SEJARAH BEBERAPA TOPIK ALJABAR

Ukuran: px
Mulai penontonan dengan halaman:

Download "SEJARAH BEBERAPA TOPIK ALJABAR"

Transkripsi

1 SEJARAH BEBERAPA TOPIK ALJABAR Sumardyono, M.Pd. Sistem Persamaan Linier Babilonia diketahui yang pertama mengenal dan menulis tentang sistem persamaan. Tentu saja belum menggunakan simbol-simbol seperti yang kita gunakan sekarang. Pada sebuah batu bertulis bangsa Babilonia, dari masa 300 SM, termuat sebuah soal yang berkaitan dengan sistem persamaan linier, sebagai berikut: Terdapat dua daerah (sawah) dengan luas total 1800 yard persegi. Daerah sawah yang pertama dapat memproduksi rata-rata 2 / 3 gantang padi per yard persegi, sementara daerah sawah yang lain memproduksi padi 1 / 2 gantang per yard persegi. Jika jumlah produksi keseluruhan 1100 gantang, berapakah luas daerah masing-masing sawah? Bangsa Cina sekitar tahun 200 SM hingga 100 SM, telah lebih jauh melangkah dalam menangani sistem persamaan. Dalam teks kuno Jianzhang Suan Shu, yang terjemahan Inggrisnya Nine Chapters of the Matematical Arts, telah menyuguhkan berbagai macam soal mengenai sistem persamaan linier, termasuk metode untuk menyelesaikannnya yang dasarnya merupakan metode matriks. Salah satu soal dinyatakan sebagai berikut: Terdapat tiga jenis jagung. Untuk tiga karung jenis pertama, ditambah dua karung jenis kedua, dan sekarung jenis ketiga harganya 39. Dua karung jenis pertama, tiga karung jenis kedua, dan sekarung jenis ketiga harganya 34. Sekarung jenis pertama, dua karung jenis kedua, dan tiga karung jenis ketiga harganya 26. Berapakah harga jagung keseluruhan bila diambil masing-masing jenis sekarung saja? Penulis soal kemudian menyusun koefisien-koefisien dalam sistem persamaan yang digambarkan dalam soal di atas, ke dalam sebuah tabel yang sering disebut dengan counting board (papan perhitungan) Metode pada abad ke-20 (juga kita sekarang) biasanya menulis koefisien tiap persamaan menurut arah baris, tetapi metode Cina Kuno di atas menurut arah kolom. Hal ini mungkin disebabkan penulisan Cina sering dari atas ke bawah. Penulis kemudian meminta pembaca mengalikan kolom tengah dengan 3, lalu dikurangi kolom kanan sebanyak mungkin. Juga, setelah mengali tiga kolom kiri lalu dikurangi kolom kanan sebanyak mungkin. Jelas bahwa pengertian sebanyak mungkin dari penulis naskah kuno tersebut, berarti dikurangi hingga hasil nol diperoleh. Selanjutnya, kolom kiri dikali 5, lalu dikurangi kolom tengah sebanyak mungkin. Ini memberikan hasil:

2 Dari hasil terakhir ini, kita dapat menemukan harga untuk tiap karung jenis ketiga. Selanjutnya, dengan melakukan substitusi, akan kita peroleh harga untuk tiap karung jenis kedua, dan jenis pertama. Metode ini yang disebut metode fang cheng, kini sering disebut Metode Eliminasi Gauss, yang baru dikenal di Eropa baru sekitar awal abad ke-19. Istilah fang cheng, mulanya bermakna berhitung dengan bentuk persegipanjang, tetapi kini memiliki arti sederhana, yaitu persamaan. Cardano lewat bukunya, Ars Magna (1545), memberikan suatu metode yang ia sebut regula de modo (atau Ibunya Aturan ) dalam menyelesaikan sistem persamaan linier dua variabel. Aturan ini pada dasarnya merupakan Aturan Cramer, tetapi Cardano tidak sampai pada bentuk final, ia pun tidak mengarah pada mendefinisikan determinan. Matriks dan Determinan Perkembangan konsep determinan muncul lebih dulu dari konsep matriks. Ini dikarenakan kedua konsep tersebut terkait dengan penyelesaian sistem persamaan dan penyelesaian persamaan aljabar (polinom) pangkat tinggi. Ide determinan muncul pertama kali di Jepang dan di Eropa pada waktu hampir bersamaan, tetapi Seki Kowa ( ) mempublikasikan lebih dulu di Jepang. Tahun 1683, Seki menulis buku Method of Solving the dissimulated problems yang memuat metode matriks. Tanpa menggunakan istilah apa pun untuk determinan, ia memperkenalkan determinan dan memberikan metode umum untuk menghitungnya. Seki menemukan determinan untuk matriks ordo 2 2, 3 3, 4 4, dan 5 5 serta menggunakannya untuk menyelesaikan persamaan pangkat tinggi, bukannya sistem persamaan. Leibniz dalam suratnya ke l`hôpital tahun 1683 menjelaskan sistem persamaan: x + 12y = x + 22y = x + 32y = 0 hanya memiliki satu penyelesaian karena = yang tidak lain merupakan syarat determinan koefisien sama dengan nol. Tetapi Leibniz tidak bermaksud menggunakan bilangan, sehingga apa yang ia nyatakan dengan 21 adalah a 21. Leibniz menggunakan istilah resultant untuk kombinasi hasil kali koefisien dari determinan tersebut. Ia membuktikan berbagai teori dari resultant tersebut, antara lain yang mirip dengan Aturan Cramer, dan juga apa yang kemudian disebut Ekspansi Laplace. Tahun 1730-an, Maclaurin ( ) menulis Treatise of algebra dan baru diterbitkan tahun Buku tersebut memuat pembuktian Aturan Cramer untuk matriks 2 2 dan 3 3. Baru pada tahun 1750, Cramer ( ) lewat buku Introduction to the analysis of algebraic curve memberikan aturan umum untuk aturan Cramer pada matriks n n (karena itu disebut Aturan Cramer) walaupun tidak ada bukti yang diberikan. Tahun 1764, Bézout ( ) memberikan sebuah metode menghitung determinan, begitu juga Vandermonde ( ) pada tahun Tahun 1772, Laplace

3 ( ) mengembangkan aturan yang kini disebut ekspansi Laplace dan ia menamakan determinan dengan sebutan resultant, seperti sebutan Leibniz. Tahun 1773, Lagrange ( ) menulis tentang determinan dalam studi mekanika. Dalam karya tersebut, untuk pertama kali penggunaan determinan sebagai volum. Istilah determinant pertama kali digunakan oleh Carl F. Gauss ( ) dalam Disquisitiones arithmeticae (1801), tetapi dalam pembahasan bentuk-bentuk kuadrat dengan menggunakan determinan. Eliminasi Gauss, yang ditelah digunakan di Cina tahun 200 SM, ditemukan pada karyanya tentang studi orbit asteroid Pallas. Adalah Cauchy ( ) pada tahun 1812, yang pertama kali menggunakan istilah determinant dalam konteks modern. Karya-karya Cauchy hampir mewakili konsep determinan modern. Dia merintis konsep minor dan adjoints, serta hasil kali matriks. Dalam karya tahun 1841, ia menggunakan tanda dua garis vertikal untuk menunjukkan determinan. Pada tahun 1850, istilah matrix (matriks) muncul dalam tulisan Sylvester ( ). Tahun 1853, Cayley ( ) yang dikenal di sekolah lewat tabel Cayley menulis tentang invers matriks. Dan tahun 1858, ia menerbitkan Memoir on the theory of matrices yang merupakan karya pertama yang membahas matriks secara abstrak. Teorema Pythagoras Teorema Pythagoras diberi nama berdasarkan nama seorang matematikawan Yunani Kuno, Pythagoras, mungkin karena ia yang pertama memberi sebuah bukti (secara geometris) untuk teorema tersebut. Tetapi hubungan antara sisi-sisi segitiga siku-siku tersebut telah lama dikenal jauh sebelum Pythagoras dan perguruannya. Bukti dari perguruan Pythagoras berdasarkan gambar geometris berikut ini. Di Universitas Columbia, terdapat katalog hasil olahan naskah-naskah kuno Mesopotamia oleh G. A. Plimpton yang berisi masalah matematika. Katalog itu bernomor 322 sehingga dikenal sebagai Plimpton 322. Naskah tersebut berisi tabel matematika dari zaman antara 1900 SM hingga 1600 SM. Naskah Plimpton 322 disusun kembali oleh Neugebauer dan Sache tahun 1945, dan ternyata memiliki tabel yang menakjubkan. Tabel pada naskah itu terdiri atas tiga kolom bilangan, yang ternyata bersesuaian dengan tripel Pythagoras, yaitu a 2 b 2 dan c 2 = a 2 + b 2, di mana bilangan-bilangan a dan b yang bersesuaian merupakan bilangan-bilangan prima relatif dan membentuk tripel Pythagoras bersama harga c tersebut. Dengan cara lain, triple yang bersesuaian dengan tabel Plimpton ini adalah (2uv) 2 + (u v) 2 = (u + v) 2, yang oleh Anglin disebut Tripel Babilonia.

4 Sebuah catatan tentang astronomi dan matematika, Chou Pie Suan Ching, yang terjemahan Inggrisnya The Arithmetical Classic of the Gnomon and the Circular Paths of Heaven, sekitar 500 hingga 200 SM menyajikan pembahasan dan bukti secara geometris tentang Teorema Pythagoras. (lihat gambar di atas) Teks kuno dari India juga telah mengenal tentang Teorema Pythagoras jauh sebelum Pythagoras. Di dalam naskah kuno Sulbasutras yang berasal dari tahun SM (Baudhayana Sulbasutra) terdapat bahasan Teorema Pythagoras, yang digunakan untuk kepentingan pembangunan altar keagamaan. Sementara dalam Katyayana Sulbasutra (200 SM) terdapat ilustrasi: Tali yang dihubungkan sepanjang diagonal suatu persegipanjang menghasilkan bujursangkar yang luasnya sama dengan jumlah luas kedua bujursangkar pada sisi-sisi persegipanjang. Di dalam Sulvasutras banyak digunakan Tripel Pythagoras, seperti: (5, 12, 13), (12, 16, 20), (8, 15, 17), (15, 20, 25), (12, 35, 37), (15, 36, 39), ( 5 / 2, 6, 13 / 2 ), dan ( 15 / 2, 10, 25 / 2 ). Diperkirakan bangsa Maya dalam menghitung kalender mereka, juga menggunakan suatu variasi dari Teorema Pythagoras. Ada yang mengatakan rumus Tripel Pythagoras: (m 2 1)/2, m, (m 2 +1)/2 berasal dari perguruan Pythagoras. Tetapi sesungguhnya hal ini telah dikenal di Babilonia. Rumus itu sendiri hanya berlaku untuk m bilangan ganjil. Belakangan Plato memberikan rumus yang lebih baik: m 2 1, 2m, m Binomial dan Segitiga Pascal Walaupun nama Segitiga Pascal berasal dari nama seorang matematikawan Prancis pada abad ke-17, tetapi segitiga yang menunjukkan koefisien-koefisien binomial tersebut telah lama dikenal ratusan tahun sebelum Blaise Pascal ( ). Mungkin secara sendirisendiri atau independen, matematikawan Cina dan Muslim (Persia) masing-masing menemukan segitiga tersebut. Menurut Clawson dalam sebuah sumber di internet, Chia Hsien atau Jia Xian (k. 1050) telah menggunakan segitiga tersebut untuk menentukan akar kuadrat dan akar kubik suatu bilangan. Demikian pula metode yang digunakan Omar Khayyam dalam menentukan akar suatu bilangan. Setelah digunakan oleh Chia Hsien, Yang Hui (m. k ) menggunakannya untuk penarikan akar persamaan tingkat tinggi (lebih dari tiga). Para peneliti menyatakan bahwa Yang Hui adalah orang pertama yang menyajikan susunan segitiga Pascal. Matematikawan Zhu Shijie atau Chu Shih Chieh (m.k ) sekali lagi menyuguhkan susunan tersebut tahun Dalam bukunya, Zhu Shijie mengatakan bahwa segitiga binomial tersebut telah merupakan penemuan kuno pada jamannya.

5 Deskripsi tentang segitiga Pascal, mungkin yang paling tua berasal dari India. Sebuah tulisan Sanskrit yang disebut Meru Prastara yang mungkin berasal dari abad ke-3 atau 4 telah memberi deskripsi tentang segitiga Pascal dengan sangat jelas. Ini kita ketahui dari seorang komentatornya, Halayudha (k. 975). Kalau kita gambarkan deskripsi dari Meru Prastara akan berbentuk segitiga seperti di atas ini. Al-Karaji atau al-karkhi dalam al-fakhri dan al-badi juga telah mendeskripsikan tentang pembuatan Segitiga Pascal bahkan membuat gambarnya (lihat di atas). Deskripsi umum Segitiga Pascal dari al-karaji terdapat dalam komentatornya, yaitu al-samawal. Segitiga binomial tersebut dikenal lewat karya Blaise Pascal, Traité du triangle arithmétique pada tahun Pascal menulis banyak sifat yang berkenaan dengan segitiga binomial tersebut. Pascal termasuk matematikawan brillian dalam jamannya. Ia menemukan teorema-teorema penting dalam geometri, menemukan mesin hitung, merintis teori probabilitas, dan lain-lain. Daftar Pustaka dan Bahan Bacaan Anglin, W. S Mathematics: A Concise History and Philosophy. New York: Springer- Verlag. Boyer, Carl B A History of Mathematics. New York: John Wiley & Sons, Inc. Cooke, R The History of Mathematics. A Brief Cource. New York: John Wiley & Sons, Inc.

6 Dali S. Naga Berhitung, Sejarah dan Perkembangannya. Jakarta: Gramedia Eves, Howard An Introduction to The History of Mathematics. New York: Holt, Rinehart, & Winston, Inc. Kazimir. September 2003 (diakses). History of Pascal Triangle. dalam history.html O`Connor, J. J. & Robertson, E. F kumpulan esai dalam & dalam Sabra, Berggren, Iqbal, & Alisjahbana Sumbangan Islam kepada Sains & Peradaban Dunia. Bandung: Penerbit Nuansa Sitorus, J Pengantar Sejarah Matematika dan Pembaharuan Pengajaran Matematika di Sekolah. Bandung: Tarsito.

Pendahuluan. PENGERTIAN ALJABAR DAN SEJARAHNYA Oleh: Hendra Kartika Update: 01 November 2016

Pendahuluan. PENGERTIAN ALJABAR DAN SEJARAHNYA Oleh: Hendra Kartika Update: 01 November 2016 PENGERTIAN ALJABAR DAN SEJARAHNYA Oleh: Hendra Kartika Update: 01 November 2016 1.1. Pengertian Aljabar dan Sejarahnya Muhammad bin Musa al-khawarizmi biasa disebut Al-Khawaritzmi adalah seorang ahli matematika,

Lebih terperinci

BEBERAPA NASKAH KUNO MATEMATIKA

BEBERAPA NASKAH KUNO MATEMATIKA BEBERAPA NASKAH KUNO MATEMATIKA Sumardyono, M.Pd. Plimpton 322 Bangsa-bangsa yang menetap di Mesopotamia (sekarang daerah Iraq dan sekitarnya) antara lain Sumeria, Assiria, dan Babilonia. Tetapi yang memiliki

Lebih terperinci

Perluasan Segitiga Pascal

Perluasan Segitiga Pascal Perluasan Segitiga Pascal Untung Trisna S. [email protected] PPPPTK Matematika Yogyakarta 2011 The moving power of mathematical invention is not reasoning but imagination. Augustus De Morgan (27 Jun 1806

Lebih terperinci

MATEMATIKA ITU INDAH DAN MENARIK (Sekilas tentang Pola Bilangan) Oleh Endang Cahya MA

MATEMATIKA ITU INDAH DAN MENARIK (Sekilas tentang Pola Bilangan) Oleh Endang Cahya MA MATEMATIKA ITU INDAH DAN MENARIK (Sekilas tentang Pola Bilangan) Oleh Endang Cahya MA Pendahuluan Tidak diragukan lagi bahwa banyak kegunaan praktis matematika dalam kehidupan sehari-hari yang sangat membantu

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

Pertemuan 8 Aljabar Linear & Matriks

Pertemuan 8 Aljabar Linear & Matriks Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pembelajaran matematika merupakan pembelajaran yang harus diikuti siswa mulai dari sekolah dasar hingga perguruan tinggi. Matematika harus dipelajari siswa sejak

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

SEJARAH BEBERAPA TOPIK ARITMETIKA

SEJARAH BEBERAPA TOPIK ARITMETIKA SEJARAH BEBERAPA TOPIK ARITMETIKA Sumardyono, M.Pd. Angka Hindu-Arab Angka yang kita gunakan sekarang ini ada yang menyebut sebagai Angka Arab, Angka Hindu-Arab, atau Angka Hindu. Apa yang disebut Hindu

Lebih terperinci

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika

Lebih terperinci

ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3

ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3 ALJABAR LINIER ALJABAR LINIER Kelas B JUMAT 08.00 Ruang i.iii.3 Kelas A JUMAT 09.45 Ruang i.iii.3 Referensi Utama: Elementary Linear Algebra Howard Anton Chris Rores John Wiley, ninth edition Chapter 1

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

METODE BARU UNTUK MENGHITUNG DETERMINAN DARI MATRIKS TUGAS AKHIR YESPI ENDRI

METODE BARU UNTUK MENGHITUNG DETERMINAN DARI MATRIKS TUGAS AKHIR YESPI ENDRI METODE BARU UNTUK MENGHITUNG DETERMINAN DARI MATRIKS TUGAS AKHIR Diajukan sebagai salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh: YESPI ENDRI 10854004331 FAKULTAS SAINS

Lebih terperinci

BAB X SISTEM PERSAMAAN LINIER

BAB X SISTEM PERSAMAAN LINIER BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan

Lebih terperinci

KARAKTERISTIK MATEMATIKA DAN IMPLIKASINYA TERHADAP PEMBELAJARAN MATEMATIKA

KARAKTERISTIK MATEMATIKA DAN IMPLIKASINYA TERHADAP PEMBELAJARAN MATEMATIKA PAKET PEMBINAAN PENATARAN Sumardyono, S.Pd. KARAKTERISTIK MATEMATIKA DAN IMPLIKASINYA TERHADAP PEMBELAJARAN MATEMATIKA 45 O 1 2 3 4 DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

I. PENDAHULUAN. Matematika menurut catatan sejarah, telah lahir sejak jaman Mesir kuno,

I. PENDAHULUAN. Matematika menurut catatan sejarah, telah lahir sejak jaman Mesir kuno, 1 I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Matematika menurut catatan sejarah, telah lahir sejak jaman Mesir kuno, kira kira lima ribu tahun yang lalu. Bangsa Yunani kuno-lah yang mengembangkan matematika

Lebih terperinci

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A:

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A: DETERMINAN Definisi Determinan Matriks Determinan matriks adalah bilangan tunggal yang diperoleh dari semua permutasi elemen matriks bujur sangkar.jika subskrip permutasi elemen matriks adalah genap (inversi

Lebih terperinci

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Matematika Teknik I: Matriks, Inverse, dan Determinan Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Dadang Amir Hamzah (STT) Matematika Teknik I Semester 3, 2015 1 / 33 Outline 1 Matriks Dadang

Lebih terperinci

Sistem Persamaan Linear Tiga Variabel (SPLTV) LOGO

Sistem Persamaan Linear Tiga Variabel (SPLTV) LOGO Sistem Persamaan Linear Tiga Variabel (SPLTV) LOGO Tujuan Pembelajaran Mengetahui Penerapan SPLTV dalam kehidupan Mengetahui Pengertian & Bentuk Umum SPLTV Mengetahui SPLTV Homogen Menemukan Bentuk Geometri

Lebih terperinci

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar Bab Sumber: Science Encylopedia, 997 Faktorisasi Aljabar Masih ingatkah kamu tentang pelajaran Aljabar? Di Kelas VII, kamu telah mengenal bentuk aljabar dan juga telah mempelajari operasi hitung pada bentuk

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom BAB 9 RING POLINOM Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 2

Aljabar Linier & Matriks. Tatap Muka 2 Aljabar Linier & Matriks Tatap Muka 2 Matriks Matriks adalah susunan segi empat siku siku dari bilangan yang dibatasi dengan tanda kurung siku. Suatu matriks tersusun atas baris dan kolom, jika matriks

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

Pertemuan 13 persamaan linier NON HOMOGEN

Pertemuan 13 persamaan linier NON HOMOGEN Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 6

Pengantar Teori Bilangan. Kuliah 6 Pengantar Teori Bilangan Kuliah 6 Materi Kuliah Carl Friedrich Gauss Teori Dasar Kongruen 3/14/2014 Yanita FMIPA Matematika Unand 2 Carl Friedrich Gauss Hidup pada masa 1777 1855 Mengenalkan konsep Disquisitiones

Lebih terperinci

BARISAN DAN DERET. A. Pola Bilangan

BARISAN DAN DERET. A. Pola Bilangan BARISAN DAN DERET A. Pola Bilangan Perhatikan deretan bilangan-bilangan berikut: a. 1 2 3... b. 4 9 16... c. 31 40 21 30 16... Deretan bilangan di atas mempunyai pola tertentu. Dapatkah anda menentukan

Lebih terperinci

Adri Priadana. ilkomadri.com

Adri Priadana. ilkomadri.com Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian

Lebih terperinci

Penerapan Operasi Matriks dalam Kriptografi

Penerapan Operasi Matriks dalam Kriptografi Penerapan Operasi Matriks dalam Kriptografi Muhammad Farhan Kemal 13513085 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG

MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu. SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

MA Analisis dan Aljabar Teori=4 Praktikum=0 II (angka. 17 Juli

MA Analisis dan Aljabar Teori=4 Praktikum=0 II (angka. 17 Juli INSTITUT TEKNOLOGI KALIMANTAN JURUSAN MATEMATIKA DAN TEKNOLOGI INFORMASI PROGRAM STUDI MATEMATIKA SILABUS MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Aljabar Linear ELementer MA Analisis

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

ELIMINASI GAUSS JORDAN. Oleh: Andi Rusdi*)

ELIMINASI GAUSS JORDAN. Oleh: Andi Rusdi*) ELIMINASI GAUSS JORDAN. Oleh: Andi Rusdi*) Sejarah: Karl Friedich Gauss (977-8) adalah seorang ahli matematika dan ilmuwan dari Jerman. Gauss yang kadang-kadang dijuluki pangeran ahli matematika. Disejajarkan

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut Teorema pythagoras berasal dari seorang matematikawan dari Yunani yang bernama Pythagoras, tetapi ada juga yang menyebutkan bahwa teorema pythagoras berasal dari Cina karena ada sebuah buku yang merupakan

Lebih terperinci

SEJARAH MATEMATIKA HINDIA

SEJARAH MATEMATIKA HINDIA SEJARAH MATEMATIKA HINDIA A. Sejarah Matematika India Sejarah matematika India yang digunakan untuk memulai dengan menggambarkan geometri yang terkandung dalam Sulbasutras tetapi penelitian ke dalam sejarah

Lebih terperinci

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRMA

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

4 Jasa Besar Euclid. 4 Jasa Besar Euclid 19

4 Jasa Besar Euclid. 4 Jasa Besar Euclid 19 4 Jasa Besar Euclid Kota Alexandria (Al-Iskandariya), yang terletak di pantai utara Mesir, dibangun oleh Alexander Agung pada tahun 322 SM, menyaingi kota Athena. Pada tahun 300 SM, Raja Ptolemy I Soter

Lebih terperinci

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b

Lebih terperinci

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3 11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan

Lebih terperinci

Bab 4. Koefisien Binomial

Bab 4. Koefisien Binomial Bab 4. Koefisien Binomial Koefisien binomial merupakan bilangan-bilangan yang muncul dari hasil penjabaran penjumlahan dua peubah yang dipangkatkan, misalnya (a + b) n. Sepintas terlihat bahwa ekspresi

Lebih terperinci

Strategi Penemuan Pola pada Pemecahan Masalah

Strategi Penemuan Pola pada Pemecahan Masalah Strategi Penemuan Pola pada Pemecahan Masalah I Strategi Penemuan Pola dalam Penyelesaian Masalah Sehari-hari Penemuan pola adalah salah satu strategi dalam problem solving dimana kita dapat mengamati

Lebih terperinci

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Joko Harianto 1, Nana Fitria 2, Puguh Wahyu Prasetyo 3, Vika Yugi Kurniawan 4 Jurusan Matematika, Universitas Gadjah Mada, Yogyakarta Indonesia

Lebih terperinci

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK Faktor Exacta 10 (2): 154-161, 2017 SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK NONI SELVIA [email protected] Program Studi Teknik Informatika Fakultas Teknik,Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan bagian dari warisan budaya. 1. budaya, matematika hadir sebagai solusi di tengah-tengah permasalahan

BAB I PENDAHULUAN. Matematika merupakan bagian dari warisan budaya. 1. budaya, matematika hadir sebagai solusi di tengah-tengah permasalahan BAB I PENDAHULUAN A. Latar Belakang Matematika merupakan bagian dari warisan budaya. 1 Sebagai warisan budaya, matematika hadir sebagai solusi di tengah-tengah permasalahan kehidupan sosial masyarakat.

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

PERSAMAAN RELASI REKURENSI PADA PERHITUNGAN NILAI DETERMINAN MATRIKS MENGGUNAKAN METODE EKSPANSI LAPLACE DAN METODE CHIO

PERSAMAAN RELASI REKURENSI PADA PERHITUNGAN NILAI DETERMINAN MATRIKS MENGGUNAKAN METODE EKSPANSI LAPLACE DAN METODE CHIO PERSAMAAN RELASI REKURENSI PADA PERHITUNGAN NILAI DETERMINAN MATRIKS MENGGUNAKAN METODE EKSPANSI LAPLACE DAN METODE CHIO Sintia Dewi Ratna Sari Mahasiswa Pendidikan Matematika Universitas Muhammadiyah

Lebih terperinci

BAB III : SISTEM PERSAMAAN LINIER

BAB III : SISTEM PERSAMAAN LINIER 3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem

Lebih terperinci

Interpretasi Geometri Dari Sebuah Determinan

Interpretasi Geometri Dari Sebuah Determinan Jurnal Sains Matematika dan Statistika Vol No Juli 5 ISSN 46-454 Interpretasi Geometri Dari Sebuah Determinan Riska Yeni Syamsudhuha M D H Gamal 3 Jurusan Matematika Fakultas Mipa Universitas Riau Jl HR

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

Geometri di Bidang Euclid

Geometri di Bidang Euclid Modul 1 Geometri di Bidang Euclid Dr. Wono Setya Budhi G PENDAHULUAN eometri merupakan ilmu pengetahuan yang sudah lama, mulai dari ribuan tahun yang lalu. Berpikir secara geometris dari satu bentuk ke

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

Matematika Teknik DETERMINAN

Matematika Teknik DETERMINAN DETERMINN da satu cara lagi dalam menentukan solusi SPL dengan bekerja pada matriks koefisiennya. Cara berikut hanya akan berlaku untuk matriks koefiien berupa matriks bujursangkar atau SPL mempunyai banyak

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Ahmad Fa iq Rahman 13514081 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

Aplikasi Interpolasi Polinom dalam Tipografi

Aplikasi Interpolasi Polinom dalam Tipografi Aplikasi Interpolasi Polinom dalam Tipografi Muhammad Farhan Majid (13514029) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin*

PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin* PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin* A. Aksioma Keterbagian Sebuah bilangan dikatakan habis dibagi (terbagi) dengan sebuah bilangan

Lebih terperinci

STRUKTUR ALJABAR: RING

STRUKTUR ALJABAR: RING STRUKTUR ALJABAR: RING BAHAN AJAR Oleh: Rippi Maya Program Studi Magister Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI - Bandung 2016 1 Pada grup telah dipelajari

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Fitri Aryani 1, Rahmadani 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suskaacid Abstrak

Lebih terperinci

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2 Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.

Lebih terperinci

PENGEMBANGAN SEGITIGA PASCAL UNTUK MEMUDAHKAN PENYELESAIAN PERSOALAN MATEMATIKA YANG BERKAITAN DENGAN PEMANGKATAN SUKU DUA

PENGEMBANGAN SEGITIGA PASCAL UNTUK MEMUDAHKAN PENYELESAIAN PERSOALAN MATEMATIKA YANG BERKAITAN DENGAN PEMANGKATAN SUKU DUA Bimafika, 2013, 5, 579 586 PENGEMBANGAN SEGITIGA PASCAL UNTUK MEMUDAHKAN PENYELESAIAN PERSOALAN MATEMATIKA YANG BERKAITAN DENGAN PEMANGKATAN SUKU DUA Zumrotus Syadiyah (1) ; Pepsen Hortison Perliang (2)

Lebih terperinci

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU DENGAN Andi Bahota 1*, Aziskhan 2, Musraini M. 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,

Lebih terperinci

BAB MATRIKS. Tujuan Pembelajaran. Pengantar

BAB MATRIKS. Tujuan Pembelajaran. Pengantar BAB II MATRIKS Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi merupakan invers

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

Matriks. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar

Matriks. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar Bab 1 Matriks Kompetensi Dasar Dan Pengalaman Belajar Kompetensi Dasar 1.1 Menghayati dan mengamalkan ajaran agama yang dianutnya. 2.1 Menghayati perilaku disiplin, sikap kerjasama, sikap kritis dan cermat

Lebih terperinci

PENGERTIAN PHYTAGORAS

PENGERTIAN PHYTAGORAS Pythagoras adalah seorang ahli filsafat. Ia tidak hanya mempelajari matematika, tetapi juga music dan ilmu-ilmu lain. Ia lahir di Yunani, tetapi pergi belajar ke Mesir dan Babilonia. Ia terkenal karena

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Semi Definit dan Indefinit Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Semi Definit dan Indefinit Menggunakan Metode Kuasa Invers dengan Shift Menentukan Nilai Eigen Tak Dominan Suatu Matriks Semi Definit dan Indefinit Menggunakan Metode Kuasa Invers dengan Shift Arif Bijaksana 1, Irma Suryani 2 Jurusan Matematika Terapan, Fakultas Sains dan

Lebih terperinci

Penyelesaian SPL dalam Rangkaian Listrik

Penyelesaian SPL dalam Rangkaian Listrik Penyelesaian SPL dalam Rangkaian Listrik Harry Octavianus Purba (13514050) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4}

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4} BAB 2 : DETERMINAN PERMUTASI Kita sudah cukup mengenal fungsi-fungsi sinus, fungsi kuadrat, juga fungsi konstant yang memetakan suatu bilangan riil ke bilangan riil. Pada bagian ini akan dipelajari mengenai

Lebih terperinci

MATEMATIKA BUKAN SEKADAR BERHITUNG

MATEMATIKA BUKAN SEKADAR BERHITUNG MATEMATIKA BUKAN SEKADAR BERHITUNG Oleh Hendra Gunawan * Selama ini masih banyak orang yang menganggap bahwa matematika tidaklah lebih daripada sekadar berhitung dan bermain dengan angka-angka. Anggapan

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

Jurnal Apotema Vol.2 No. 2 62

Jurnal Apotema Vol.2 No. 2 62 Jurnal Apotema Vol.2 No. 2 62 Sudjana. 2005). Metoda Statistika. Bandung: Tarsito. Sugianto, D. 2014). Perbedaan Penerapan Model Pembelajaran Kooperatif Tipe Jigsaw Dan Sta Ditinjau Dari Kemampuan Penalaran

Lebih terperinci

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE APOTEMA: Jurnal Pendidikan Matematika Volume 2 Nomor 2 Juli 2016 p 63-75 ISSN 2407-8840 BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE Moh Affaf Prodi Pendidikan Matematika STKIP PGRI BANGKALAN

Lebih terperinci

MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA. Suryoto Jurusan Matematika F-MIPA Universitas Diponegoro Semarang. Abstrak

MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA. Suryoto Jurusan Matematika F-MIPA Universitas Diponegoro Semarang. Abstrak MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusan Matematika F-MIPA Universitas Diponegoro Semarang Abstrak Suatu matriks tak negatif dikatakan stokastik ganda, jika jumlah entri-entri pada tiap

Lebih terperinci

SILABUS. A. Identitas Mata Kuliah. Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS Semester Program Studi Dosen/Asisten

SILABUS. A. Identitas Mata Kuliah. Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS Semester Program Studi Dosen/Asisten SILABUS A. Identitas Mata Kuliah Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS Semester Program Studi Dosen/Asisten Aljabar GD 320 3 7 PGSD S-1 Kelas Riana Irawati, M.Si B. Tujuan Pembelajaran Umum Setelah

Lebih terperinci