XI. (Telah disesuaikan dengan KTSP) Geak Melingka Edisi Kedua Untuk SMA kelas XI (Telah disesuaikan dengan KTSP) Lisensi Dokumen : Copyight 008 009 GuuMuda.Com Seluuh dokumen di GuuMuda.Com dapat digunakan dan disebakan secaa bebas untuk

Lebih terperinci

MOMENTUM LINEAR DAN TUMBUKAN

MOMENTUM LINEAR DAN TUMBUKAN MOMENTUM LINEAR DAN TUMBUKAN 1. MOMENTUM LINEAR Momentum sebuah patikel adalah sebuah vekto P yang didefinisikan sebagai pekalian antaa massa patikel m dengan kecepatannya, v, yaitu: P = mv (1) Isac Newton

Lebih terperinci

Fungsi dan Grafik. Fungsi 8/3/2013. Pembatasan. Pokok Bahasan mencakup

Fungsi dan Grafik. Fungsi 8/3/2013. Pembatasan. Pokok Bahasan mencakup // Sudaatno Sudiham Pokok Bahasan mencakup Fungsi dan Gafik. Pengetian Tentang Fungsi. Fungsi Linie. Gabungan Fungsi Linie. Mononom dan Polinom 5. Bangun Geometis. Fungsi Tigonometi 7. Gabungan Fungsi

Lebih terperinci

PENYELESAIAN SOAL SOAL INSTALASI CAHAYA

PENYELESAIAN SOAL SOAL INSTALASI CAHAYA PENYELESAAN SOAL SOAL NSTALAS CAHAYA 1. Sebuah lampu pija dai W dengan flux Cahaya spesifik 16 lm/w ditempatkan dalam sebuah bola kaca putih susu. Kacanya meneuskan 75% dai flux Cahaya lampu. Kalau luminansi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA Bab II : Kajian Pustaka 3 BAB II KAJIAN PUSTAKA Mateial bedasakan sifat popetinya dibagi menjadi bebeapa jenis, yaitu:. Isotopik : mateial yang sifat popetinya sama ke segala aah, misalnya baja.. Othotopik

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tempat dan Waktu Penelitian 1. Tempat Penelitian Penelitian ini dilaksanakan di SMP Negei 10 Salatiga yaitu pada kelas VII D dan kelas VII E semeste genap tahun ajaan 2011/2012.

Lebih terperinci

INDUKSI ELEKTROMAGNETIK

INDUKSI ELEKTROMAGNETIK INDUKSI ELEKTROMAGNETIK Oleh : Saba Nuohman,M.Pd Ke Menu Utama Pehatikan Tampilan eikut agaimana Listik dipoduksi dalam skala besa? Apakah batu bateai atau Aki saja bisa memenuhi kebutuhan listik manusia?

Lebih terperinci

HUKUM COULOMB Muatan Listrik Gaya Coulomb untuk 2 Muatan Gaya Coulomb untuk > 2 Muatan Medan Listrik untuk Muatan Titik

HUKUM COULOMB Muatan Listrik Gaya Coulomb untuk 2 Muatan Gaya Coulomb untuk > 2 Muatan Medan Listrik untuk Muatan Titik HKM CMB Muatan istik Gaya Coulomb untuk Muatan Gaya Coulomb untuk > Muatan Medan istik untuk Muatan Titik FISIKA A Semeste Genap 6/7 Pogam Studi S Teknik Telekomunikasi nivesitas Telkom M A T A N Pengamatan

Lebih terperinci

HUKUM GRAVITASI NEWTON

HUKUM GRAVITASI NEWTON HUKU GVITSI NEWTON. Pesamaan Hukum Gavitasi Umum Newton Pehatikan kejadian beikut :. Kelapa yan sudah tua bisa jatuh ke tanah tanpa dipetik.. Penejun payun akan jatuh ke bawah setelah meloncat dai pesawat..

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. banyaknya komponen listrik motor yang akan diganti berdasarkan Renewing Free

BAB IV HASIL DAN PEMBAHASAN. banyaknya komponen listrik motor yang akan diganti berdasarkan Renewing Free BAB IV HASIL DAN PEMBAHASAN 4. Pendahuluan Bedasakan tujuan penelitian ini, yaitu mendapatkan ekspektasi banyaknya komponen listik moto yang akan diganti bedasakan Renewing Fee Replacement Waanty dua dimensi,

Lebih terperinci

LISTRIK MAGNET. potensil listrik dan energi potensial listrik

LISTRIK MAGNET. potensil listrik dan energi potensial listrik LISTRIK MGNET potensil listik dan enegi potensial listik OLEH NM : 1.Feli Mikael asablolon(101057034).salveius Jagom(10105709) 3. Vinsensius Y Sengko (101057045) PROGRM STUDI PENDIDIKN FISIK JURUSN PENDIDIKN

Lebih terperinci

INTEGRAL TENTU. x 3. a=x 1. x 2. c 1. c 2. panjang selang bagian terpanjang dari partisi P. INTEGRAL LIPAT DUA

INTEGRAL TENTU. x 3. a=x 1. x 2. c 1. c 2. panjang selang bagian terpanjang dari partisi P. INTEGRAL LIPAT DUA INTEGAL TENTU Pehatian Gamba beiut: f D D a b a c c. n b Gamba Gamba P : panjang selang bagian tepanjang dai patisi P. Definisi: Misal f fungsi ang tedefinisi pada selang tetutup [a,b]. Jia lim n P i f

Lebih terperinci