BAB 2 TINJAUAN PUSTAKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Graf Definisi Graf Graf adalah pasangan himpunan (V, E), dan ditulis dengan notasi G = (V, E), V adalah himpunan tidak kosong dari verteks-verteks {v 1, v 2,, v n } yang dalam hal ini verteks merupakan himpunan tidak kosong dari verteks-verteks (vertices atau node) dan E adalah himpunan edge {e 1, e 2,, e n } atau sisi yang menghubungkan sepasang verteks. (Munir : 2009) Sebuah graf dimungkinkan tidak mempunyai edge satu buah pun, tetapi verteksnya harus ada minimal satu. Graf yang hanya memiliki satu buah verteks tanpa sebuah edge pun dinamakan graf trivia Jenis-jenis Graf Graf dapat dikelompokkan berdasarkan ada tidaknya edge nya yang paralel atau loop, jumlah verteksnya, berdasarkan ada tidaknya arah pada edge nya, adatidaknya bobot pada edge nya, atau ada tidaknya hubungan dengan graf yang lain. Berikut ini adalah jenis graf berdasarkan ada tidaknya edge yang paralel atau loop. 1. Graf Sederhana Graf sederhana adalah graf yang tidak mempunyai edge ganda dan atau loop, loop adalah edge yang menghubungkan sebuah verteks dengan dirinya sendiri). Berikut adalah contoh graf sederhana :

2 Gambar 2.1 Contoh Graf sederhana 2. Graf Tak-Sederhana Graf tak-sederhana adalah graf yang memiliki edges ganda dan atau loop. Graf tak sederhana dapat dibagi dua yaitu: Graf Ganda (multigraph), adalah graf yang mengandung edge ganda. Sisi ganda yang menghubungkan sepasang verteks bisa lebih dari dua buah. Graf semu (pseudograph), adalah graf yang mempunyi loop, termasuk juga graf yang mempunyai loop dan edge ganda karena itu graf semu lebih umum daripada graf ganda, karena graf semu edge-nya dapat terhubung dengan dirinya sendiri Gambar 2.2 Contoh Graf Ganda Gambar 2.3 Contoh Graf Semu

3 Selain berdasarkan ada tidaknya edge yang paralel atau loop, graf dapat juga dikelompokkan berdasarkan orientasi arah atau panah. 1. Graf tak-berarah (undirected graph) Graf tak berarah adalah graf yang edge nya tidak mempunyai orientasi arah atau panah. Pada graf ini, urutan pasangan verteks yang dihubungkan oleh edge tidak diperhatikan. Jadi (v j, v k ) = (v k, v j ) adalah edge yang sama. Gambar 2.4 Graf tak berarah 2. Graf Berarah (directed graph atau digraph) Graf berarah adalah graf yang setiap edge nya memiliki orientasi arah atau panah. Pada graf berarah (v j, v k ) (v k, v j ). Gambar 2.5 Contoh Graf berarah Berdasarkan jumlah verteks pada suatu graf, maka secara umum graf dapat digolongkan menjadi dua jenis: 1. Graf berhingga ( limited graph ). Graf berhingga adalah graf yang jumlah verteksnya, n, berhingga. Contoh 2.4 adalah graf berhingga 2. Graf tak-berhingga ( unlimited graph ). Graf tak-berhingga adalah graf yang jumlah verteksnya, n tidak berhingga.

4 Gambar 2.6 Graf tag berhingga Terminologi Dasar Dibawah ini adalah beberapa terminologi (istilah) dasar yang berkaitan dengan graf. 1. Bertetangga (Adjacent) Dua buah verteks pada graf tak berarah G dikatakan bertetangga bila keduanya terhubung langsung dengan sebuah edge. Dengan kata lain, v i bertetangga dengan v j jika (v i, v j ) adalah sebuah edge pada graf G. Gambar 2.7 Graf G 1 Pada gambar 2.5. verteks v 1 betetangga dengan verteks v 2, v 3 dan v 4. Verteks v 2 bertetangga dengan v 1 dan v 4, tetapi tidak bertetangga denga v Bersisian (incident) Untuk sembarang edge e = ( v j, v k ), edge e dikatakan bersisian dengan verteks v j dan verteks v k. Pada gambar 2.5 edge e 1 bersisian dengan verteks v 1 dan verteks v 2 edge e 5 bersisian dengan verteks v 3 dan verteks v 4, tetapi tidak bersisian dengan v 2.

5 3. Derajat (Degree) Derajat suatu verteks pada graf tak berarah adalah jumlah edge yang bersisian dengan verteks tersebut. Pada graf berarah, derajat verteks v dinyatakan dengan d in (v) dan d out (v), yang dalam hal ini: d in (v) = derajat masuk (in-degree) = jumlah verteks yang masuk ke verteks v d out (v) = derajat keluar (out-degree) = jumlah verteks yang keluar dari verteks v Dan d(v) = d in (v) + d out (v). Dalam hal ini d(v) menyatakan derajat verteks. 4. Lintasan (path) Lintasan yang panjangnya n dari edge awal v 0 ke verteks tujuan v n di dalam graf G ialah barisan berselang-seling verteks-verteks dan edge -edge yang berbentuk v 0, e 1, v 1, e 2, v 2,, v n-1, e n, v n sedemikian sehingga e 1 = ( v 0, v 1 ), e 2 = ( v 1, v 2 ),, e n = ( v n-1, v n ) adalah edge -edge dari graf G. Sebuah lintasan dikatakan lintasan sederhana (simple path) jika semua verteksnya berbeda atau setiap edge yang dilalui hanya satu kali. Lintasan yang berawal dan berakhir pada verteks yang sama disebut lintasan tertutup (closed path) sedangkan lintasan yang memiliki verteks awal dan verteks akhir yang berbeda disebut lintasan terbuka (open path). Pada gambar 2.5 lintasan v 1, v 2, v 4, v 3 merupakan lintasan sederhana yang juga lintasan terbuka. Lintasan v 1, v 2, v 4, v 3, v 1 merupakan lintasan sederhana yang juga lntasan tertutup. Sedangkan lintasan v 2, v 4, v 3, v 1, v 4 bukan merupakan lintasan sederhana, tetapi lintasan terbuka. 5. Graf Berbobot (Weighted Graph) Graf berbobot adalah graf yang setiap sisinya diberikan sebuah harga (bobot). Bobot pada setiap sisi dapat menyatakan jarak antara dua buah kota, biaya perjalanan, waktu tempuh, ongkos produksi, dan sebagainya.

6 Dalam tugas akhir ini, bobot pada pada setiap graf menyatakan jarak antara dua buah kota dalam kilometer (km). Gambar 2.8 Contoh Graf Berbobot 6. Sirkuit (Circuit) atau Cycle Dalam satu graf terdapat suatu sirkuit apabila terdapat lintasan (path) yang mempunyai verteks awal dan verteks akhir sama. Gambar 2.9 Sirkuit v 1 -v 2 -v 3 -v 1 Sebuah sirkuit dikatakan sirkuit sederhana (simple circuit) jika sirkuit tersebut tidak memuat/melewati edge yang sama dua kali (setiap edge yang dilalui hanya satu kali). Sebuah sirkuit dikatakan sirkuit dasar (elementary circuit) jika sirkuit tersebut tidak memuat/melewati verteks yang sama dua kali (setiap verteks yang dilalui hanya satu kali, verteks awal dan akhir boleh sama) Beberapa Graf Khusus Terdapat beberapa jenis graf sederhana khusus. Berikut ini adalah beberapa graf khusus yang sering ditemui: 1. Graf Lengkap ( Complete Graph ) Graf lengkap merupakan graf sederhana yang setiap verteksnya mempunyai edge ke semua verteks lainnya. Graf lengkap dengan n buah verteks

7 dilambangkan dengan K n. Setiap verteks pada K n berderajat n-1. Jumlah edge pada graf lengkap yang terdiri dari n buah verteks adalah n (n - 1)/2. Gambar 2.10 Contoh Graf Lengkap 2. Graf Lingkaran Graf Lingkaran adalah graf sederhana yang setiap verteksnya berderajat dua. Graf lingkaran dengan n verteks dilambangkan dengan C n. Gambar 2.11 Contoh Graf Lingkaran 3. Graf Teratur ( Regular Graphs ) Graf teratur adalah graf yang setiap verteksnya mempunyai derajat yang sama. Apabila derajat setiap simpunya adalah r, maka graf tersebut disebut juga graf teratur derajat r. Graf lengkap K n dan graf lingkaran juga merupakan graf teratur. Graf K n berderajat (n-1) sedangkan graf lingkaran berderajat 2. Jumlah sisi pada graf teratur berderajat r dengan n buah verteks adalah nr/2. (i)graf berderajat 4 (ii) Graf berderajat 2 Gambar 2.12 Graf teratur derajat 4 dan 2

8 4. Graf Bipartit ( Bipartite Graph ) Suatu graf sederhana G dikatakan Bipartit jika himpunan verteks-verteksnya V dapat dipecah menjadi dua himpunan bagian yang saling asing, X 1 dan X 2 sedemikian hinga setiap edge dalam grap G terhubung dengan sebuah verteks dalam V1 dan sebuah verteks lainnya dalam V2. Dengan demikian tidak ada edge dalam G yang terhubung dengan 2 verteks dalam V1 atau dua verteks dalam V2. Gambar 2.13 Contoh Graf Bipartit 5. Graf Isomorfik ( Isomorphic Graph ) Dua bua graf, G 1 dan G 2 dikatakan isomorfik jika terdapat korespondensi satusatu antara verteks-verteks keduanya dan antara sisi-sisi keduanya sedemikian sehingga jika sisi e bersisian dengan verteks u dan v di G 1, maka sisi e yang berkorespon di G 2 juga harus bersisian dengan verteks u dan v di G 2. (i) Graf G 1 (ii) Graf G 2 Gambar 2.14 Contoh Graf yang Isomorfik Syarat-syarat dua buah graf dikatakan graf isomorfik : a. Mempunyai jumlah verteks yang sama. b. Mempunyai jumlah edge yang sama c. Mempunyai jumlah verteks yang sama berderajat tertentu.

9 6. Graf Planar Graf planar adalah suatu graf yang digambar dalam bidang datar denga edge - edge nya tidak ada yang saling memotong. (a) (b) Gambar 2.15 Contoh Graf Planar K 4 Pada contoh graf G (K 4 ) diatas, K 4 dapat digambar kembali tanpa ada edge - edge nya yang berpotongan, maka graf K 4 adalah suatu Graf Planar Representasi Graf Pada penjelasan sebelumnya, graf ditampilkan dengan cara menggambarkannya. Namun apabila graf hendak diproses dengan program komputer, maka graf harus direpresentasikan di dalam memori. Ada beberapa metode yang dapat digunakan dalam merepresentasikan graf, berikut ini adalah metode yang dapat dgunakan dalam merepresentasikan graf : 1. Matriks Ketetanggaan (Adjacency Matrix) Misalkan G = (V, E) merupakan suatu graf dengan n verteks, n > 1. Maka, matriks ketetanggaan A dari G adalah matriks n x n dimana A = [a ij ], untuk hal ini berlaku [a ij ] menjadi 1 bila verteks i dan j bertetangga dan [a ij ] menjadi 0 bila verteks i dan j tidak bertetangga. Jumlah elemen matriks bertetanggaan untuk graf dengan n verteks adalah n 2. Jika tiap elemen membutuhkan ruang memori sebesar p, maka ruang memori yang diperlukan seluruhnya adalah pn 2.

10 Keuntungan representasi dengan matriks ketetanggaan adalah kita dapat mengakses elemen matriksnya langsung dari indeks. Selain itu, kita juga dapat menentukan dengan langsung apakah verteks i dan verteks j bertetangga. Pada graf berbobot, a ij menyatakan bobot tiap sisi yang menghubungkan verteks i dengan verteks j. Bila tidak ada sisi dari verteks i ke verteks j atau dari verteks j ke verteks i, maka, a ij diberi nilai tak berhingga ( ). Gambar 2.16 Graf G Bentuk matriks ketetanggaan dari graf pada gambar 2.13 adalah v 1 v 2 v 3 v 4 v 5 v v v v v Matriks Insiden (incidency matriks) Matriks insiden menyatakan kebersisian verteks dengan edge. Misalkan G = (V, E) adalah graf dengan n verteks dan m edge, maka matriks kebersisian A dari G adalah matriks berukuran m x n dimana A = [a ij ], [a ij ] menjadi 1 bila verteks i dan edge j bersisian dan [aij] menjadi 0 bila verteks i dan edge j tidak bersisian.

11 Gambar 2.17 Graf A Berikut adalah matriks insiden untuk graf pada gambar e 1 e 2 e 3 e 4 e 5 e 6 e 7 v v v v v Pada matriks diatas, sebuah kolom e 7 dapat diwakilkan sebagai loop. Pada sebuah graf tanpa loop, masing-masing kolom mempunyai dua entri 1, dan jumlah dari sebuah baris menyatakan derajat dari verteks yang didefinisikan dengan baris tersebut. 2.2 Lintasan Terpendek (Shortest Path) Dalam Jurnal Pawitri (2007) disebutkan bahwa Lintasan Terpendek (Shortest Path) merupakan lintasan minimum yang diperlukan untuk mencapai suatu titik dari titik tertentu. Dalam pencarian lintasan terpendek masalah yang dihadapi adalah mancari lintasan mana yang akan dilalui sehingga didapat lintasan yang paling pendek dari satu verteks ke verteks yang lain. Ada beberapa macam persoalan lintasan terpendek, antara lain : 1. Lintasan terpendek antara dua buah verteks. 2. Lintasan terpendek antara semua pasangan verteks. 3. Lintasan terpendek dari verteks tertentu ke semua verteks yang lain

12 4. Lintasan terpendek antara dua buah verteks yang melalui beberapa verteks tertentu. Pada tugas akhir ini persoalan lintasan terpendek yang menjadi masalah adalah lintasan terpendek antara dua buah verteks dimana bobot pada setiap edge graf digunakan untuk menyatakan jarak antar kota dalam satuan Kilometer (Km). 2.3 Metode Pencarian Ada banyak metode yang dapat digunakan untuk pencarian jalur terpendek pada suatu graf. Metode pencarian tersebut dapat dikelompokkan ke dalam dua jenis, yaitu pencarian buta/tanpa informasi (blind atau un-informed search) dan pencarian heuristik/dengan informasi (heuristic atau informed search) Pencarian Buta (Blind Search/Un-informed Search) Dikatakan pencarian buta, karena pada pencarian ini tidak ada informasi awal. Disini hanya akan dibahas dua metode pencarian, yaitu Breadth First Search dan Depth First Search Breadth First Search (BFS) Pencarian dilakukan pada semua verteks pada level n secara berurutan dari kiri ke kanan. Jika pada satu level belum ditemukan solusi, maka pencarian dilanjutkan pada level berikutnya (n+1). Demikian seterusnya sampai ditemukan solusi. Dengan strategi ini, maka dapat dijamin bahwa solusi yang ditemukan adalah yang paling baik (Optimal). Tetapi BFS harus menyimpan semua node yang pernah dibangkitkan,h al ini harus dilakukan untuk penelusuran balik jika solusi sudah ditemukan, sehingga membutuhkan memori yang cukup banyak.

13 Gambar 2.18 Tree untuk Breadth First Search Depth First Search (DFS) Pencarian dilakukan pada satu verteks dalam setiap level dari yang paling kiri. Jika pada level yang paling dalam, solusi belum ditemukan, maka pencarian dilanjutkan pada verteks sebelah kanan. Verteks yang kiri dapat dihapus dari memori. Jika pada level yang paling dalam tidak ditemukan solusi, maka pencarian dilanjutkan pada level sebelumnya. Demikian seterusnya sampai ditemukan solusi. Jika solusi ditemukan maka tidak diperlukan proses backtracking (penelusuran balik untuk mendapatkan jalur yang dinginkan). Kelebihan dari algoritma ini adalah pemakaian memori yang lebih sedikit, sedangkan kelemahannya adalah jika pohon yang dibangkitkan memiliki level yang sangat dalam (tak terhingga), maka tidak ada jaminan menemukan solusi. Artinya, DFS tidak complete (tidak ada jaminan penemuan solusi).

14 Gambar 2.19 Tree untuk Depth First Search Pencarian Heuristik Pada metode pencarian buta, tidak dimiliki pengetahuan khusus tentang permasalah yang dihadapi sehingga metode tersebut tidak efisien untuk banyak kasus karena bias saja metode tersebut tidak complete dan atau tidak optimal dalam mendapatkan solusi, optimal disini adalah tidak menjamin menemukan solusi yang terbaik jika terdapat beberapa solusi yang berbeda. Menggunakan informasi khusus yang spesifik untuk suatu masalah tertentu akan sangat memperbaiki kecepatan pencarian solusi, karena teknik ini membantu memutuskan kemungkinan solusi mana yang pertama kali perlu di evaluasi. Pencarian heuristik digunakan untuk mengeliminasi beberapa kemungkinan solusi, tanpa harus mengeksplorasinya secara penuh. Berikut akan dijelaskan beberapa algoritma pencarian dengan informasi (informed search algorithm) yang menggunakan fungsi heuristik dalam mencari solusi, yaitu Generate and test, hill climbing, dan Best First Search (greedy best first search dan A*).

15 Generate and Test (bangkitkan dan Uji) Metode Generate-and-Test adalah metode yang paling sederhana dalam pencarian heuristic. Jika pembangkitan possible solution dikerjakan secara sistematis, maka algoritma ini akan mencari solusinya, jika ada. Tetapi jika ruang masalahnya sangat luas, mungkin memerlukan waktu yang sangat lama. Algoritma Generate-and-Test menggunakan prosedur DFS karena solusi harus dibangkitkan secara lengkap sebelum dilakukan test. Algoritma ini berbentuk sistematis, pencarian sederhana yang mendalam dari ruang permasalahan. Generate & test juga dapat dilakukan dengan pembangkitan solusi secara acak, tetapi tidak ada jaminan solusinya akan ditemukan Hill Climbing (Pendakian Bukit) Hill Climbing berbeda Generate-and-Test, yaitu pada feedback dari prosedur test untuk membantu pembangkit menentukan yang langsung dipindahkan dalam ruang pencarian. Dalam prosedur Generate & test, respon fungsi pengujian hanya ya atau tidak. Tapi jika pengujian ditambahkan dengan atauran fungsi-fungsi yang menyediakan estimasi dari bagaimana mendekati state yang diberikan ke state tujuan, prosedur pembangkit dapat mengeksplorasi ini sebagaimana ditunjukkan di bawah. Hill Climbing sering digunakan jika terdapat fungsi heuristik yang baik untuk mengevaluasi state. Sebagai contoh, anda berada di sebuah kota yang tidak dikenal, tanpa peta dan anda ingin menuju ke pusat kota. Cara sederhana adalah gedung yang tinggi. Fungsi heuristik-nya adalah jarak antara lokasi sekarang dengan gedung yang tinggi dan state yang diperlukan adalah jarak yang terpendek Best First Search (BFS) Best first search merupakan kombinasi dari beberapa kelebihan Depth first search dan breadth first search. Pada pencarian dengan hill climbing tidak diperbolehkan untuk kembali ke verteks pada level yang lebih rendah meskipun verteks pada level yang lebih rendah tersebut memiliki nilai heuristik yang lebih baik, sedangkan pada best first search, pencarian diperbolehkan untuk mengunjungi verteks yang berada pada level yang lebih rendah.

16 Best First Search membangkitkan verteks berikutnya dari sebuah verteks (yang sejauh ini terbaik diantara semua leafnodes yang pernah dibangkitkan. Untuk menentuan verteks terbaik dapat dilakukan dengan menggunakan informasi berupa biaya perkiraan dari suatu verteks menuju ke goal atau gabungan antara biaya sebenarnya dan biaya perkiraan tersebut. Biaya perkiraan tersebut dapat diperoleh dengan menggunakan suatu fungsi yang disebut fungsi heuristik. Terdapat dua jenis algoritma best first search, yaitu: 1) algoritma greedy best first search,yang hanya memperhitungkan biaya perkiraan saja; dan 2) algoritma A*, yang menghitung gabungan biaya antara biaya sebenarnya (actual cost) dan biaya perkiraan Greedy Best First Seach Merupakan Best First Search dengan hanya mempertimbangkan harga perkiraan (estimated cost) saja, yaitu f(n) = h(n). Sedangkan harga sesungguhnya tidak digunakan. Sehingga solusi yang dihasilkan tidak optimal, karena hanya memperhitungkan biaya perkiraan yang belum tentu kebenarannya Algoritma A* Algoritma A* (A Star) adalah algoritma pencarian yang merupakan pengembangan dari algoritma Best First Search (BFS). Seperti halnya pada BFS, untuk menemukan solusi, A* juga dituntun oleh fungsi heuristik, yang menentukan urutan titik mana yang akan dikunjungi terlebih dahulu. Heuristik merupakan penilai yang memberi harga pada tiap verteks yang memandu A* mendapatkan solusi yang diinginkan. Algoritma ini pertama kali diperkenalkan pada 1968 oleh Peter Hart, Nils Nilsson, dan Bertram Raphael Dalam tulisan mereka, algoritma ini dinamakan algoritma A. Dengan penggunaan fungsi heuristik yang tepat pada algoritma ini yang dapat memberikan hasil yang optimal, maka algoritma inipun disebut A*.

17 Dengan fungsi heuristik Algoritma ini membangkitkan verteks yang paling mendekati solusi. Verteks ini kemudian disimpan suksesornya ke dalam list sesuai dengan urutan yang paling mendekati solusi terbaik. Kemudian, verteks pertama pada list diambil, dibangkitkan suksesornya dan kemudian suksesor ini disimpan ke dalam list sesuai dengan urutan yang terbaik untuk solusi. List verteks ini disebut dengan verteks terbuka (open node). Verteks pada list bisa berasal dari kedalaman berapapun dari graf. Algoritma ini akan mengunjungi secara mendalam (mirip Depth First Search (DFS)) selama verteks tersebut merupakan verteks yang terbaik. Jika verteks yang sedang dikunjungi ternyata tidak mengarah kepada solusi yang diinginkan, maka akan melakukan runut balik ke arah verteks awal untuk mencari verteks lainnya yang lebih menjanjikan dari pada verteks yang terakhir dikunjungi. Bila tidak ditemukan juga, maka akan terus mengulang mencari ke arah verteks awal sampai ditemukan verteks yang lebih baik untuk dibangkitkan suksesornya. Strategi ini berkebalikan dengan algoritma DFS yang mencari sampai kedalaman yang terdalam sampai tidak ada lagi suksesor yang bisa dibangkitkan sebelum melakukan runut balik, dan BFS yang tidak akan melakukan pencarian secara mendalam sebelum pencarian secara melebar selesai. A* baru berhenti ketika mendapatkan solusi yang dianggap solusi terbaik. 2.4 Fungsi Heuristik Dalam metode pencarian heuristik, digunakan suatu fungsi heuristik yang digunakan untuk mengevaluasi keadaan-keadaan masalah individual dan menentukan seberapa jauh hal tersebut dapat digunakan untuk mendapatkan solusi yang diinginkan. Suatu fungsi dapat diterima sebagai fungsi heuristik jika biaya perkiraan yang dihasilkan tidak melebihi dari biaya sebenarnya. Suatu fungsi heuristik dapat dikatakan sebagai fungsi heuristik yang baik, apabila dapat memberikan biaya perkiraan yang mendekati biaya sebenarnya. Semakin mendekati biaya sebenarnya, fungsi heuristik tersebut semakin baik. Dalam masalah pencarian rute terpendek dengan graf planar, fungsi heuristik yang dapat digunakan adalah Jarak Euclidian. Fungsi heuristik ini akan menghitung

18 jarak berdasarkan panjang garis yang dapat ditarik dari dua buah titik, yang bisa dihitung menggunakan rumus : Rumus diatas adalah rumus untuk mencari garis lurus antara dua verteks, yaitu verteks a dan verteks b. 2.5 MATLAB (Matrix Laboratory) MATLAB merupakan sebuah bahasa pemrograman tingkat tinggi yang ditujukan untuk komputasi teknis. MATLAB mengintegrasikan kemampuan komputasi, visualisasi dan pemrograman dalam sebuah lingkungan yang tunggal dan mudah digunakan. Matlab membertikan sistem interaktif yang menggunakan konsep array/matrik sebagai standar variabel elemennya tanpa membutuhkan pendeklarasian array seperti pada bahasa lainnya. Dengan MATLAB kita dapat menemukan solusi dari berbagai masalah numerik secara cepat, misalnya sistem 2 persamaan dengan 2 variabel : 2x-3y=24 x+5y=15 Hingga perhitungan yang kompleks, seperti mencari akar-akar polinomial. Interpolasi dari sejumlah data, perhitungan dengan matriks, pengolahan sinyal, dan metoda numerik.

19 Gambar 2.20 Tampilan awal Matlab Gambar 2.21 Tampilan GUI Matlab

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga. GRAF PENDAHULUAN Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Sistem Informasi Geografis (SIG) Sistem Informasi Geografis (SIG) merupakan suatu sistem berbasis komputer yang digunakan untuk mengumpulkan, menyimpan, menggabungkan, mengatur,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul

Lebih terperinci

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma merupakan urutan langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, algoritma dibuat dengan tanpa memperhatikan bentuk

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Rahadian Dimas Prayudha - 13509009 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex

Lebih terperinci

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. G r a f Oleh: Panca Mudjirahardjo Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. 1 Pendahuluan Jaringan jalan raya di propinsi Jawa Tengah

Lebih terperinci

METODE PENCARIAN DAN PELACAKAN

METODE PENCARIAN DAN PELACAKAN METODE PENCARIAN DAN PELACAKAN SISTEM INTELEGENSIA Pertemuan 4 Diema Hernyka S, M.Kom Materi Bahasan Metode Pencarian & Pelacakan 1. Pencarian buta (blind search) a. Pencarian melebar pertama (Breadth

Lebih terperinci

Graf. Matematika Diskrit. Materi ke-5

Graf. Matematika Diskrit. Materi ke-5 Graf Materi ke-5 Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Terminologi graf Tereminologi termasuk istilah yang berkaitan dengan graf. Di bawah ini akan dijelaskan beberapa definisi yang sering dipakai terminologi. 2.1.1 Graf Definisi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

Graf. Program Studi Teknik Informatika FTI-ITP

Graf. Program Studi Teknik Informatika FTI-ITP Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 21 2 TINJUN PUSTK 2.1. lgoritma lgoritma merupakan suatu langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, tanpa memperhatikan bentuk yang akan digunakan sebagai implementasinya,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Graph Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objekobjek tersebut. Gambar 2.1 merupakan sebuah graf yang menyatakan peta jaringan jalan raya

Lebih terperinci

LATIHAN ALGORITMA-INTEGER

LATIHAN ALGORITMA-INTEGER LATIHAN ALGORITMA-INTEGER Nyatakan PBB(295,70) = 5 sebagai kombinasi lanjar 295 dan 70 Tentukan inversi dari 27(mod 7) Tentukan solusi kekongruenan lanjar dari 27.x kongruen 1(mod 7) dengan cara 1 ( cara

Lebih terperinci

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Marvin Jerremy Budiman / 13515076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Graf G didefenisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G = (V,E), yang dalam hal ini V adalah himpunan tidak kosong dari simpul-simpul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

LOGIKA DAN ALGORITMA

LOGIKA DAN ALGORITMA LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg

Lebih terperinci

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif CRITICAL PATH Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5 Graph G Path Bobot Alternatif 1 4 5 16 1 2 5 15 1 2 3 5 24 1 4 3 5 19 1 2 3 4 5 29 1 4 3

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan penelitian sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Menurut (Suarga, 2012 : 1) algoritma: 1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun

Lebih terperinci

Graf. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

Graf. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Graf Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan sejumlah

Lebih terperinci

Sistem Kecerdasan Buatan. Masalah, Ruang Masalah dan Pencarian Solusi. Masalah. Masalah Sebagai Ruang Keadaan 10/7/2015

Sistem Kecerdasan Buatan. Masalah, Ruang Masalah dan Pencarian Solusi. Masalah. Masalah Sebagai Ruang Keadaan 10/7/2015 Sistem Kecerdasan Buatan Masalah, Ruang Masalah dan Pencarian Solusi Bahan Bacaan : Sri Kusumadewi, Artificial Intelligence. Russel, Artificial Intelligence Modern Approach 2 bagian utama kecerdasan buatan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

METODE PENCARIAN BFS dan DFS

METODE PENCARIAN BFS dan DFS METODE PENCARIAN BFS dan DFS Metode Pencarian Terdapat banyak metode yang telah diusulkan. Semua metode yang ada dapat dibedakan ke dalam 2 jenis : Pencarian buta / tanpa informasi (blind / un-informed

Lebih terperinci

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan

Lebih terperinci

KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM

KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH Generate And Test Hill Climbing Best First Search PENCARIAN HEURISTIK Kelemahan blind search : 1.

Lebih terperinci

Pertemuan-07 INFORMATIKA FASILKOM UNIVERSITAS IGM

Pertemuan-07 INFORMATIKA FASILKOM UNIVERSITAS IGM 07/04/2016 3. HEURISTIC METHOD Algoritma yang menggunakan Metode Best-First Search, yaitu: 1 Literatur Review KECERDASAN BUATAN Pertemuan-07 INFORMATIKA FASILKOM UNIVERSITAS IGM a. Greedy Best-First Greedy

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Informasi Geografis (SIG) Sistem Informasi Geografis atau Geographic Information System (GIS) merupakan suatu sistem informasi yang berbasis komputer, dirancang untuk bekerja

Lebih terperinci

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER TEORI GRAF ILHAM SAIFUDIN Selasa, 13 Desember 2016 Universitas Muhammadiyah Jember Pendahuluan 1 OUTLINE 2 Definisi Graf

Lebih terperinci

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang menghubungkan

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS xvi BAB 2 LANDASAN TEORITIS Dalam penulisan laporan tugas akhir ini, penulis akan memberikan beberapa pengertian yang berhubungan dengan judul penelitian yang penulis ajukan, karena tanpa pengertian yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G=(V,E), yang dalam hal ini V adalah himpunan tidak-kosong dari simpul-simpul (vertices

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II LNSN TEORI Landasan teori dalam penyusunan tugas akhir ini menggunakan beberapa teori pendukung yang akan digunakan untuk menentukan lintasan terpendek pada jarak esa di Kecamatan Rengat arat. 2.1 Graf

Lebih terperinci

BAB III METODE PELACAKAN/PENCARIAN

BAB III METODE PELACAKAN/PENCARIAN BAB III METODE PELACAKAN/PENCARIAN Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses mencari solusi dari suatu permasalahan melalui sekumpulan,

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Teori graf Definisi graf

BAB 2 LANDASAN TEORI. 2.1 Teori graf Definisi graf 2 LNDSN TEORI 2.1 Teori graf 2.1.1 Definisi graf Graf adalah kumpulan dari minimal satu atau lebih simpul (vertex) yang dihubungkan oleh sisi atau busur (edge). Dalam kehidupan sehari-hari, graf banyak

Lebih terperinci

Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends

Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends Reinaldo Ignatius Wijaya 13515093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

Denny Setyo R. Masden18.wordpress.com

Denny Setyo R. Masden18.wordpress.com Denny Setyo R. masden18@gmail.com Masden18.wordpress.com Graph adalah kumpulan dari simpul dan busur yang secara matematis dinyatakan sebagai : Dimana G = (V, E) G = Graph V = Simpul atau Vertex, atau

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graph 2.1.1 Definisi Graph Menurut Dasgupta dkk (2008), graph merupakan himpunan tak kosong titik-titik yang disebut vertex (juga disebut dengan node) dan himpunan garis-garis

Lebih terperinci

Representasi Graph Isomorfisme. sub-bab 8.3

Representasi Graph Isomorfisme. sub-bab 8.3 Representasi Graph Isomorfisme sub-bab 8.3 Representasi graph:. Adjacency list. Adjacency matrix 3. Incidence matrix Contoh: undirected graph Adjacency list : tiap vertex v :, 3, di-link dengan 3:,, 5

Lebih terperinci

Graph. Politeknik Elektronika Negeri Surabaya

Graph. Politeknik Elektronika Negeri Surabaya Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan

Lebih terperinci

BAB II LANDASAN TEORI. definisi, teorema, serta istilah yang diperlukan dalam penelitian ini. Pada bab ini

BAB II LANDASAN TEORI. definisi, teorema, serta istilah yang diperlukan dalam penelitian ini. Pada bab ini 4 BAB II LANDASAN TEORI Setiap permasalahan yang akan dicari cara penyelesaiannya terlebih dahulu dibuat rumusan masalah, demikian pula dengan matematika. Untuk mengetahui lebih lanjut tentang pembahasan

Lebih terperinci

SEARCHING. Blind Search & Heuristic Search

SEARCHING. Blind Search & Heuristic Search SEARCHING Blind Search & Heuristic Search PENDAHULUAN Banyak cara yang digunakan untuk membangun sistem yang dapat menyelesaikan masalah-masalah di AI. Teknik penyelesaian masalah yang dapat dipakai untuk

Lebih terperinci

BAB I PENDAHULUAN. Masalah lintasan terpendek berkaitan dengan pencarian lintasan pada graf

BAB I PENDAHULUAN. Masalah lintasan terpendek berkaitan dengan pencarian lintasan pada graf BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Masalah lintasan terpendek berkaitan dengan pencarian lintasan pada graf berbobot yang menghubungkan dua buah simpul sedemikian hingga jumlah bobot sisi-sisi

Lebih terperinci

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Arifin Luthfi Putranto (13508050) Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesha 10, Bandung E-Mail: xenoposeidon@yahoo.com

Lebih terperinci

Penerapan Algoritma Branch and Bound pada Penentuan Staffing Organisasi dan Kepanitiaan

Penerapan Algoritma Branch and Bound pada Penentuan Staffing Organisasi dan Kepanitiaan Penerapan Algoritma Branch and Bound pada Penentuan Staffing Organisasi dan Kepanitiaan Mikhael Artur Darmakesuma - 13515099 Program Studi Teknik Informaitka Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas

Lebih terperinci

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog: 1.

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog:    1. MODUL I PENDAHULUAN 1. Sejarah Graph Teori Graph dilaterbelakangi oleh sebuah permasalahan yang disebut dengan masalah Jembatan Koningsberg. Jembatan Koningsberg berjumlah tujuh buah yang dibangun di atas

Lebih terperinci

MENENTUKAN LINTASAN TERPENDEK SUATU GRAF BERBOBOT DENGAN PENDEKATAN PEMROGRAMAN DINAMIS. Oleh Novia Suhraeni 1, Asrul Sani 2, Mukhsar 3 ABSTRACT

MENENTUKAN LINTASAN TERPENDEK SUATU GRAF BERBOBOT DENGAN PENDEKATAN PEMROGRAMAN DINAMIS. Oleh Novia Suhraeni 1, Asrul Sani 2, Mukhsar 3 ABSTRACT MENENTUKAN LINTASAN TERPENDEK SUATU GRAF BERBOBOT DENGAN PENDEKATAN PEMROGRAMAN DINAMIS Oleh Novia Suhraeni 1, Asrul Sani 2, Mukhsar 3 ABSTRACT One of graph application on whole life is to establish the

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Simulasi Sistem didefinisikan sebagai sekumpulan entitas baik manusia ataupun mesin yang yang saling berinteraksi untuk mencapai tujuan tertentu. Dalam prakteknya,

Lebih terperinci

Kecerdasan Buatan. Penyelesaian Masalah dengan Pencarian... Pertemuan 02. Husni

Kecerdasan Buatan. Penyelesaian Masalah dengan Pencarian... Pertemuan 02. Husni Kecerdasan Buatan Pertemuan 02 Penyelesaian Masalah dengan Pencarian... Husni Lunix96@gmail.com http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM, 2013 Outline Konsep Pencarian Pencarian

Lebih terperinci

BAB III ALGORITMA BRANCH AND BOUND. Algoritma Branch and Bound merupakan metode pencarian di dalam ruang

BAB III ALGORITMA BRANCH AND BOUND. Algoritma Branch and Bound merupakan metode pencarian di dalam ruang BAB III ALGORITMA BRANCH AND BOUND Algoritma Branch and Bound merupakan metode pencarian di dalam ruang solusi secara sistematis. Ruang solusi diorganisasikan ke dalam pohon ruang status. Pohon ruang status

Lebih terperinci

ALGORITMA PENCARIAN (1)

ALGORITMA PENCARIAN (1) ALGORITMA PENCARIAN (1) Permasalahan, Ruang Keadaan, Pencarian Farah Zakiyah Rahmanti Diperbarui 2016 Overview Deskripsi Permasalahan dalam Kecerdasan Buatan Definisi Permasalahan Pencarian Breadth First

Lebih terperinci

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF Anthony Rahmat Sunaryo NIM: 3506009 Jurusan Teknik Informatika ITB, Bandung email : if6009@students.if.itb.ac.id Abstract -- Makalah ini membahas tentang analsis

Lebih terperinci

HEURISTIC SEARCH UTHIE

HEURISTIC SEARCH UTHIE HEURISTIC SEARCH Pendahuluan Pencarian buta biasanya tidak efisien karena waktu akses memori yang dibutuhkan cukup besar. Untuk mengatasi hal ini maka perlu ditambahkan suatu informasi pada domain yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Lintasan Terpendek Lintasan terpendek merupakan lintasan minumum yang diperlukan untuk mencapai suatu titik dari titik tertentu (Pawitri, ) disebutkan bahwa. Dalam permasalahan pencarian

Lebih terperinci

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si. HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA

Lebih terperinci

memberikan output berupa solusi kumpulan pengetahuan yang ada.

memberikan output berupa solusi kumpulan pengetahuan yang ada. MASALAH DAN METODE PEMECAHAN MASALAH (Minggu 2) Pendahuluan Sistem yang menggunakan kecerdasan buatan akan memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada.

Lebih terperinci

Kecerdasan Buatan Penyelesaian Masalah dengan Pencarian

Kecerdasan Buatan Penyelesaian Masalah dengan Pencarian Kecerdasan Buatan Pertemuan 02 Penyelesaian Masalah dengan Pencarian Kelas 10-S1TI-03, 04, 05 Husni Lunix96@gmail.com http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM, 2012 Outline Pendahuluan

Lebih terperinci

Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data

Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data Winson Waisakurnia (13512071) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V BAB II KAJIAN PUSTAKA A. Pengertian Graf Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan tak kosong dari simpul-simpul (vertices) pada G. Sedangkan E adalah himpunan

Lebih terperinci

METODE BRANCH AND BOUND UNTUK MENEMUKAN SHORTEST PATH

METODE BRANCH AND BOUND UNTUK MENEMUKAN SHORTEST PATH METODE BRANCH AND BOUND UNTUK MENEMUKAN SHORTEST PATH Mira Muliati NIM : 35050 Program Studi Teknik Informatika Sekolah Teknik Elektro Informatika Institut Teknologi Bandung Jl. Ganesha 0, Bandung E-mail

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi yang akan dihasilkan pada penelitian ini. 2.1 Beberapa Definisi dan Istilah 1. Graf (

Lebih terperinci

Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah

Lebih terperinci

Graf dan Pengambilan Rencana Hidup

Graf dan Pengambilan Rencana Hidup Graf dan Pengambilan Rencana Hidup M. Albadr Lutan Nasution - 13508011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung e-mail: albadr.ln@students.itb.ac.id

Lebih terperinci

= himpunan tidak-kosong dan berhingga dari simpul-simpul (vertices) = himpunan sisi (edges) yang menghubungkan sepasang simpul

= himpunan tidak-kosong dan berhingga dari simpul-simpul (vertices) = himpunan sisi (edges) yang menghubungkan sepasang simpul Struktur Data Graf 1. PENDAHULUAN Dalam bidang matematika dan ilmu komputer, teori graf mempelajari tentang graf yaitu struktur yang menggambarkan relasi antar objek dari sebuah koleksi objek. Definisi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas landasan teori, penelitian terdahulu, kerangka berpikir, dan hipotesis yang mendasari penyelesaian Traveling Salesman Problem dalam menentukan lintasan

Lebih terperinci

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik 2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan

Lebih terperinci

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan BAB I PENDAHULUAN 1.1. Latar Belakang. Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI A. Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Graf Graf G didefinisikan sebagai pasangan himpunan (V, E), ditulis dengan notasi G = (V, E). Dalam hal ini, V merupakan himpunan tidak kosong dari simpul-simpul (vertices atau

Lebih terperinci

PENERAPAN ALGORITMA A* PADA PERMASALAHAN OPTIMALISASI PENCARIAN SOLUSI DYNAMIC WATER JUG

PENERAPAN ALGORITMA A* PADA PERMASALAHAN OPTIMALISASI PENCARIAN SOLUSI DYNAMIC WATER JUG PENERAPAN ALGORITMA A* PADA PERMASALAHAN OPTIMALISASI PENCARIAN SOLUSI DYNAMIC WATER JUG Firman Harianja (0911519) Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem

Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Arie Tando (13510018) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN Eric Cahya Lesmana - 13508097 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesa

Lebih terperinci

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING SEARCHING MENDEFINISIKAN MASALAH SEBAGAI SUATU RUANG KEADAAN Secara umum, untuk mendeskripsikan suatu permasalahan dengan baik harus: 1 Mendefinisikan suatu ruang keadaan. 2 Menerapkan satu atau lebih

Lebih terperinci

Aplikasi Teori Graf dalam Permainan Instant Insanity

Aplikasi Teori Graf dalam Permainan Instant Insanity Aplikasi Teori Graf dalam Permainan Instant Insanity Aurelia 13512099 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

BAB II TINJAUAN PUSTAKA. masing-masing tepat satu kali dan kembali lagi ke tempat semula?

BAB II TINJAUAN PUSTAKA. masing-masing tepat satu kali dan kembali lagi ke tempat semula? BAB II TINJAUAN PUSTAKA 2.1 Graf 2.1.1 Sejarah Graf Menurut catatan sejarah, masalah jembatan Konigsberg adalah masalah yang pertama kali menggunakan graf (tahun 1736). Ada tujuh buah jembatan yang menghubungkan

Lebih terperinci

Aplikasi Graf pada Hand Gestures Recognition

Aplikasi Graf pada Hand Gestures Recognition Aplikasi Graf pada Hand Gestures Recognition Muthmainnah 13515059 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Andika Mediputra NIM : 13509057 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Diktat Algoritma dan Struktur Data 2

Diktat Algoritma dan Struktur Data 2 BB X GRF Pengertian Graf Graf didefinisikan sebagai pasangan himpunana verteks atau titik (V) dan edges atau titik (E). Verteks merupakan himpunan berhingga dan tidak kosongdari simpul-simpul (vertices

Lebih terperinci

PENGETAHUAN DASAR TEORI GRAF

PENGETAHUAN DASAR TEORI GRAF PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler

Lebih terperinci

Masalah, Ruang Keadaan dan Pencarian 4/7/2016. fakultas ilmu komputer program studi informatika

Masalah, Ruang Keadaan dan Pencarian 4/7/2016. fakultas ilmu komputer program studi informatika ب س م ا ه لل الر ح ن الر ح ي السالم عليكم ورحمة هللا وبركاته fakultas ilmu komputer program studi informatika Masalah, Ruang Keadaan dan Pencarian Ruang Masalah / Keadaan Suatu ruang yang berisi semua

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 4 BAB 2 LANDASAN TEORI 2.1 Pengertian Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas

Lebih terperinci

PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH

PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 17 24. PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH Fatmawati, Bayu Prihandono, Evi Noviani INTISARI

Lebih terperinci

Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus

Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus Elmo Dery Alfared NIM: 00 Program Studi Teknik Informatika ITB, Institut Teknologi Bandung email: if0 @students.itb.ac.id Abstract Makalah

Lebih terperinci

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V).

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V). GRAF GRAF Suatu Graph mengandung 2 himpunan, yaitu : 1. Himpunan V yang elemennya disebut simpul (Vertex atau Point atau Node atau Titik) 2. Himpunan E yang merupakan pasangan tak urut dari simpul. Anggotanya

Lebih terperinci