BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 6 BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Menurut (Suarga, 2012 : 1) algoritma: 1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sistematis. 2. Suatu prosedur yang jelas untuk menyelesaikan suatu persoalan dengan menggunakan langkah-langkah tertentu dan terbatas jumlahnya. 3. Susunan langkah yang pasti, yang bila diikuti maka akan mentransformasi data input menjadi output yang berupa informasi Sifat Algoritma Menurut (Suarga, 2012 : 4) sifat utama suat algortima adalah sebagai berikut: 1. Input: suatu algoritma memiliki input atau kondisi awal sebelum dilaksanakan, bisa berupa nilai-nilai peubah yang diambil dari himpunan khusus. 2. Output: suatu algoritma akan menghasilkan output setelah dilaksanakan, atau algoritma akan mengubah kondisi awal menjadi kondisi akhir, di mana nilai output diperoleh dari nilai input yang telah diperoses melalui algoritma. 3. Definiteness: langkah-langkah yang dituliskan dalam algoritma terdefinisi dengan jelas sehingga mudah dilaksanakan oleh pengguna algoritma. 4. Finiteness: suatu algoritma harus memberi kondisi akhir atau output setelah sejumlah langkah yang terbatas jumlahnya dilakukan terhadap setiap kondisi awal atau input yang diberikan. 5. Effectiveness: setiap langkah dalam algoritma bisa dilaksanakan dalam suatu selang waktu tertentu sehingga pada akhirnya didapatkan solusi sesuai yang diharapkan.

2 7 6. Generality: langkah-langkah algoritma berlaku untuk setiap himpunan input yang sesuai dengan persoalan yang diberikan, tidak hanya untuk himpunan tertentu. 2.2 Teori Dasar Graf Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Representasi visual dari graf adalah dengan menyatakan objek dinyatakan sebagai noktaf, bulatan, atau titik, sedangkan hubungan antara objek dinyatakan dengan garis (Munir, Rinaldi : 353) Definisi Graf Graf didefinisikan sebagai berikut: 1. Menurut (Suarga, 2012 : 224): Graf adalah struktur data yang terdiri atas kumpulan vertex (V) dan edge (E), bisa ditulis sebagai G=(V, E), di mana vertex adalah simpul pada graf, dan edge adalah rusuk/jaring yang menghubungkan dua simpul. 2. Menurut (Munir, Rinaldi : 356): Graf G didefinisikan sebagai pasangan himpunan (V, E), dituliskan dengan notasi G = (V, E), yang dalam hal ini V adalah himpunan tidak kosong dari simpul-simpul (vertices atau node) dan E adalah himpunan sisi (edges atau arcs) yang menghubungkan sepasang simpul. 3. Menurut (Fournier, Jean-Claude : 23): Sebuah Graf G (tak berarah) adalah definisi dari dua himpunan terbatas, himpunan X tidak kosong dari elemen-elemen yang dinamakan (vertices), himpunan E (dimana boleh kosong) dari elemen-elemen yang dinamakan (edge), dengan setiap edge e terhubungan dengan 2 vertices, x dan y, berbeda atau tidak, yang dinamakan endvertices dari e. Beberapa istilah yang sering digunakan dalam masalah graf antara lain: 1. Adjacent vertex: adalah dua node berdekatan, terhubung langsung oleh vertex. 2. Path: jalur melalui edge yang menghubungkan suatu vertex ke vertex yang lain, panjang suatu jalur ditentukan oleh jumlah jaring (edge) yang menghubungkan dua vertex. 3. Complete graph: adalah graf di mana semua vertex terhubung langsung satu dengan yang lain.

3 8 4. Weighted graph: graf yang setiap edge memiliki bobot/nilai. 5. Cycle: adalah jalur yang mulai dari suatu vertex dan berakhir pada vertex yang sama (Suarga, 2012 : ) Jenis-Jenis Graf Graf dapat dikelompokkan menjadi beberapa kategori (jenis) bergantung pada sudut pandang pengelompokannya. Pengelompokan graf dapat dipandang berdasarkan ada tidaknya sisi ganda atau sisi kalang (loop), berdasarkan jumlah simpul, atau berdasarkan orientasi arah pada sisi. Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka secara umum graf dapat digolongkan menjadi dua jenis (Munir, Rinaldi : 357). 1. Graf sederhana (simple graph). Graf yang tidak mengandung gelang maupun sisi-ganda dinamakan graf sederhana. Pada graf sederhana, sisi adalah pasangan tak-terurut (unordered pairs). Jadi, menuliskan sisi (u, v) sama saja dengan (v, u). Gambar 2.1 Graf sederhana Pada Gambar 2.1 adalah graf dengan himpunan simpul V dan himpunan sisi E adalah: V = {1,2,3,4} E = {(1,2),(1,3),(2,3),(2,4),(3,4)} 2. Graf tak-sederhana (unsimple-graph). Graf yang mengandung sisi ganda atau gelang dinamakan graf tak-sederhana (unsimple-graph). Ada dua macam graf tak-sederhana, yaitu graf ganda (multigraph) dan graf semu (pseudograph). Graf ganda adalah graf yang mengandung sisi ganda.

4 9 Sisi ganda yang menghubungkan sepasang simpul bisa lebih dari dua buah. Sisi ganda dapat diasosisiasikan sebagai pasangan tak-terurut yang sama. Gambar 2.2 Graf ganda Pada Gambar 2.2 adalah graf dengan himpunan simpul V dan himpunan sisi E adalah: V = {1,2,3,4} E = {(1,2),(2,3),(1,3),(1,3),(2,4),(3,4),(3,4 Pada sisi e 3 = (1,3) dan sisi e 4 = (1,3) dinamakan sisi-ganda (multiple edges atau paralel edges) karena kedua sisi ini menghubungi dua buah simpul yang sama, yaitu simpul 1 dan simpul 3. Graf semu adalah graf yang mengandung gelang (loop). Graf semu lebih umum daripada graf ganda, karena sisi pada graf semu dapat terhubung ke dirinya sendiri. Gambar 2.3 Graf semu Graf semu adalah graf dengan himpunan simpul V dan himpunan sisi E adalah: V = {1,2,3,4} E ={(1,2),(2,3),(1,3),(1,3),(2,4),(3,4),(3,4),(3,3)}

5 10 Pada sisi e 8 = (3,3) dinamakan gelang atau kalang (loop) karena ia berawal dan berakhir pada simpul yang sama. Sisi pada graf dapat mempunyai orientasi arah. Berdasarkan orientasi arah pada sisi, maka secara umum graf dibedakan menjadi 2 jenis (Munir, Rinaldi : 358). 1. Graf tak-berarah (undirected graph) Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah. Urutan pasangan simpul yang dihubungkan oleh sisi tidak diperhatikan. Jadi, (u, v) = (v, u) adalah sisi yang sama. 2. Graf berarah (directed graph atau digraph) Graf yang setiap sisinya diberikan orientasi arah disebut sebagai graf berarah. Pada graf berarah, (u, v) dan (v, u) menyatakan dua buah busur yang berbeda, dengan kata lain (u, v) (v, u). Untuk busur (u, v), simpul u dinamakan simpul asal (initial vertex) dan simpul v dinamakan simpul terminal (terminal vertex). Pada graf berarah, gelang diperbolehkan, tetapi sisi ganda tidak. Gambar 2.4 Graf berarah Defini graf dapat diperluas sehingga mencakup graf-ganda berarah (directed multigraph) Pada graf berarah, gelang dan sisi ganda diperbolehkan ada. Gambar 2.5 Graf-ganda berarah

6 Lintasan Terpendek (Shortest Path) Graf yang digunakan dalam pencarian lintasan terpendek adalah graf berbobot (weighted graph), yaitu graf yang setiap sisinya diberikan suatu nilai atau bobot. Bobot pada sisi graf dapat menyatakan jarak antar kota, waktu pengiriman pesan, ongkos pembangunan, dan sebagainya (Munir, Rinaldi : 412 ). Ada beberapa macam persoalan lintasan terpendek, antara lain: 1. Lintasan terpendek antara dua buah simpul tertentu. 2. Lintasan terpendek antara semua pasangan simpul. 3. Lintasan terpendek dari simpul tertentu ke semua simpul yang lain. 4. Lintasan terpendek antara dua buah simpul yang melalui beberapa simpul tertentu. 2.4 Algoritma L-Deque Linked list merupakan struktur data dinamis yang paling sederhana yang berlawanan dengan array, yang merupakan struktur statis. Masing-masing data dalam Linked list disebut dengan node (simpul) yang menempati alokasi memori secara dinamis dan biasanya berupa struktur (struct) yang terdiri dari beberapa field (Setyaningsih, E : 47). Stack (tumpukan) adalah sebuah list yang semua penambahan dan penghapusan dilakukan pada bagian depan dari list. Algoritma jarak terpendek yang mana Q telah diimplementasikan sebagai sebuah stack yang tidak dibatasi jumlahnya. Deque (double-ended queue atau antrian ganda) adalah sebuah list dimana penambahan dan penghapusan dapat dilakukan pada kedua sisi ujungnya. Deque mungkin terlihat sebagai sebuah stack dan antrian (queue) yang terhubung dalam rangkain yang sedemikian rupa pada bagian belakang (tail) dari stack hingga bagian terdepan pada antrian. Metode ini disebut ldeque, penambahan sebuah simpul pada bagian terdepan dari Q jika simpul tersebut sudah muncul dalam list sebelumnya, dimana simpul ditambahkan pada bagian belakang (tail) jika perlu. Ketika semua simpul mempunyai sebuah label terbatas, metode ini bereaksi seperti sebuah algoritma yang digunakan sebagai struktur data (Mondou, J-F., 1991 : 4-5).

7 12 FRONT (Q) REAR (Q) Keluar Masuk Masuk Keluar Gambar 2.6 Struktur Umum DEQUE Deque menggunakan dua pointer petunjuk yaitu left petunjuk untuk elemen pada posisi kiri dan right petunjuk untuk elemen pada posisi kanan. Ada dua jenis deque: 1. Input-Restricted-Deque Adalah deque yang operasi pemasukan elemen datanya hanya dapat dilakukan di satu ujung kanannya (right), tetapi dapat menghapus dari kedua ujungnya (left dan right). 2. Output-Restricted-Deque Adalah deque yang operasi pemasukan elemen datanya dapat dilakukan melalui kedua ujungnya (left dan right), tetapi hanya dapat menghapus dari ujung kanannya (right). 2.5 Asimtotik Notasi yang digunakan untuk menentukan waktu tempuh (running time) asimtotik dari suatu algoritma didefinisikan dalam hal fungsi yang mana domainnya adalah himpunan bilangan N = {0, 1, 2,...}. Notasi tersebut mudah untuk menggambarkan keadaan terburuk (worst-case) waktu tempuh fungsi T(n) yang biasanya diartikan hanya pada ukuran integer. Fungsi yang diterapkan notasi asimtotik biasanya akan mencirikan waktu tempuhnya algoritma. Tapi notasi asimtotik dapat berlaku pada fungsi yang menjadi ciri beberapa aspek lain dari algortima (misalnya jumlah ruang yang digunakan) bahkan untuk fungsi yang sama sekali tidak dapat dilakukan oleh algoritma (Cormen et al., 2009 : 43-44).

8 Kompleksitas Algoritma Suatu masalah dapat mempunyai banyak algoritma penyelesaian. Algoritma yang digunakan tidak saja harus benar, namun juga harus efisien. Efisiensi suatu algoritma dapat diukur dari waktu eksekusi algoritma dan kebutuhan ruang memori. Algoritma yang efisien adalah algoritma yang meminimumkan kebutuhan waktu dan ruang. Dengan menganalisis beberapa algoritma untuk suatu masalah, dapat diidentifikasi sutu algoritma yang paling efisien. Besaran yang digunakan untuk menjelaskan waktu dan ruang ini adalah kompleksitas algoritma. Kompleksitas dari suatu algoritma merupakan ukuran seberapa banyak komputasi yang dibutuhkan algoritma tersebut untuk menyelesaikan masalah. Secara informal, algoritma yang dapat menyelesaikan suatu permasalahan dalam waktu yang singkat memiliki kompleksitas yang rendah, sementara algoritma yang membutuhkan waktu yang lama untuk menyelesaikan masalahnya mempunyai kompleksitas yang tinggi. (Azizah, U. N., 2013) Kompleksitas Waktu dan Ruang Kompleksitas algoritma terdiri dari dua macam yaitu kompleksitas waktu dan kompleksitas ruang. 1. Kompleksitas waktu, dinyatakan oleh T(n), diukur dari jumlah tahapan komputasi yang dibutuhkan untuk menjalankan algoritma sebagai fungsi dari ukuran masukan n, di mana ukuran masukan (n) merupakan jumlah data yang diproses oleh sebuah algoritma. 2. Kompleksitas ruang, dinyatakan oleh S(n), diukur dari memori yang digunakan oleh struktur data yang terdapat di dalam algoritma sebagai fungsi dari masukan n. Dengan menggunakan kompleksitas waktu dan kompleksitas ruang, dapat ditentukan laju peningkatan waktu atau ruang yang diperlukan algoritma, seiring dengan meningkatnya ukuran masukan (n) (Munir, Rinaldi : ). Untuk menentukan kompleksitas waktu suatu algoritma, diperlukan ukuran masukan n serta waktu tempuh (running time) algoritma tersebut. Pada umumnya,

9 14 running time algoritma meningkat seiring dengan dengan bertambahnya ukuran n. Sehingga, running time suatu algoritma dapat dinyatakan sebagai fungsi dari n. Running Time algoritma pada masukan n tertentu merupakan jumlah operasi atau langkah yang dieksekusi. Selanjutnya, jumlah waktu yang konstan diperlukan untuk mengeksekusi setiap baris pseudocode (kode semu). Satu baris dapat memiliki jumlah waktu yang berbeda dari baris lain. Namun asumsikan bahwa setiap pelaksanaan baris ke-i membutuhkan waktu sebesar c 1, di mana c 1 adalah konstanta. Dalam menentukan running time suatu baris pada pseudocode (kode semu), kalikan konstanta c 1 dengan jumlah waktu yang diperlukan untuk mengeksekusi baris tersebut. Untuk kasus di mana terdapat perintah loop while atau for dengan panjang n, maka perintah tersebut dieksekusi dengan waktu n + 1. Sedangkan untuk baris berisi komentar, dinyatakan sebagai baris yang tidak dieksekusi, sehingga jumlah waktu untuk baris tersebut adalah nol (Azizah, U. N., 2013).

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

BAB 2 LANDASAN TEORI. Algoritma adalah urutan atau deskripsi langkah-langkah untuk memecahkan suatu masalah.

BAB 2 LANDASAN TEORI. Algoritma adalah urutan atau deskripsi langkah-langkah untuk memecahkan suatu masalah. BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma adalah urutan atau deskripsi langkah-langkah untuk memecahkan suatu masalah. Algoritma merupakan jantung ilmu komputer atau informatika. Banyak

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah urutan logis langkah-langkah penyelesaian yang disusun secara sistematis. Meskipun algoritma sering dikaitkan dengan ilmu komputer, namun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul

Lebih terperinci

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Rahadian Dimas Prayudha - 13509009 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 18 BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma adalah urutan atau deskripsi langkah- langkah penyelesaian masalah yang tersusun secara logis, ditulis dengan notasi yang mudah dimengerti sedemikian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci

BAB III ANALISIS KOMPLEKSITAS ALGORITMA

BAB III ANALISIS KOMPLEKSITAS ALGORITMA BAB III ANALISIS KOMPLEKSITAS ALGORITMA 3.1 Kompleksitas Algoritma Suatu masalah dapat mempunyai banyak algoritma penyelesaian. Algoritma yang digunakan tidak saja harus benar, namun juga harus efisien.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Graf G didefenisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G = (V,E), yang dalam hal ini V adalah himpunan tidak kosong dari simpul-simpul

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Graf Menurut Foulds (1992) graf G adalah pasangan terurut (VV,) dimana V adalah himpunan simpul yang berhingga dan tidak kosong. Dan E adalah himpunan sisi yang merupakan pasangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Terminologi graf Tereminologi termasuk istilah yang berkaitan dengan graf. Di bawah ini akan dijelaskan beberapa definisi yang sering dipakai terminologi. 2.1.1 Graf Definisi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Graf Graf G didefinisikan sebagai pasangan himpunan (V, E), ditulis dengan notasi G = (V, E). Dalam hal ini, V merupakan himpunan tidak kosong dari simpul-simpul (vertices atau

Lebih terperinci

Representasi Graf dalam Jejaring Sosial Facebook

Representasi Graf dalam Jejaring Sosial Facebook Representasi Graf dalam Jejaring Sosial Facebook Muhammad Harits Shalahuddin Adil Haqqi Elfahmi 13511046 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II LNSN TEORI Landasan teori dalam penyusunan tugas akhir ini menggunakan beberapa teori pendukung yang akan digunakan untuk menentukan lintasan terpendek pada jarak esa di Kecamatan Rengat arat. 2.1 Graf

Lebih terperinci

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan BAB I PENDAHULUAN 1.1. Latar Belakang. Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Graph Graf adalah struktur data yang terdiri dari atas kumpulan vertex (V) dan edge (E), biasa ditulis sebagai G=(V,E), di mana vertex adalah node pada graf, dan edge adalah rusuk

Lebih terperinci

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V BAB II KAJIAN PUSTAKA A. Pengertian Graf Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan tak kosong dari simpul-simpul (vertices) pada G. Sedangkan E adalah himpunan

Lebih terperinci

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas Andreas Dwi Nugroho (13511051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. G r a f Oleh: Panca Mudjirahardjo Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. 1 Pendahuluan Jaringan jalan raya di propinsi Jawa Tengah

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 21 2 TINJUN PUSTK 2.1. lgoritma lgoritma merupakan suatu langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, tanpa memperhatikan bentuk yang akan digunakan sebagai implementasinya,

Lebih terperinci

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog: 1.

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog:    1. MODUL I PENDAHULUAN 1. Sejarah Graph Teori Graph dilaterbelakangi oleh sebuah permasalahan yang disebut dengan masalah Jembatan Koningsberg. Jembatan Koningsberg berjumlah tujuh buah yang dibangun di atas

Lebih terperinci

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER TEORI GRAF ILHAM SAIFUDIN Selasa, 13 Desember 2016 Universitas Muhammadiyah Jember Pendahuluan 1 OUTLINE 2 Definisi Graf

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI A. Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G=(V,E), yang dalam hal ini V adalah himpunan tidak-kosong dari simpul-simpul (vertices

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma merupakan urutan langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, algoritma dibuat dengan tanpa memperhatikan bentuk

Lebih terperinci

Aplikasi Pohon dan Graf dalam Kaderisasi

Aplikasi Pohon dan Graf dalam Kaderisasi Aplikasi Pohon dan Graf dalam Kaderisasi Jonathan - 13512031 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM Pudy Prima (13508047) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika

Lebih terperinci

Graf dan Pengambilan Rencana Hidup

Graf dan Pengambilan Rencana Hidup Graf dan Pengambilan Rencana Hidup M. Albadr Lutan Nasution - 13508011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung e-mail: albadr.ln@students.itb.ac.id

Lebih terperinci

Graf. Program Studi Teknik Informatika FTI-ITP

Graf. Program Studi Teknik Informatika FTI-ITP Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Semakin dengan berkembangnya teknologi fotografi di Indonesia, khususnya di Kota Medan, fotografi tidak hanya sebagai sarana atau alat untuk mengabadikan suatu kejadian

Lebih terperinci

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Arifin Luthfi Putranto (13508050) Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesha 10, Bandung E-Mail: xenoposeidon@yahoo.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graph 2.1.1 Definisi Graph Menurut Dasgupta dkk (2008), graph merupakan himpunan tak kosong titik-titik yang disebut vertex (juga disebut dengan node) dan himpunan garis-garis

Lebih terperinci

Aplikasi Graf pada Hand Gestures Recognition

Aplikasi Graf pada Hand Gestures Recognition Aplikasi Graf pada Hand Gestures Recognition Muthmainnah 13515059 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Graf 2.1.1 Definisi Graf Graf adalah pasangan himpunan (V, E), dan ditulis dengan notasi G = (V, E), V adalah himpunan tidak kosong dari verteks-verteks {v 1, v 2,, v n } yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Informasi Geografis (SIG) Sistem Informasi Geografis atau Geographic Information System (GIS) merupakan suatu sistem informasi yang berbasis komputer, dirancang untuk bekerja

Lebih terperinci

Aplikasi Graf pada Persoalan Lintasan Terpendek dengan Algoritma Dijkstra

Aplikasi Graf pada Persoalan Lintasan Terpendek dengan Algoritma Dijkstra Aplikasi Graf pada Persoalan Lintasan Terpendek dengan Algoritma Dijkstra Adriansyah Ekaputra 13503021 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung Abstraksi Makalah

Lebih terperinci

Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum

Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum Bramianha Adiwazsha - NIM: 13507106 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

PENERAPAN GRAF DAN POHON DALAM SISTEM PERTANDINGAN OLAHRAGA

PENERAPAN GRAF DAN POHON DALAM SISTEM PERTANDINGAN OLAHRAGA PENERAPAN GRAF DAN POHON DALAM SISTEM PERTANDINGAN OLAHRAGA Penerapan Graf dan Pohon dalam Sistem Pertandingan Olahraga Fahmi Dumadi 13512047 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

LOGIKA DAN ALGORITMA

LOGIKA DAN ALGORITMA LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg

Lebih terperinci

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex

Lebih terperinci

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga. GRAF PENDAHULUAN Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Simulasi Sistem didefinisikan sebagai sekumpulan entitas baik manusia ataupun mesin yang yang saling berinteraksi untuk mencapai tujuan tertentu. Dalam prakteknya,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Lintasan Terpendek Lintasan terpendek merupakan lintasan minumum yang diperlukan untuk mencapai suatu titik dari titik tertentu (Pawitri, ) disebutkan bahwa. Dalam permasalahan pencarian

Lebih terperinci

Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer

Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer Vivi Lieyanda - 13509073 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial Graf Sosial Aplikasi Graf dalam Pemetaan Sosial Muhammad Kamal Nadjieb - 13514054 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas landasan teori, penelitian terdahulu, kerangka berpikir, dan hipotesis yang mendasari penyelesaian Traveling Salesman Problem dalam menentukan lintasan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

Lebih terperinci

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN Eric Cahya Lesmana - 13508097 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan

Lebih terperinci

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Andika Mediputra NIM : 13509057 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Salman Muhammad Ibadurrahman NIM : 13506106 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANAAN TEORI 2. Pengertian Algoritma Algoritma adalah langkah-langkah penyelesaian suatu masalah secara sistematika dan logis.ikatakan algoritma, karena suatu alur pemikiran ditbuat dalam bentuk

Lebih terperinci

Pengantar Matematika Diskrit

Pengantar Matematika Diskrit Pengantar Matematika Diskrit Referensi : Rinaldi Munir, Matematika Diskrit, Informatika Bandung 2005 1 Matematika Diskrit? Bagian matematika yang mengkaji objek-objek diskrit Benda disebut diskrit jika

Lebih terperinci

Pencarian Jalur Terpendek dengan Algoritma Dijkstra

Pencarian Jalur Terpendek dengan Algoritma Dijkstra Volume 2 Nomor 2, Oktober 207 e-issn : 24-20 p-issn : 24-044X Pencarian Jalur Terpendek dengan Algoritma Dijkstra Muhammad Khoiruddin Harahap Politeknik Ganesha Medan Jl.Veteran No. 4 Manunggal choir.harahap@yahoo.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 4 BAB 2 LANDASAN TEORI 2.1 Pengertian Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas

Lebih terperinci

LATIHAN ALGORITMA-INTEGER

LATIHAN ALGORITMA-INTEGER LATIHAN ALGORITMA-INTEGER Nyatakan PBB(295,70) = 5 sebagai kombinasi lanjar 295 dan 70 Tentukan inversi dari 27(mod 7) Tentukan solusi kekongruenan lanjar dari 27.x kongruen 1(mod 7) dengan cara 1 ( cara

Lebih terperinci

Graf. Matematika Diskrit. Materi ke-5

Graf. Matematika Diskrit. Materi ke-5 Graf Materi ke-5 Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Graf adalah salah satu metode yang sering digunakan untuk mencari solusi dari permasalahan diskrit dalam dunia nyata. Dalam kehidupan sehari-hari, graf digunakan untuk

Lebih terperinci

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF Anthony Rahmat Sunaryo NIM: 3506009 Jurusan Teknik Informatika ITB, Bandung email : if6009@students.if.itb.ac.id Abstract -- Makalah ini membahas tentang analsis

Lebih terperinci

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Graph Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objekobjek tersebut. Gambar 2.1 merupakan sebuah graf yang menyatakan peta jaringan jalan raya

Lebih terperinci

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS Muhammad Farhan 13516093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

MENENTUKAN LINTASAN TERPENDEK SUATU GRAF BERBOBOT DENGAN PENDEKATAN PEMROGRAMAN DINAMIS. Oleh Novia Suhraeni 1, Asrul Sani 2, Mukhsar 3 ABSTRACT

MENENTUKAN LINTASAN TERPENDEK SUATU GRAF BERBOBOT DENGAN PENDEKATAN PEMROGRAMAN DINAMIS. Oleh Novia Suhraeni 1, Asrul Sani 2, Mukhsar 3 ABSTRACT MENENTUKAN LINTASAN TERPENDEK SUATU GRAF BERBOBOT DENGAN PENDEKATAN PEMROGRAMAN DINAMIS Oleh Novia Suhraeni 1, Asrul Sani 2, Mukhsar 3 ABSTRACT One of graph application on whole life is to establish the

Lebih terperinci

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Teori graf Definisi graf

BAB 2 LANDASAN TEORI. 2.1 Teori graf Definisi graf 2 LNDSN TEORI 2.1 Teori graf 2.1.1 Definisi graf Graf adalah kumpulan dari minimal satu atau lebih simpul (vertex) yang dihubungkan oleh sisi atau busur (edge). Dalam kehidupan sehari-hari, graf banyak

Lebih terperinci

QUEUE (ANTREAN) Operasi Antrean : FIFO (First In First Out) Elemen yang pertama masuk merupakan elemen yang pertama keluar.

QUEUE (ANTREAN) Operasi Antrean : FIFO (First In First Out) Elemen yang pertama masuk merupakan elemen yang pertama keluar. QUEUE (ANTREAN) ANTREAN (Queue) Suatu bentuk khusus dari linear list, dengan operasi penyisipan (insertion) hanya diperbolehkan pada salah satu sisi, yang disebut REAR, dan operasi penghapusan (deletion)

Lebih terperinci

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan

Lebih terperinci

Aplikasi Graf Berarah dan Pohon Berakar pada Visual Novel Fate/Stay Night

Aplikasi Graf Berarah dan Pohon Berakar pada Visual Novel Fate/Stay Night Aplikasi Graf Berarah dan Pohon Berakar pada Visual Novel Fate/Stay Night Ratnadira Widyasari 13514025 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan

Lebih terperinci

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Marvin Jerremy Budiman / 13515076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Algoritma Prim sebagai Maze Generation Algorithm

Algoritma Prim sebagai Maze Generation Algorithm Algoritma Prim sebagai Maze Generation Algorithm Muhammad Ecky Rabani/13510037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB STEVIE GIOVANNI NIM : 13506054 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jln, Ganesha 10, Bandung

Lebih terperinci

PENERAPAN ALGOITMA DIJKSTRA DALAM MENCARI LINTASAN TERPENDEK PADA JARINGAN KOMPUTER

PENERAPAN ALGOITMA DIJKSTRA DALAM MENCARI LINTASAN TERPENDEK PADA JARINGAN KOMPUTER PENERPN LGOITM IJKSTR LM MENRI LINTSN TERPENEK P JRINGN KOMPUTER Sri Mawarni Teknik Elektro Politeknik engkalis Jl. atin lam, Seilam, engkalisriau mawar@polbeng.ac.id bstrak Makalah ini membahas tentang

Lebih terperinci

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Ryan Yonata (13513074) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Michael - 13514108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Deteksi Wajah Menggunakan Program Dinamis

Deteksi Wajah Menggunakan Program Dinamis Deteksi Wajah Menggunakan Program Dinamis Dandun Satyanuraga 13515601 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 39 BAB 2 TINJAUAN PUSTAKA 2.1. Teori Graf 2.1.1 Definisi Graf Teori graf merupakan salah satu cabang matematika yang paling banyak aplikasinya dalam kehidupan sehari hari. Salah satu bentuk dari graf adalah

Lebih terperinci

A. TUJUAN PEMBELAJARAN

A. TUJUAN PEMBELAJARAN Praktikum 14 Graph (Algoritma Multipath) A. TUJUAN PEMBELAJARAN Setelah melakukan praktikum dalam bab ini, mahasiswa diharapkan mampu: 1. Memahami struktur data graph. 2. Mampu mengimplementasikan algoritma

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS xvi BAB 2 LANDASAN TEORITIS Dalam penulisan laporan tugas akhir ini, penulis akan memberikan beberapa pengertian yang berhubungan dengan judul penelitian yang penulis ajukan, karena tanpa pengertian yang

Lebih terperinci

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif CRITICAL PATH Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5 Graph G Path Bobot Alternatif 1 4 5 16 1 2 5 15 1 2 3 5 24 1 4 3 5 19 1 2 3 4 5 29 1 4 3

Lebih terperinci

Graph. Politeknik Elektronika Negeri Surabaya

Graph. Politeknik Elektronika Negeri Surabaya Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar

Lebih terperinci

Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends

Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends Reinaldo Ignatius Wijaya 13515093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

Aplikasi Graf dalam Formasi dan Strategi Kesebelasan Sepakbola

Aplikasi Graf dalam Formasi dan Strategi Kesebelasan Sepakbola Aplikasi Graf dalam Formasi dan Strategi Kesebelasan Sepakbola Hafis Alrafi Irsal - 13516034 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkembangsaan Swiss pada tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya

Lebih terperinci

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Graf dan Analisa Algoritma Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Who Am I? Stya Putra Pratama, CHFI, EDRP Pendidikan - Universitas Gunadarma S1-2007 Teknik Informatika S2-2012

Lebih terperinci

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma adalah prosedur komputasi yang didefinisikan dengan baik yang mengambil beberapa nilai yaitu seperangkat nilai sebagai input dan output yang menghasilkan

Lebih terperinci

Diktat Algoritma dan Struktur Data 2

Diktat Algoritma dan Struktur Data 2 BB X GRF Pengertian Graf Graf didefinisikan sebagai pasangan himpunana verteks atau titik (V) dan edges atau titik (E). Verteks merupakan himpunan berhingga dan tidak kosongdari simpul-simpul (vertices

Lebih terperinci

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah BAB II LANDASAN TEORI 2.1. Pendahuluan Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah berkembang sangat pesat dan digunakan untuk menyelesaikan persoalanpersoalan pada berbagai bidang

Lebih terperinci

Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus

Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus Elmo Dery Alfared NIM: 00 Program Studi Teknik Informatika ITB, Institut Teknologi Bandung email: if0 @students.itb.ac.id Abstract Makalah

Lebih terperinci