BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1 Graf Graf G didefinisikan sebagai pasangan himpunan (V, E), ditulis dengan notasi G = (V, E). Dalam hal ini, V merupakan himpunan tidak kosong dari simpul-simpul (vertices atau node) digambarkan dalam titik-titik, dan E adalah himpunan sisi-sisi (edges atau arcs) digambarkan dalam garis-garis yang menghubungkan sepasang simpul, V tidak boleh kosong, sedangkan E boleh kosong. Jadi, sebuah graf dimungkinkan tidak memiliki sisi satu buah pun, tetapi simpulnya harus ada, minimal satu. Graf yang hanya mempunyai satu buah simpul tanpa sebuah sisi pun dinamakan graf trivial (Munir R, 2007). Nama graf diberikan karena graf dapat disajikan secara grafik atau gambar, dan dengan bentuk gambar inilah sifat-sifat graf dapat dikenali secara detail. Titik disajikan dalam bentuk noktah atau lingkaran kecil dan disajikan dalam bentuk garis atau kurva yang memasangkan dua titik. Penyajian graf secara gambar tidak harus tunggal. Penempatan posisi titik dan sisi tidak menjadi perhatian yang serius (Abdussakir, et all, 2009). 2.2 Jenis-jenis Graf Graf dapat dikelompokkan menjadi beberapa jenis bergantung pada sudut pandang pengelompokkannya. Pengelompokkan graf dapat dipandang berdasarkan ada tidaknya sisi ganda atau sisi kalang, berdasarkan jumlah simpul atau berdasarkan orientasi arah pada sisi (Munir R, 2007).

2 8 Berdasarkan ada tidaknya gelang atau busur ganda pada suatu graf maka secara umum graf dapat dikelompokkan menjadi dua jenis: 1. Graf sederhana (simple graph) yaitu graf yang tidak mengandung gelang maupun sisi-ganda dinamakan graf sederhana. Pada graf sederhana, sisi adalah pasangan tak-terurut (unordered pairs). Jadi menuliskan sisi (u,v) sama saja dengan (v,u). Kita dapat juga mendefinisikan graf sederhana G=(V,E) terdiri dari himpunan tidak kosong simpul-simpul dan E adalah himpunan pasangan tak-terurut yang berbeda disebut sisi (Munir R, 2007). 2. Graf tak-sederhana (unsimple graph) yaitu graf yang mengandung sisi ganda atau gelang dinamakan graf tak-sederhana (unsimple graph). Ada dua macam graf taksederhana, yaitu graf ganda (multigraph) dan graf semu (pseudograph). a. Graf ganda (multigraph) adalah graf yang mengandung sisi ganda. Sisi ganda yang menghubungkan sepasang simpul bias lebih dari dua buah. Sisi ganda dapat diasosiasikan sebagai pasangan tak terurut yang sama (Munir R, 2007). b. Graf semu (pseudograph) adalah graf yang mengandung gelang (loop). Graf semu lebih umum daripada graf ganda karena sisi pada graf semu dapat terhubung ke dirinya sendiri (Munir R, 2007). Sisi pada graf dapat mempunyai orientasi arah. Menurut orientasi arah pada sisinya, graf dibagi menjadi dua jenis, yaitu: 1. Graf tidak berarah (undirected graph) adalah graf yang sisinya tidak mempunyai orientasi arah, pada graf ini, urutan pasangan simpul yang dihubungkan oleh sisi tidak diperhatikan (Munir R, 2007). 2. Graf berarah (directed graph) adalah graf yang setiap sisinya diberikan orientasi arah, Graf berarah sering dipakai untuk menggambarkan aliran proses, peta lintas suatu kota, dan sebagainya (Munir R, 2007). Graf juga ada yang mempunyai bobot atau nilai. Berdasarkan bobotnya, graf dibagi menjadi dua jenis, yaitu: 1. Graf tidak berbobot (unweighted graph) adalah graf yang tidak mempunyai bobot atau nilai.

3 9 2. Graf berbobot (weighted graph) apabila sebuah busur mempunyai sebuah nilai yang menyatakan hubungan antara dua buah simpul, maka busur tersebut dikatakan mempunyai bobot, dan graf disebut graf berbobot atau weighted graph. Bobot sebuah busur dapat menyatakan panjang sebuah jalan antara dua buah titik, atau jumlah rata-rata kendaraan perhari yang melalui sebuah jalan (Sjukani M, 2012). Contoh graf berbobot diperlihatkan pada Gambar Contoh Terapan Graf Gambar 2.1 Graf Berbobot (weighted graph) Aplikasi Graf sangat luas. Graf dipakai di berbagai disiplin ilmu maupun dalam kehidupan sehari-hari. Graf digunakan untuk memodelkan suatu persoalan. Dibawah ini terapan graf dalam beberapa bidang. 1. Rangkaian Listrik Pada tahun 1247 Kirchoff menggunakan graf untuk memodelkan rangkaian listrik. Berdasarkan graf tersebut Kirchoff menurunkan persamaan arus yang masuk dan keluar pada tiap simpul. Dari sistem persamaan lanjar (linier) simultan yang diperoleh dapat dihitung arus listrik yang mengalir pada setiap komponen (Munir R, 2007). 2. Isomer senyawa kimia karbon Pada tahun 1257 Arthur Cayley menggunakan graf dalam memodelkan molekul senyawa alkana CnH2n+2 untuk menghitung jumlah isomernya. Atom karbon (C) dan atom hidrogen (H) dinyatakan sebagai simpul, sendangkan ikatan antara atom C dan H dinyatakan sebagai sisi. Isomer adalah senyawa kimia yang mempunyai

4 10 rumus molekul sama tetapi rumus bagun (bentuk graf) berbeda (Munir R, 2007). 2.4 Pohon (Tree) Pohon adalah graf tidak berarah yang berhubungan tanpa terhubung dengan sirkuit sederhana, karena pohon tidak dapat memiliki rangkaian sederhana, pohon tidak dapat berisi beberapa tepi atau loop. Maka setiap pohon pasti sebuah graf sederhana (Rosen K.H, 2012). Konsep dalam teori graf terdiri dari beragam jenis, konsep pohon (tree) merupakan konsep yang paling populer karena konsep ini mampu mendukung pemecahan masalah dalam berbagai terapan graf. Dalam kehidupan sehari-hari, orang telah lama menggunakan pohon untuk menggambarkan hirarkhi. Misalnya, pohon silsilah keluarga, struktur organisasi dan lain sebagainya. Gambar dari pohon (tree) dapat dilihat pada Gambar 2.2 berikut: (a) (b) Gambar 2.2 Gambar a merupakan pohon, dan gambar b bukan pohon Gambar a disebut pohon karena merupakan graf yang tak berarah (directed graph) dan tidak mengandung sirkuit, sedangkan gambar b bukan pohon karena graf tersebut tidak terhubung. 2.5 Pohon Merentang Minimum (Minimum Spanning Tree) Pohon yang mengandung simpul-simpul dalam sebuah grafik yang saling terhubung disebut spanning tree. Permasalahannya adalah bagaimana mendapatkan suatu pohon

5 11 T yang mengandung semua simpul dalam grafik G dan mengandung jumlah minimum dari bobot simpul-simpulnya (u,v) dari pohon T (Purwanto E.B, 2008). Pernyataan di atas dapat ditulis dalam bentuk persamaan : w(t) = (u,v) T w(u,v) (1) Algoritma MST (Minimum Spanning Tree) mengelola sebuah himpunan simpul A, kemudian menjalankan iterasi secara invariant (tidak berbeda). Perhatian utama pada setiap iterasi adalah A sebagai sub-himpunan dari beberapa MST, sehingga setiap langkah, akan ditentukan simpul yang dapat ditambahkan ke simpul A tanpa menghilangkan sifat invariant-nya. Untuk A {(u, v)} sebagai himpunan bagian dari MST (Purwanto E.B, 2008). Kasus yang dipecahkan dalam Minimum Spanning Tree adalah mencari biaya minimum (minimum cost) dari setiap ruas (ujung) pada grafik yang membentuk pohon pencarian. Sebagai catatan bahwa tidak semua grafik bisa dihitung menggunakan MST karena untuk dapat menghitung biaya minimum atas terbentuknya sebuah grafik harus memenuhi kriteria-kriteria spanning tree yaitu: a. Setiap ruaspada grafik harus terhubung b. Setiap ruas pada grafik harus mempunyai nilai (label) c. Setiap ruas pada gafik tidak mempunyai arah Langkah-langkah menghitung total biaya minimum dari suatu grafik sebagai berikut: 1. Dari suatu grafik yang terbentuk, perhatikan apakah memenuhi kriteria suatu spanning tree. 2. Lakukan pelacakan secara berurutan mulai dari simpul pertama sampai dengan simpul terakhir. 3. Pada setiap simpul perhatikan nilai (biaya) tiap-tiap ruasnya 4. Ambil nilai yang paling kecil artinya jarak terpendek dari setiap ruas simpul 5. Lanjutkan sampai seluruh simpul tergambar pada spanning tree. 6. Jumlahkan nilai yang telah dipilih atau cost minimal yang menghubungkan simpul-simpul tersebut.

6 Algortima Borůvka Algoritma Borůvka merupakan algoritma pertama untuk mencari pohon merentang minimum dari suatu graf ditemukan oleh Otakar Borůvka pada tahun 1926.Algoritma ini dimulai dengan memeriksa setiap simpul dan menambahkan sisi dengan bobot terkecil pada pohon merentang, tanpa memperhatikan pada sisi yang telah ditambahkan, dan melanjutkan menggabungkan sisi tersebut sampai terbentuk suatu pohon merentang (Nasution R.P, 2007). Untuk menentukan pohon merentang minimum dari sebuah graf dengan menggunakan Algoritma Borůvka maka diperlukan langkah-langkah sebagai berikut: Langkah 1: Salin titik dari G ke graf baru L yang kosong. Langkah 2: Sedangkan L tidak terhubung (artinya hutan lebih dari satu pohon) Untuk setiap pohon di L, hubungkan sebuah titik ke titik yang lain pada pohon yang lain di L dengan menambahkan sisi yang berbobot minimum (Chartrand G. & Ortrud R.O, 1993).

7 13 Contoh pengerjaan Algoritma Borůvka dalam graf dapat dilihat pada Gambar 2.3. (a) (b) (c) (d Gambar 2.3 Proses pengerjaan graf berbobot dengan menggunakan algoritma pohon merentang minimum Borůvka

8 Algoritma Prim Algoritma Prim pertama kali diusulkan oleh Jarnik, tetapi dengan atribut yang spesifik terhadap Prim. Algoritma ini dimulai dari simpul yang berubah-ubah di setiap tingkatnya, diperbolehkan menambah cabang baru untuk membuat susunan pohon baru. Algoritma ini akan tertahan (hold) ketika simpul yang sedang dieksplorasi pada grafik sudah sampai pada simpul yang dituju. Strategi yang digunakan adalah strategi Greedy dengan menganggap bahwa setiap langkah dari spanning tree adalah augmented dan dipilih simpul yang nilainya paling kecil dari semua simpul yang ada (Purwanto E.B, 2008). Algoritma Prim banyak menghabiskan waktu untuk mencari simpul dengan nilai paling kecil. Dengan kata lain bahwa lama waktu didasarkan pada ketergantungan bagaimana mencari simpul terkecil. Cara singkat untuk mendapatkan simpul terkecil adalah dengan mencari deret adjensi dari jalur dalam V. Dalam kasus ini setiap iterasi memerlukan biaya atau energi sebanyak O(m) kali dan membutuhkan waktu eksekusi sebesar O(mn) (Purwanto E.B, 2008). Algoritma ini menitikberatkan pada pemilihan bobot minimum berdasarkan simpul yang diambil. Dan karena tidak perlu mengurutkan terlebih dahulu, algoritma Prim cocok untuk pohon dengan jumlah simpul banyak. Algoritma Prim akan selalu berhasil menemukan pohon merentang minimum tetapi pohon merentang yang dihasilkan tidak selalu unik (Nugraha D.W, 2011). Langkah-langkah dalam menentukan algoritma Prim adalah (Munir R, 2007) ; 1. Menentukan titik awal lalu dilanjutkan mengambil sisi dari graf G yang berbobot minimum dari titik awal yang di pilih tadi, masukkan ke dalam T yang kosong. 2. Pilih sisi e yang mempunyai bobot minimum berikutnya dan bersisian dengan titik di T, tetapi e tidak membentuk sirkuit di T, masukkan e ke dalam T. 3. Ulangi sebanyak n-2 kali.

9 15 Contoh pengerjaan Algoritma Prim dalam graf dapat dilihat pada Gambar 2.4. (a) (b) (c) (d) (e) (f) (g) (h) Gambar 2.4 Proses pengerjaan graf berbobot dengan menggunakan algoritma pohon merentang minimum Prim, akar vertex adalah a

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Graf Menurut Foulds (1992) graf G adalah pasangan terurut (VV,) dimana V adalah himpunan simpul yang berhingga dan tidak kosong. Dan E adalah himpunan sisi yang merupakan pasangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul

Lebih terperinci

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM Pudy Prima (13508047) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum

Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum Bramianha Adiwazsha - NIM: 13507106 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Simulasi Sistem didefinisikan sebagai sekumpulan entitas baik manusia ataupun mesin yang yang saling berinteraksi untuk mencapai tujuan tertentu. Dalam prakteknya,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Graf adalah salah satu metode yang sering digunakan untuk mencari solusi dari permasalahan diskrit dalam dunia nyata. Dalam kehidupan sehari-hari, graf digunakan untuk

Lebih terperinci

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. G r a f Oleh: Panca Mudjirahardjo Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. 1 Pendahuluan Jaringan jalan raya di propinsi Jawa Tengah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Menurut (Suarga, 2012 : 1) algoritma: 1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya

Lebih terperinci

Representasi Graf dalam Jejaring Sosial Facebook

Representasi Graf dalam Jejaring Sosial Facebook Representasi Graf dalam Jejaring Sosial Facebook Muhammad Harits Shalahuddin Adil Haqqi Elfahmi 13511046 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 39 BAB 2 TINJAUAN PUSTAKA 2.1. Teori Graf 2.1.1 Definisi Graf Teori graf merupakan salah satu cabang matematika yang paling banyak aplikasinya dalam kehidupan sehari hari. Salah satu bentuk dari graf adalah

Lebih terperinci

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog: 1.

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog:    1. MODUL I PENDAHULUAN 1. Sejarah Graph Teori Graph dilaterbelakangi oleh sebuah permasalahan yang disebut dengan masalah Jembatan Koningsberg. Jembatan Koningsberg berjumlah tujuh buah yang dibangun di atas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya

Lebih terperinci

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Salman Muhammad Ibadurrahman NIM : 13506106 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

PERBANDINGAN ALGORTIMA PRIM DAN KRUSKAL DALAM MENENTUKAN POHON RENTANG MINIMUM

PERBANDINGAN ALGORTIMA PRIM DAN KRUSKAL DALAM MENENTUKAN POHON RENTANG MINIMUM PERBANDINGAN ALGORTIMA PRIM DAN KRUSKAL DALAM MENENTUKAN POHON RENTANG MINIMUM Kodirun 1 1 Jurusan Matematika FMIPA Universitas Haluoleo, Kendari e-mail: kodirun_zuhry@yahoo.com Abstrak Masalah yang sering

Lebih terperinci

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si. HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA

Lebih terperinci

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Rahadian Dimas Prayudha - 13509009 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma merupakan urutan langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, algoritma dibuat dengan tanpa memperhatikan bentuk

Lebih terperinci

Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum

Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum Made Mahendra Adyatman 13505015 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Lebih terperinci

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Arifin Luthfi Putranto (13508050) Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesha 10, Bandung E-Mail: xenoposeidon@yahoo.com

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teori graf menurut Munir (2012), merupakan salah satu cabang dari ilmu matematika dengan pokok bahasan yang sudah sejak lama digunakan dan memiliki banyak terapan hingga

Lebih terperinci

Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik

Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik Filman Ferdian - 13507091 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha

Lebih terperinci

I. PENDAHULUAN II. DASAR TEORI. Penggunaan Teori Graf banyak memberikan solusi untuk menyelesaikan permasalahan yang terjadi di dalam masyarakat.

I. PENDAHULUAN II. DASAR TEORI. Penggunaan Teori Graf banyak memberikan solusi untuk menyelesaikan permasalahan yang terjadi di dalam masyarakat. Aplikasi Pohon Merentang (Spanning Tree) Dalam Pengoptimalan Jaringan Listrik Aidil Syaputra (13510105) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Algoritma Prim sebagai Maze Generation Algorithm

Algoritma Prim sebagai Maze Generation Algorithm Algoritma Prim sebagai Maze Generation Algorithm Muhammad Ecky Rabani/13510037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II LNSN TEORI Landasan teori dalam penyusunan tugas akhir ini menggunakan beberapa teori pendukung yang akan digunakan untuk menentukan lintasan terpendek pada jarak esa di Kecamatan Rengat arat. 2.1 Graf

Lebih terperinci

Aplikasi Pohon dan Graf dalam Kaderisasi

Aplikasi Pohon dan Graf dalam Kaderisasi Aplikasi Pohon dan Graf dalam Kaderisasi Jonathan - 13512031 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang 13 BAB 1 PENDAHULUAN 1.1 Latar belakang Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, tidak lepas dari peran ilmu matematika, yaitu ilmu yang menjadi solusi secara konseptual dalam menyelesaikan

Lebih terperinci

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex

Lebih terperinci

Studi Algoritma Optimasi dalam Graf Berbobot

Studi Algoritma Optimasi dalam Graf Berbobot Studi Algoritma Optimasi dalam Graf Berbobot Vandy Putrandika NIM : 13505001 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail : if15001@students.if.itb.ac.id

Lebih terperinci

RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL

RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL RANCANG BANGUN APLIKASI MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL Naskah Publikasi diajukan oleh: Trisni jatiningsih 06.11.1016 kepada JURUSAN TEKNIK INFORMATIKA SEKOLAH TINGGI MANAJEMEN

Lebih terperinci

Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum

Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum Gerard Edwin Theodorus - 13507079 Jurusan Teknik Informatika ITB, Bandung, email: if17079@students.if.itb.ac.id Abstract Makalah ini

Lebih terperinci

Graf. Matematika Diskrit. Materi ke-5

Graf. Matematika Diskrit. Materi ke-5 Graf Materi ke-5 Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya

Lebih terperinci

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Terminologi graf Tereminologi termasuk istilah yang berkaitan dengan graf. Di bawah ini akan dijelaskan beberapa definisi yang sering dipakai terminologi. 2.1.1 Graf Definisi

Lebih terperinci

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G=(V,E), yang dalam hal ini V adalah himpunan tidak-kosong dari simpul-simpul (vertices

Lebih terperinci

STUDI OPTIMALISASI JUMLAH PELABUHAN TERBUKA DALAM RANGKA EFISIENSI PEREKONOMIAN NASIONAL

STUDI OPTIMALISASI JUMLAH PELABUHAN TERBUKA DALAM RANGKA EFISIENSI PEREKONOMIAN NASIONAL BAB III METODOLOGI 3.1 POLA PIKIR Proses analisis diawali dari identifikasi pelabuhan yang terbuka bagi perdagangan luar negeri, meliputi aspek legalitas, penerapan ISPS Code dan manajemen pengelolaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI A. Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika adalah salah satu ilmu yang banyak memberikan dasar bagi berkembangnya ilmu pengetahuan dan teknologi. Seiring dengan kemajuan dan perkembangan teknologi,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 21 2 TINJUN PUSTK 2.1. lgoritma lgoritma merupakan suatu langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, tanpa memperhatikan bentuk yang akan digunakan sebagai implementasinya,

Lebih terperinci

BAB 1 PENDAHULUAN. minimum secara langsung didasarkan pada algoritma MST (Minimum Spanning

BAB 1 PENDAHULUAN. minimum secara langsung didasarkan pada algoritma MST (Minimum Spanning 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Hubungan antara titik-titik dalam graf kadang-kadang perlu diperjelas. Hubungannya tidak cukup hanya menunjukkan titik-titik mana yang berhubungan langsung, tetapi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Informasi Geografis (SIG) Sistem Informasi Geografis atau Geographic Information System (GIS) merupakan suatu sistem informasi yang berbasis komputer, dirancang untuk bekerja

Lebih terperinci

MEDIA PEMBELAJARAN STRATEGI ALGORTIMA PADA POKOK BAHASAN POHON MERENTANG MINIMUM DAN PENCARIAN LINTASAN TERPENDEK

MEDIA PEMBELAJARAN STRATEGI ALGORTIMA PADA POKOK BAHASAN POHON MERENTANG MINIMUM DAN PENCARIAN LINTASAN TERPENDEK MEDIA PEMBELAJARAN STRATEGI ALGORTIMA PADA POKOK BAHASAN POHON MERENTANG MINIMUM DAN PENCARIAN LINTASAN TERPENDEK 1 Taufiq Ismail, 2 Tedy Setiadi (0407016801) 1,2 Program Studi Teknik Informatika Universitas

Lebih terperinci

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas Andreas Dwi Nugroho (13511051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Andika Mediputra NIM : 13509057 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB II LANDASAN TEORI. definisi, teorema, serta istilah yang diperlukan dalam penelitian ini. Pada bab ini

BAB II LANDASAN TEORI. definisi, teorema, serta istilah yang diperlukan dalam penelitian ini. Pada bab ini 4 BAB II LANDASAN TEORI Setiap permasalahan yang akan dicari cara penyelesaiannya terlebih dahulu dibuat rumusan masalah, demikian pula dengan matematika. Untuk mengetahui lebih lanjut tentang pembahasan

Lebih terperinci

BAB 2 LANDASAN TEORI. Algoritma adalah urutan atau deskripsi langkah-langkah untuk memecahkan suatu masalah.

BAB 2 LANDASAN TEORI. Algoritma adalah urutan atau deskripsi langkah-langkah untuk memecahkan suatu masalah. BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma adalah urutan atau deskripsi langkah-langkah untuk memecahkan suatu masalah. Algoritma merupakan jantung ilmu komputer atau informatika. Banyak

Lebih terperinci

Struktur dan Organisasi Data 2 G R A P H

Struktur dan Organisasi Data 2 G R A P H G R A P H Graf adalah : Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak urut dari simpul, anggotanya disebut ruas (rusuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Graf G didefenisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G = (V,E), yang dalam hal ini V adalah himpunan tidak kosong dari simpul-simpul

Lebih terperinci

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB STEVIE GIOVANNI NIM : 13506054 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jln, Ganesha 10, Bandung

Lebih terperinci

PENERAPAN GRAF DAN POHON DALAM SISTEM PERTANDINGAN OLAHRAGA

PENERAPAN GRAF DAN POHON DALAM SISTEM PERTANDINGAN OLAHRAGA PENERAPAN GRAF DAN POHON DALAM SISTEM PERTANDINGAN OLAHRAGA Penerapan Graf dan Pohon dalam Sistem Pertandingan Olahraga Fahmi Dumadi 13512047 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

Kendal. Temanggung Salatiga Wonosobo Purbalingga. Boyolali. Magelang. Klaten. Purworejo. Gambar 6.1 Jaringan jalan raya di Provinsi Jawa Tengah

Kendal. Temanggung Salatiga Wonosobo Purbalingga. Boyolali. Magelang. Klaten. Purworejo. Gambar 6.1 Jaringan jalan raya di Provinsi Jawa Tengah Bab 8 Graf Jangan ikuti kemana jalan menuju, tetapi buatlah jalan sendiri dan tinggalkan jejak (Anonim) Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 18 BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma adalah urutan atau deskripsi langkah- langkah penyelesaian masalah yang tersusun secara logis, ditulis dengan notasi yang mudah dimengerti sedemikian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 4 BAB 2 LANDASAN TEORI 2.1 Pengertian Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas

Lebih terperinci

Pengaplikasian Graf Planar pada Analisis Mesh

Pengaplikasian Graf Planar pada Analisis Mesh Pengaplikasian Graf Planar pada Analisis Mesh Farid Firdaus - 13511091 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas

Lebih terperinci

Pohon. Modul 4 PENDAHULUAN. alam modul-modul sebelumnya Anda telah mempelajari graph terhubung tanpa sikel, misalnya model graph untuk molekul C 4

Pohon. Modul 4 PENDAHULUAN. alam modul-modul sebelumnya Anda telah mempelajari graph terhubung tanpa sikel, misalnya model graph untuk molekul C 4 Modul 4 Pohon Dr. Nanang Priatna, M.Pd. D PENDAHULUAN alam modul-modul sebelumnya Anda telah mempelajari graph terhubung tanpa sikel, misalnya model graph untuk molekul C 4 H 10, hierarki administrasi

Lebih terperinci

Pertemuan 11. Teori Graf

Pertemuan 11. Teori Graf Pertemuan 11 Teori Graf Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. masing-masing tepat satu kali dan kembali lagi ke tempat semula?

BAB II TINJAUAN PUSTAKA. masing-masing tepat satu kali dan kembali lagi ke tempat semula? BAB II TINJAUAN PUSTAKA 2.1 Graf 2.1.1 Sejarah Graf Menurut catatan sejarah, masalah jembatan Konigsberg adalah masalah yang pertama kali menggunakan graf (tahun 1736). Ada tujuh buah jembatan yang menghubungkan

Lebih terperinci

Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa

Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa Darwin Prasetio ( 001 ) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer Membangun Pohon Merentang Minimum Dari Algoritma Prim dengan Strategi Greedy Doni Arzinal 1 Jursan Teknik Informatika, Institut Teknologi Bandung Labtek V, Jl. Ganesha 10 Bandung 1 if15109@students.if.itb.ac.id,

Lebih terperinci

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS

APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS APLIKASI PEWARNAAN GRAF PADA PENGATURAN LAMPU LALU LINTAS Muhammad Farhan 13516093 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Graf dan Pengambilan Rencana Hidup

Graf dan Pengambilan Rencana Hidup Graf dan Pengambilan Rencana Hidup M. Albadr Lutan Nasution - 13508011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung e-mail: albadr.ln@students.itb.ac.id

Lebih terperinci

LOGIKA DAN ALGORITMA

LOGIKA DAN ALGORITMA LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Lintasan Terpendek Lintasan terpendek merupakan lintasan minumum yang diperlukan untuk mencapai suatu titik dari titik tertentu (Pawitri, ) disebutkan bahwa. Dalam permasalahan pencarian

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS xvi BAB 2 LANDASAN TEORITIS Dalam penulisan laporan tugas akhir ini, penulis akan memberikan beberapa pengertian yang berhubungan dengan judul penelitian yang penulis ajukan, karena tanpa pengertian yang

Lebih terperinci

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V BAB II KAJIAN PUSTAKA A. Pengertian Graf Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan tak kosong dari simpul-simpul (vertices) pada G. Sedangkan E adalah himpunan

Lebih terperinci

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER TEORI GRAF ILHAM SAIFUDIN Selasa, 13 Desember 2016 Universitas Muhammadiyah Jember Pendahuluan 1 OUTLINE 2 Definisi Graf

Lebih terperinci

I. PENDAHULUAN. Gambar 1. Contoh-contoh graf

I. PENDAHULUAN. Gambar 1. Contoh-contoh graf Quad Tree dan Contoh-Contoh Penerapannya Muhammad Reza Mandala Putra - 13509003 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

Lebih terperinci

Graf. Program Studi Teknik Informatika FTI-ITP

Graf. Program Studi Teknik Informatika FTI-ITP Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan

Lebih terperinci

Jurnal MSA Vol. 3 No. 1 Ed. Juli-Desember Tree) dari graf hasil representasi jaringan listrik.

Jurnal MSA Vol. 3 No. 1 Ed. Juli-Desember Tree) dari graf hasil representasi jaringan listrik. APLIKASI MINIMUM SPANNING TREE PADA JARINGAN LISTRIK DI PERUMAHAN MUTIARA INDAH VILLAGE Nurbaiti Mahasiswa Prodi Matematika, FST-UNAIM Wahyuni Prodi Matematika, FST-UINAM Info: Jurnal MSA Vol. 3 No. 2

Lebih terperinci

Penerapan Pohon Keputusan pada Penerimaan Karyawan

Penerapan Pohon Keputusan pada Penerimaan Karyawan Penerapan Pohon Keputusan pada Penerimaan Karyawan Mathias Novianto - 13516021 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

Pengaplikasian Pohon dalam Silsilah Keluarga

Pengaplikasian Pohon dalam Silsilah Keluarga Pengaplikasian Pohon dalam Silsilah Keluarga Sinaga Yoko Christoffel Triandi 13516052 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan BAB I PENDAHULUAN 1.1. Latar Belakang. Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

Penerapan Pewarnaan Graf dalam Pengaturan Penyimpanan Bahan Kimia

Penerapan Pewarnaan Graf dalam Pengaturan Penyimpanan Bahan Kimia Penerapan Pewarnaan Graf dalam Pengaturan Penyimpanan Bahan Kimia Rahmat Nur Ibrahim Santosa - 13516009 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN Eric Cahya Lesmana - 13508097 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesa

Lebih terperinci

Deteksi Wajah Menggunakan Program Dinamis

Deteksi Wajah Menggunakan Program Dinamis Deteksi Wajah Menggunakan Program Dinamis Dandun Satyanuraga 13515601 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

Dwiprima Elvanny Myori

Dwiprima Elvanny Myori PENGOPTIMALAN JARINGAN LISTRIK DENGAN MINIMUM SPANNING TREE Dwiprima Elvanny Myori Abstract One of mathematics branch that have many application in daily life is graph theory. Graph theory is used to link

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Untuk menjelaskan pelabelan analytic mean pada graf bayangan dari graf bintang K 1,n dan graf bayangan dari graf bistar B n,n perlu adanya beberapa teori dasar yang akan menunjang

Lebih terperinci

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Ryan Yonata (13513074) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

IMPLEMENTASI PENENTUAN MINIMUM SPANNING TREE (MST) DENGAN MENGGUNAKAN ALGORITMA PRIM

IMPLEMENTASI PENENTUAN MINIMUM SPANNING TREE (MST) DENGAN MENGGUNAKAN ALGORITMA PRIM IMPLEMENTASI PENENTUAN MINIMUM SPANNING TREE (MST) DENGAN MENGGUNAKAN ALGORITMA PRIM SKRIPSI Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana Sains RUDI SURENDRO 041421011 Departemen

Lebih terperinci

ALGORITMA GREEDY : MINIMUM SPANNING TREE. Perbandingan Kruskal dan Prim

ALGORITMA GREEDY : MINIMUM SPANNING TREE. Perbandingan Kruskal dan Prim ALGORITMA GREEDY : MINIMUM SPANNING TREE Perbandingan Kruskal dan Prim AGENDA Pendahuluan Dasar Teori Contoh Penerapan Algoritma Analisis perbandingan algoritma Prim dan Kruskal Kesimpulan PENDAHULUAN

Lebih terperinci

PENGGUNAAN ALGORITMA KRUSKAL DALAM JARINGAN PIPA AIR MINUM KECAMATAN NGANJUK KABUPATEN NGANJUK

PENGGUNAAN ALGORITMA KRUSKAL DALAM JARINGAN PIPA AIR MINUM KECAMATAN NGANJUK KABUPATEN NGANJUK SEMINAR HASIL PENGGUNAAN ALGORITMA KRUSKAL DALAM JARINGAN PIPA AIR MINUM KECAMATAN NGANJUK KABUPATEN NGANJUK Oleh: Angga Putra Pratama 1209 100 040 Dosen Pembimbing Drs. Sumarno, DEA Dr. Darmaji, S.Si,

Lebih terperinci

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Michael - 13514108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial Graf Sosial Aplikasi Graf dalam Pemetaan Sosial Muhammad Kamal Nadjieb - 13514054 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Aplikasi Graf pada Hand Gestures Recognition

Aplikasi Graf pada Hand Gestures Recognition Aplikasi Graf pada Hand Gestures Recognition Muthmainnah 13515059 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut

Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut KATA PENGANTAR Puji syukur penyusun panjatkan ke hadirat Allah Subhanahu wata?ala, karena berkat rahmat-nya kami bisa menyelesaikan makalah yang berjudul Catatan Seorang Kuli Panggul. Makalah ini diajukan

Lebih terperinci

Aplikasi Graf dalam Rute Pengiriman Barang

Aplikasi Graf dalam Rute Pengiriman Barang Aplikasi Graf dalam Rute Pengiriman Barang Christ Angga Saputra - 09 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 0, Indonesia

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkembangsaan Swiss pada tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci

Penerapan Teori Graf Pada Algoritma Routing

Penerapan Teori Graf Pada Algoritma Routing Penerapan Teori Graf Pada Algoritma Routing Indra Siregar 13508605 Program Studi Teknik Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10, Bandung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci