MODUL 4: Nondeterministic Finite Automata

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODUL 4: Nondeterministic Finite Automata"

Transkripsi

1 MODUL 4: Nondeterministic Finite Automata Slide dari 2

2 FA DENGAN NONDETERMINISME Disamping ini merupakan FA dari suatu bahasa regular dalam {,} * dengan ekspresi regular (+) *. p, q s, u r t Slide 2 dari 2

3 FA kah diagram berikut ini? Bukan, karena tidak memenuhi beberapa sifat FA! q 2 q q q 4 q 3 adanya status-status yang tidak memiliki transisi untuk kedua kemungkinan simbol, adanya status-status yang memiliki > transisi untuk simbol yang sama. Slide 3 dari 2

4 Namun menggambarkan secara lebih eksplisit ekspresi regular (+) *. Loop q -q -q menunjukkan pengulangan loop q -q 2 -q 3 -q menunjukkan pengulangan adanya simbol di akhir string. Dipandang sebagai recognizer, terdapat ketidak pastian langkah transisi berikutnya untuk dijalani. Misalnya simbol pertama maka ada dua pilihan. Slide 4 dari 2

5 Definisi NFA Suatu Nondeterministic Finite Automaton (NFA) adalah 5-tuple M = (Q, Σ, q, A, δ). Q adalah himpunan status, Σ adalah alfabet, q adalah status inisial, A adalah himpunan status terima dan δ fungsi transisi sebagai berikut. δ: Q Σ 2 Q Slide 5 dari 2

6 Definisi Fungsi Perluasan Transisi d * Modul 4: Nondeterministic Finite Automatar Pada setiap NFA M = (Q, Σ, q, A, δ) fungsi δ * : Q Σ * 2 Q didefinisikan sbb. Untuk setiap q Q maka δ * (q, Λ) = {q}. Untuk setiap y Σ *, a Σ, dan q Q, maka δ * ( q, ya) = p δ U * δ( p, a) ( q, y) Slide 6 dari 2

7 Dalam bentuk diagram dapat digambarkan sbb. δ * (q,y) a δ * (q,ya) q a a a y Slide 7 dari 2

8 NFA Sebagai Mesin Pengenal Bahasa Regular M = (Q, Σ, q, A, δ) suatu NFA, String x diterima oleh M bila δ * (q, x) A. Bahasa L dikenal oleh M adalah L(M) himpunan seluruh string yang diterima oleh M. Untuk bahasa L Σ *, L dikenali oleh M jika dan hanya jika L = L(M). Slide 8 dari 2

9 Contoh M = (Q, Σ, q, A, δ) suatu NFA, dengan Q = {q, q, q 2, q 3 }, Σ = {, }, A = {q 3 }, dan δ dinyatakan dalam tabel disamping ini. Modul 4: Nondeterministic Finite Automatar q δ (q, ) δ (q, ) Q {q } {q, q } q {q 2 } {q 2 } q 2 {q 3 } {q 3 } q 3 Dalam bentuk diagram digambarkan sbb., q q, q, 2 q 3 Slide 9 dari 2

10 Bahasa yang dikenal NFA tsb memiliki ekspresi regular (+) * (+) 2. Bahasa tsb dikenal juga sebagai L n = {x * simbol ke n dari kanan adalah } dengan kasus n = 3. Slide dari 2

11 Apakah NFA lebih powerful daripada FA? (Note: powerful dalam hal kemampuan penerimaannya terhadap suatu bahasa) Ternyata tidak! Suatu bahasa yang dikenali oleh NFA akan dapat dikenali pula oleh suatu FA (walaupun dengan diagram transisi yang lebih rumit). Slide dari 2

12 Konversi NFA ke FA Untuk setiap NFA M = (Q, Σ, q, A, δ) yang menerima bahasa L Σ, akan terdapat FA M = (Q, Σ, q, A, δ ) yang juga menerima L. Q = 2 Q q = {q } untuk q Q dan a Σ, maka δ ( q, a) = δ( p, a) U p q A = {q Q q A } Slide 2 dari 2

13 Note: Status-status q Q (dari M ) mrpk status yang dinamai sesuai himpunan status 2 Q. Contoh: Dari Q = {A, B, C} dibentuk Q = {, {A}, { B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}. Dalam hal ini {A} atau {A, B, C} merupakan nama-nama status anggota Q. Untuk menyederhanakan kadang-kadang ditulis tanpa notasi kurung dan koma. Contoh: Q = {, A, B, C, AB, AC, BC, ABC} Slide 3 dari 2

14 Kesimpulan: δ * (q, x) = δ * (q, x) Modul 4: Nondeterministic Finite Automatar (Ingat: δ * dan δ * berasal dari dua definisi yang berbeda, yang pertama dari FA dan yang kedua dari NFA). dibuktikan dengan induksi matematis sbb. Untuk x = Λ, δ * (q, x) = δ * (q, Λ) = q = {q } δ * (q, x) = δ * (q, Λ) = {q } Slide 4 dari 2

15 Asumsi δ * (q, x) = δ * (q, x) terpenuhi, akan dibuktikan untuk a Σ apakah juga δ * (q, xa) = δ * (q, xa) terpenuhi. Menurut definisi δ * (q, xa) = δ (δ * (q, x), a). Sementara, δ (δ * (q, x), a) = δ (δ * (q, x), a) = δ( p, a) = δ * (q, xa). Maka terbukti. p δ U * ( q, x) Slide 5 dari 2

16 Contoh: NFA untuk bahasa regular dengan ekspresi regular (+) * (+) 2 akan dicari FA ybs. Dari Q = {q, q, q 2, q 3 }, Q = {, {q }, {q },, {q, q }, } semua kemung. subset dari Q. Namun tidak semua status akan digunakan. Status inisial {q } Himp. status menerima = {{q 3 }, {q, q 3 }, {q, q 3 }, } -- semua subset yang berisi q 3 karena q 3 status menerima di NFA. Slide 6 dari 2

17 δ diperoleh secara bertahap mulai dari {q } δ ({q }, ) = {q } δ ({q }, ) = {q, q } Lalu dari {q, q } diperoleh δ ({q, q }, ) = δ ({q }, ) δ ({q }, ) ={q } {q 2 } = {q, q 2 } δ ({q, q }, ) = δ ({q }, ) δ ({q }, ) ={q, q } {q 2 } = {q, q, q 2 } Lalu dari {q, q 2 } diperoleh δ ({q, q 2 }, ) = δ ({q }, ) δ ({q 2 }, ) Slide 7 dari 2

18 = {q } {q 3 } = {q, q 3 } δ ({q, q 2 }, ) = δ ({q }, ) δ ({q 2 }, ) ={q, q } {q 3 } = {q, q, q 3 } Lalu dari {q, q, q 2 } diperoleh δ ({q, q, q 2 }, ) = {q } {q 2 } {q 3 } = {q, q 2, q 3 } δ ({q, q, q 2 }, ) = {q, q } {q 2 } {q 3 } = {q, q, q 2, q 3 } dst hanya 8 status yang digunakan. Slide 8 dari 2

19 q q q q q 2 q q q Note: {q, q 3 }, {q, q, q 2 }, {q, q, q 3 }, {q, q 2, q 3 }, {q, q, q 2, q 3 } tidak digunakan karena tidak pernah tercapai dari {q }. Slide 9 dari 2 q q 3 q q q 3 q q 2 q 3 q q q 2 q

20 Contoh: NFA di awal pembahasan untuk mengenali bahasa regular dengan ekspresi (+) * Modul 4: Nondeterministic Finite Automatar q 2 q q q 4 q 3 Slide 2 dari 2

21 Bila dikonversi ke FA menghasilkan tabel/diagram transisi sbb (yang persis seperti FA ybs). q δ (q, ) δ (q, ) {q } {q 4 } {q, q 2 } {q 4 } {q, q 2 } {q, q 3 } {q, q 3 } {q, q 4 } {q, q 2 } {q, q 4 } {q 4 } {q, q 2 } q 4, q, q q 2 q q 4 q q 3 Slide 2 dari 2

MODUL 5: Nondeterministic Finite Automata dengan

MODUL 5: Nondeterministic Finite Automata dengan MODUL 5: Nondeterministic Finite Automata dengan Transisi-L (NFA-L) Slide dari 4 Dengan konsep nondeterministisme dari suatu ekspresi regular suatu NFA yang dapat menerima bahasa ybs dapat langsung dilakukan.

Lebih terperinci

MODUL 3: Finite Automata

MODUL 3: Finite Automata MODUL 3: Finite Automata Slide dari 38 DEFINISI FA mesin yang dapat mengenai bahasa regular tanpa menggunakan storage/memory. Sejumlah status dapat didefinisikan pada mesin untuk mengingat beberapa hal

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM. dirancang dan selanjutnya dapat diketahui gambaran dan kemampuan sistem secara

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM. dirancang dan selanjutnya dapat diketahui gambaran dan kemampuan sistem secara BAB 3 ANALISIS DAN PERANCANGAN PROGRAM 3.1 Analisis Kebutuhan Sistem Analisis kebutuhan sistem merepresentasikan daftar kebutuhan sistem yang akan dirancang dan selanjutnya dapat diketahui gambaran dan

Lebih terperinci

NonDeterministic Finite Automata. B.Very Christioko, S.Kom

NonDeterministic Finite Automata. B.Very Christioko, S.Kom NonDeterministic Finite Automata Perbedaan DFA dan NFA DFA (Deterministic Finite Automata) FA di dalam menerima input mempunyai tepat satu busur keluar. NFA (Non Deterministic Finite Automata) FA di dalam

Lebih terperinci

MODUL 7: MINIMISASI FA

MODUL 7: MINIMISASI FA MODUL 7: MINIMISASI FA Dalam pembahasan sebelumnya untuk setiap mesin FA (baik NFA, NFA-Λ, maupun FA) pasti ada suatu bahasa regular yang dapat ia terima dan sebaliknya untuk setiap bahasa regular pasti

Lebih terperinci

MODUL 2: Bahasa Regular dan Ekspresi Regular

MODUL 2: Bahasa Regular dan Ekspresi Regular MODUL 2: Bahasa Regular dan Ekspresi Regular Slide 1 dari 21 DEFINISI BAHASA REGULAR Bahasa Regular L dari alfabet Σ adalah bahasa yang dapat dihasilkan dari bahasa-bahasa paling sederhana dari Σ dengan

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL VIII TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami ekspresi reguler dan dapat menerapkannya dalam berbagai penyelesaian persoalan. Materi : Hubungan antara DFA, NFA, dan ekspresi regular

Lebih terperinci

MODUL 17. BAHASA-BAHASA REKURSIF DAN RECURSIVELY ENUMERABLE

MODUL 17. BAHASA-BAHASA REKURSIF DAN RECURSIVELY ENUMERABLE MODUL 17. BAHASA-BAHASA REKURSIF DAN RECURSIVELY ENUMERABLE TM T r untuk suatu bahasa rekursif akan menjawab (recognize) atau setelah memproses string masukan. T r Dalam pembahasan sebelumnya kita mendapatkan

Lebih terperinci

MODUL 1: PENGANTAR TEORI BAHASA

MODUL 1: PENGANTAR TEORI BAHASA MODUL 1: PENGANTAR TEORI BAHASA Pengantar Automata dan Bahasa Teori Pendukung Konsep Bahasa Slide 1 dari 38 PENGANTAR AUTOMATA DAN BAHASA Obyektif membahas model-model komputasi sebagai mesin abstraks

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan agar sistem

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan agar sistem BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM 4.1 Kebutuhan Sistem Kebutuhan untuk menjalankan sistem aplikasi yang telah dibuat sangat berkaitan dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan

Lebih terperinci

MODUL 11: PUSHDOWN AUTOMATON

MODUL 11: PUSHDOWN AUTOMATON MODUL 11: PUSHDOWN AUTOMATON Pengantar Pushdown Automaton Dalam pembahasan bahasa regular telah diperkenalkan pula suatu mesin dengan jumlah status yang terbatas atau dikenal dengan nama mesin FA. Karena

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL VI TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa dapat malakukan operasi gabungan/konkatenasi, dan membangun FSA optimal Materi : Operasi Gabungan Operasi Konkatenasi Alur Pengembangan FSA Contoh-contoh

Lebih terperinci

FINITE STATE AUTOMATA

FINITE STATE AUTOMATA Otomata & Teori Bahasa FINITE STATE AUTOMATA www.themegallery.com Contents 2 3 4 Finite State Automata Implementasi FSA Deterministic Finite Automata (DFA) Non-deterministic Finite Automata (NFA) Finite

Lebih terperinci

Non-deterministic Finite Automata Dengan -Move

Non-deterministic Finite Automata Dengan -Move Non-deterministic Finite Automata Dengan -Move Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah

Lebih terperinci

PERTEMUAN II. Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA)

PERTEMUAN II. Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA) PERTEMUAN II Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA) dadang mulyana 1 INGA.INGAT MULAI MINGGU DEPAN KULIAH TBO DIMULAI JAM 13.00 MAAF UNTUK

Lebih terperinci

Deterministic Finite Automata

Deterministic Finite Automata CSG3D3 Teori Komputasi Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] PENGGABUNGAN 2 FSA Pada 2 mesin FSA dapat dilakukan penggabungan, disebut union serta konkatenasi. Misalkan terdapat dua mesin NFA, M1 dan M2 Gambar 5: M1 Gambar 6: M2 OPERASI

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] NFA DENGAN -MOVE Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah

Lebih terperinci

Pendahuluan [6] FINITE STATE AUTOMATA. Hubungan RE & FSA [5] Finite State Diagram [6] 4/27/2011 IF-UTAMA 1

Pendahuluan [6] FINITE STATE AUTOMATA. Hubungan RE & FSA [5] Finite State Diagram [6] 4/27/2011 IF-UTAMA 1 FINITE STATE AUTOMATA Pertemuan 9 & 10 Dosen Pembina : Danang Junaedi 1 Pendahuluan [6] Bahasa formal dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet

Lebih terperinci

BAB 1 PENDAHULUAN. sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan

BAB 1 PENDAHULUAN. sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam hierarki kelas-kelas bahasa menurut Chomsky, kelas bahasa yang paling sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan tepat

Lebih terperinci

Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN

Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN Versi : Revisi : Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN Fakultas/ Jurusan/ Program Studi : Teknologi Industri/ Teknik Informatika/ Teknik Informatika Kode Matakuliah : 52302031 Nama Matakuliah

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL III TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat menyederhanakan sebuah FSA. Materi : Useless state State distinguishable dan state indistinguishable

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL II TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat mengeksekusi suatu mesin otomata Materi : FSA dan Implemetasi FSA Deterministic Finite Automata (DFA)

Lebih terperinci

FINITE STATE MACHINE / AUTOMATA

FINITE STATE MACHINE / AUTOMATA FINITE STATE MACHINE / AUTOMATA BAHASA FORMAL Dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet Dapat juga dipandang sebagai entitasentitas abstrak yang

Lebih terperinci

Teori Komputasi 11/2/2016. Bab 5: Otomata (Automata) Hingga. Otomata (Automata) Hingga. Otomata (Automata) Hingga

Teori Komputasi 11/2/2016. Bab 5: Otomata (Automata) Hingga. Otomata (Automata) Hingga. Otomata (Automata) Hingga Teori Komputasi Fakultas Teknologi dan Desain Program Studi Teknik 1-1 Informatika Bab 5: Agenda. Deterministic Finite Automata DFA (Otomata Hingga Deterministik) Equivalen 2 DFA Finite State Machine FSA

Lebih terperinci

Non-Deterministic Finite Automata

Non-Deterministic Finite Automata CSG3D3 Teori Komputasi Non-Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,

Lebih terperinci

PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA

PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA Santa Meilisa; Ngarap Im Manik; Djunaidy Santoso Universitas Bina Nusantara, Jl. Mawar Bukit

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL V TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami NFA dengan e-move, dapat malakukan ekivalensi ke NFA tanpa e-move dan operasi gaungan/konkatenasi. Materi : NFA dengan e-move Ekivalensi NFA

Lebih terperinci

Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state

Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state EKSPRESI REGULAR Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata bisa dinyatakan secara sederhana

Lebih terperinci

Teori Bahasa dan Automata. Finite State Automata & Non Finite State Automata

Teori Bahasa dan Automata. Finite State Automata & Non Finite State Automata Teori Bahasa dan Automata Finite State Automata & Non Finite State Automata Finite State Automata Model matematika suatu sistem yang menerima input dan output diskrit Mesin automata dari bahasa Regular

Lebih terperinci

Contents.

Contents. Contents FINITE TATE AUTOMATA (Otomata Hingga)... 2 Deterministic/Non Deterministic Finite Automate... 2 Ekwivalensi DFA dan NFA... 4 Contex Free Grammer(CFG)... 8 Penyederhanaan CFG... 9 Bentuk Normal

Lebih terperinci

DFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah

DFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah DFA Teori Bahasa dan Automata 1 DFA DFA: Deterministic Finite Automata Atau Automata Hingga Deterministik (AHD) Merupakan salah satu entuk dari Finite Automata Finite Automata merupakan salah satu dari

Lebih terperinci

Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal

Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal Abdurrahman Dihya R./13509060 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] Ekspresi Regular (1) Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata

Lebih terperinci

Operasi FA dan Regular Expression

Operasi FA dan Regular Expression CSG3D3 Teori Komputasi Operasi FA dan Regular Expression Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,

Lebih terperinci

Bahasa adalah kumpulan kalimat. Kalimat adalah rangkaian kata. Kata adalah komponen terkecil kalimat yang tidak bisa dipisahkan lagi.

Bahasa adalah kumpulan kalimat. Kalimat adalah rangkaian kata. Kata adalah komponen terkecil kalimat yang tidak bisa dipisahkan lagi. Konsep dan Notasi Bahasa Teori Bahasa Bahasa adalah kumpulan kalimat. Kalimat adalah rangkaian kata. Kata adalah komponen terkecil kalimat yang tidak bisa dipisahkan lagi. Contoh : Si Kucing kecil menendang

Lebih terperinci

BAB II MODEL KOMPUTASI FINITE STATE MACHINE. Pada Bab II akan dibahas teori dasar matematika yang digunakan

BAB II MODEL KOMPUTASI FINITE STATE MACHINE. Pada Bab II akan dibahas teori dasar matematika yang digunakan BAB II MODEL KOMPUTASI FINITE STATE MACHINE Pada Bab II akan dibahas teori dasar matematika yang digunakan dalam pemodelan sistem kontrol elevator ini, yaitu mengenai himpunan, relasi, fungsi, teori graf

Lebih terperinci

Teori Bahasa dan Otomata 1

Teori Bahasa dan Otomata 1 Teori Bahasa dan Otomata 1 KATA PENGANTAR Teori Bahasa dam Otomata merupakan matakuliah wajib yang harus diambil oleh seluruh mahasiswa jurusan Teknik Indonesia di lingkungan Sekolah Tinggi Teknologi Indonesia.

Lebih terperinci

Lecture Notes Teori Bahasa dan Automata

Lecture Notes Teori Bahasa dan Automata Pumping Lemma RL (edisi 2) 1/5 Lecture Notes Teori Bahasa dan Automata Pumping Lemma Untuk Regular Language Thompson Susabda Ngoen Revisi 1 Hopcroft mengatakan regular language dapat dideskripsikan dengan

Lebih terperinci

Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine yang tidak mengeluarkan output ini dikenal

Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine yang tidak mengeluarkan output ini dikenal FINITE STATE AUTOMATA (FSA) DAN FINITE STATE MACHINE (FSM) MATERI MINGGU KE-3 Finite State Automata (FSA) Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine

Lebih terperinci

TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I

TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I Konsep dan Notasi bahasa Thn 56-59 Noam chomsky melakukan penggolongan tingkatan dalam bahasa, yaitu menjadi 4 class

Lebih terperinci

Grammar dan Tingkat Bahasa

Grammar dan Tingkat Bahasa CSG3D3 Teori Komputasi Grammar dan Tingkat Bahasa Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing, and

Lebih terperinci

TEKNIK KOMPILASI Bahasa Regular

TEKNIK KOMPILASI Bahasa Regular TEKNIK KOMPILASI Bahasa Regular Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Tata bahasa reguler Sebuah bahasa dinyatakan regular jika terdapat Finite State Automata (FSA) yang

Lebih terperinci

MODUL 12: BENTUK-BENTUK SEDERHANA DAN BENTUK-BENTUK NORMAL

MODUL 12: BENTUK-BENTUK SEDERHANA DAN BENTUK-BENTUK NORMAL MODUL 12: BENTUK-BENTUK SEDERHANA DAN BENTUK-BENTUK NORMAL PENDAHULUAN Dalam bahasan berikut akan dilakukan cara-cara untuk memperbaiki grammar tanpa adanya perubahan penting dari bahasa yang dihasilkannya:

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL IV TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami teknik translasi NFA ke DFA dan daat menerakannya. Materi : Pengertian ekivalensi Langkah-langkah engubahan EKIVALENSI NON-DETERMINISTIC FINITE

Lebih terperinci

Ekspresi Reguler. Pertemuan Ke-8. Sri Handayaningsih, S.T., M.T. Teknik Informatika

Ekspresi Reguler. Pertemuan Ke-8. Sri Handayaningsih, S.T., M.T.   Teknik Informatika Ekspresi Reguler Pertemuan Ke-8 Sri Handayaningsih, S.T., M.T. Email : ning_s12@yahoo.com Teknik Informatika TIU dan TIK 1. memahami konsep ekspresi reguler dan ekivalensinya dengan bahasa reguler. 2.

Lebih terperinci

BAB I PENDAHULUAN 1-1

BAB I PENDAHULUAN 1-1 BAB I PENDAHULUAN 1.1 Pendahuluan Ilmu komputer memiliki dua komponen utama: pertama, model dan gagasan mendasar mengenai komputasi, kedua, teknik rekayasa untuk perancangan sistem komputasi, meliputi

Lebih terperinci

8 April 2015 Teori Bahasa dan Otomata

8 April 2015 Teori Bahasa dan Otomata EKSPRESI REGULAR MATERI MINGGU KE-4 EKSPRESI REGULAR Bahasa disebut reguler jika terdapat FSA yang dapat menerimanya. Bahasa reguler dinyatakan secara sederhana dengan ekspresi reguler/regular expression

Lebih terperinci

BAHASA BEBAS KONTEKS UNTUK KOMPLEMEN DARI STRING BERULANG CONTEXT FREE LANGUAGE FOR COMPLEMENT OF REPEATED STRING

BAHASA BEBAS KONTEKS UNTUK KOMPLEMEN DARI STRING BERULANG CONTEXT FREE LANGUAGE FOR COMPLEMENT OF REPEATED STRING BAHASA BEBAS KONTEKS UNTUK KOMPLEMEN DARI STRING BERULANG Suharni S., Armin Lawi dan Loeky Haryanto Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS) Jl. Perintis

Lebih terperinci

PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN

PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN Febri Nova Lenti STMIK AKAKOM Yogyakarta Jl. Raya Janti 143 Yogyakarta 55198 febri@akakom.ac.id ABSTRAK

Lebih terperinci

Reduksi DFA [Deterministic Finite Automata]

Reduksi DFA [Deterministic Finite Automata] Reduksi DFA [Deterministic Finite Automata] Untuk suatu bahasa regular kemungkinan ada sejumlah DFA yang dapat menerimanya Perbedaannya umumnya adalah pada jumlah state yang dimiliki oleh otomata-otomata

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54401/ Teori dan Bahasa Otomata 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4.

Lebih terperinci

Aplikasi Simulator Mesin Turing Pita Tunggal

Aplikasi Simulator Mesin Turing Pita Tunggal Aplikasi Simulator Mesin Turing Pita Tunggal Nuludin Saepudin / NIM 23515063 Program Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

TEKNIK KOMPILASI Konsep & Notasi Bahasa

TEKNIK KOMPILASI Konsep & Notasi Bahasa TEKNIK KOMPILASI Konsep & Notasi Bahasa Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Konsep dan Notasi bahasa Teknik Kompilasi merupakan kelanjutan dari konsepkonsep yang telah

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas

Lebih terperinci

Tujuan perancangan bhs program

Tujuan perancangan bhs program Tujuan perancangan bhs program Komunikasi dengan manusia Pencegahan dan deteksi kesalahan Usability Efektifitas pemrograman Compilability (mengurangi kompleksitas,mis:penggunaan bracket) Efisiensi dengan

Lebih terperinci

Mahasiswa memahami bahasa sebagai himpunan dan operasi 2 -nya, cara mendefinisikan bahasa, serta cara mengenali anggota 2 bahasa

Mahasiswa memahami bahasa sebagai himpunan dan operasi 2 -nya, cara mendefinisikan bahasa, serta cara mengenali anggota 2 bahasa Mahasiswa memahami bahasa sebagai himpunan dan operasi 2 -nya, cara mendefinisikan bahasa, serta cara mengenali anggota 2 bahasa JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM

Lebih terperinci

Komponen sebuah Kompilator

Komponen sebuah Kompilator Komponen sebuah Kompilator Program Subjek Program Objek ANALISIS SINTESIS Penganalisis Leksikal (Scanner) Penganalisis Sintaks (Parser) Penganalisis Semantik Pembentuk Kode Pengoptimal Kode TABEL 1 Scanning

Lebih terperinci

INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA

INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA Wiwin Suwarningsih Pusat Penelitian Informatika LIPI Jl. Sangkuriang No.21/154D ( komplek LIPI) Cisitu Bandung 40135, Indonesia

Lebih terperinci

BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA

BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA Bab V Context Free Grammar dan Push Down Automata 26 BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA TUJUAN PRAKTIKUM 1. Memahami CFG dan PDA 2. Memahami Context Free Grammar 3. Memahami Push Down Automata

Lebih terperinci

Teori Bahasa dan Otomata

Teori Bahasa dan Otomata Teori Bahasa dan Otomata Disajikan oleh: Bernardus Budi Hartono Web : http://pakhartono.wordpress.com/ E-mail : pakhartono at gmail dot com budihartono at acm dot org Teknik Informatika [Gasal 2009 2010]

Lebih terperinci

1, 2, 3

1, 2, 3 Penerapan Algoritma Depth First Search (DFS) Dinamis Untuk Menentukan Apakah Sebuah String Diterima Oleh Bahasa Reguler yang Didefinisikan Nondeterministic Finite Automata (NFA) Muhammad Ihsan, Ilden Abi

Lebih terperinci

anggota alfabet dinamakan simbol terminal atau token.

anggota alfabet dinamakan simbol terminal atau token. GRAMMAR DAN BAHASA MATERI MINGGU KE-2 TATA BAHASA Dalam pembicaraan tata bahasa, anggota alfabet dinamakan simbol terminal atau token. Kalimat adalah deretan hingga simbo-lsimbol terminal. Bahasa adalah

Lebih terperinci

BAB I TEORI BAHASA DAN AUTOMATA

BAB I TEORI BAHASA DAN AUTOMATA Bab 1 Teori Bahasa dan Automata 1 BAB I TEORI BAHASA DAN AUTOMATA TUJUAN PRAKTIKUM 1. Memahami Tentang Teori Bahasa 2. Memahami Automata dan Istilah Istilah yang terdapat dalam Automata 3. Mengerti Tentang

Lebih terperinci

1. Pendahuluan. 2. Tinjauan Pustaka

1. Pendahuluan. 2. Tinjauan Pustaka 1. Pendahuluan Ilmu komputer memiliki dua komponen utama yaitu model dan gagasan mendasar mengenai komputasi, serta teknik rekayasa untuk perancangan sistem komputasi. Teori bahasa dan automata merupakan

Lebih terperinci

Himpunan. by Ira Prasetyaningrum. Page 1

Himpunan. by Ira Prasetyaningrum. Page 1 Himpunan by Ira Prasetyaningrum Page 1 Set / Himpunan Set/Himpunan = kumpulan dari objek-objek yang berbeda Anggota Himpunan disebut elemen/anggota Contoh Listing: Example: A = {1,3,5,7} = {7, 5, 3, 1,

Lebih terperinci

Amir Hamzah AKPRIND PRESS 2009

Amir Hamzah AKPRIND PRESS 2009 1 TEORI BAHASA DAN OTOMATA Amir Hamzah AKPRIND PRESS 2009 1 TEORI BAHASA DAN OTOMATA Amir Hamzah JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT SAINS DAN TEKNOLOGI AKPRIND YOGYAKARTA AKPRIND

Lebih terperinci

1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.

1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1. I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan

Lebih terperinci

Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013

Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013 Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013 KONTRAK KULIAH 1. Presensi 15 menit diawal perkuliahan dan dilakukan sendiri (tidak Boleh Titip Presensi), setelahnya sistem akan ditutup 2.

Lebih terperinci

Teori Himpunan. Matematika Dasar untuk Teori Bahasa Otomata. Operasi pada Himpunan. Himpunan Tanpa Elemen. Notasi. Powerset & Cartesian Product

Teori Himpunan. Matematika Dasar untuk Teori Bahasa Otomata. Operasi pada Himpunan. Himpunan Tanpa Elemen. Notasi. Powerset & Cartesian Product Teori Himpunan Matematika Dasar untuk Teori Bahasa Otomata Teori Bahasa & Otomata Semester Ganjil 2009/2010 Himpunan adalah sekumpulan entitas tidak memiliki struktur sifatnya hanya keanggotaan Notasi

Lebih terperinci

Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan

Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan Overview Pertemuan : I Dosen Pembina : Danang Junaedi Deskripsi Tujuan Instruksional Kaitan Materi Penilaian Grade Referensi Jurusan Teknik Informatika Universitas Widyatama Deskripsi Mata kuliah ini mempelajari

Lebih terperinci

MODUL MATA KULIAH TEORI BAHASA DAN OTOMATA DOSEN:

MODUL MATA KULIAH TEORI BAHASA DAN OTOMATA DOSEN: MODUL MATA KULIAH TEORI BAHASA DAN OTOMATA DOSEN: Mira Kania S.,ST.,MT Utami Dewi W.,S.Kom IF I. PENDAHULUAN PENDAHULUAN Komputer digunakan sebagai alat bantu untuk menyelesaikan pekerjaan(task). Dua pertanyaan

Lebih terperinci

Teori Bahasa dan Operasi Matematis.

Teori Bahasa dan Operasi Matematis. Teori Bahasa dan Operasi Matematis http://www.brigidaarie.com Terminologi Bahasa Manfaat bahasa adalah sebagai media komunikasi yang menggunakan sekumpulan simbol dan dikombinasikan menurut aturan sintaksis

Lebih terperinci

IF-UTAMA 1. Definisi. Grammar. Definisi

IF-UTAMA 1. Definisi. Grammar. Definisi Definisi Grammar Bahasa adalah himpunan kata-kata atau kalimat yang telah disepakati, contoh : {makan, tidur, bermain, belajar} Bahasa Indonesia {shit, sheet, damn, kiss, smell} Bahasa Inggris {konichiwa,

Lebih terperinci

Tata Bahasa Kelas Tata Bahasa. Konsep Bahasa (1)

Tata Bahasa Kelas Tata Bahasa. Konsep Bahasa (1) Tata Bahasa Kelas Tata Bahasa Risnawaty 2350376 Jurusan Teknik Informatika Institut Teknologi Bandung Page 1 Konsep Bahasa (1) String(kata) adalah suatu deretan berhingga dari simbol-simbol. Panjang string

Lebih terperinci

Pendahuluan. Push Down Atomata. Perbedaan FA dan PDA [7] 4/25/2012 IF-UTAMA 1. Grammar-machine equivalence [3] Latar belakang munculnya konsep PDA

Pendahuluan. Push Down Atomata. Perbedaan FA dan PDA [7] 4/25/2012 IF-UTAMA 1. Grammar-machine equivalence [3] Latar belakang munculnya konsep PDA Push Down Automata Pendahuluan Latar belakang munculnya konsep PDA [1 & 3] Terdapat context-free languages yang tidak regular, contoh {0 n 1 n 0=

Lebih terperinci

TEORI BAHASA DAN OTOMATA PENGANTAR

TEORI BAHASA DAN OTOMATA PENGANTAR TEORI BAHASA DAN OTOMATA PENGANTAR PERKULIAHAN Jumlah pertemuan minimal 13 kali dan maksimal 15 kali sudah termasuk dengan ujian tengah semester (UTS) PENILAIAN ABSEN 10% (Minimal kehadiran 80% dari jumlah

Lebih terperinci

BAHASA REGULER 1. Ekspresi Regular

BAHASA REGULER 1. Ekspresi Regular BAHASA REGULER 1. Ekspresi Regular Bahasa regular adalah penyusun ekspresi regular (ER) Ekspresi regular terdiri dari kombinasi simbol-simbol atomik menggunakan 3 operator : concate, alternate, dan closure/repetisi.

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL I TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami pengertian dan kedudukan Teori Bahasa dan Otomata (TBO) pada ilmu komputer Definisi dan Pengertian Teori Bahasa dan Otomata Teori bahasa dan

Lebih terperinci

Teori Bahasa & Otomata

Teori Bahasa & Otomata Teori Bahasa & Otomata Pendilkom/Ilkom Universitas Pendidikan Indonesia 1 Daftar Isi Bab 1 Pendahuluan Bab 2 Matematika Dasar Bab 3 Dasar-Dasar Teori Bahasa Bab 4 Representasi Bahasa Bab 5 Klasifikasi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER

RENCANA PEMBELAJARAN SEMESTER RENCANA PEMBELAJARAN SEMESTER (RPS) KBKF43102 TEORI BAHASA DAN AUTOMATA S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UPI YPTK PADANG LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

BAB 2. ANALISIS LEKSIKAL

BAB 2. ANALISIS LEKSIKAL ANALISIS LEKSIKAL 2.1 BAB 2. ANALISIS LEKSIKAL PERAN PENGANALISIS LEKSIKAL INPUT BUFFERING SPESIFIKASI TOKEN PENGENALAN TOKEN SATU BAHASA UNTUK PENENTUAN (SPECIFYING) PENGANALISIS LEKSIKAL FINITE AUTOMATA

Lebih terperinci

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR Bab III Automata Hingga Non-Deterministik 15 BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR TUJUAN PRAKTIKUM 1) Mengetahui apa yang dimaksud dengan Automata Hingga Non-deterministik

Lebih terperinci

PERTEMUAN 5. Teori Himpunan

PERTEMUAN 5. Teori Himpunan PERTEMUAN 5 Teori Himpunan Teori Himpunan Definisi 7: Himpunan (set) adalah kumpulan objek-objek yang terdfinisi dengan jelas Penyajian Himpunan 1. Enumerasi Enumerasi artinya menuliskan semua elemen (anggota)

Lebih terperinci

Teknik Kompiler 5. oleh: antonius rachmat c, s.kom, m.cs

Teknik Kompiler 5. oleh: antonius rachmat c, s.kom, m.cs Teknik Kompiler 5 oleh: antonius rachmat c, s.kom, m.cs TATA BAHASA Tata bahasa / Grammar dalam OTOMATA adalah kumpulan dari himpunan variabel (non-terminal), simbol-simbol awal dan terminal yang dibatasi

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] Otomata (Automata) Otomata adalah mesin abstrak yang dapat mengenali (recognize), menerima (accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu. Beberapa

Lebih terperinci

PENDAHULUAN. 1. Himpunan

PENDAHULUAN. 1. Himpunan PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Von Neumann

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Von Neumann BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Dalam satu dasawarsa terakhir ini Teknologi Informasi, khususnya bahasa pemprograman berkembang sangat pesat. Ini terbukti dengan munculnya banyak sekali bahasa

Lebih terperinci

ANALISA KASUS Ekspresi Kondisional

ANALISA KASUS Ekspresi Kondisional ANALISA KASUS Ekspresi Kondisional Tentang analisa kasus Analisa kasus adalah salah satu bentuk DEKOMPOSISI dari satu problema menjadi beberapa sub-problema, yang ingin dipecahkan secara independent (tak

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54401/ Teori dan Bahasa Otomata Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Februari 2014 Jml Jam kuliah dalam

Lebih terperinci

TEORI BAHASA & AUTOMATA

TEORI BAHASA & AUTOMATA TEORI BAHASA & AUTOMATA Dosen: Dadang mulyana Alamat email untuk tugas: dadangstmik@gmail.com 1 Cara pengiriman tugas: Dalam subjek email tuliskan: Instansi_kelas_nama_matakuliah_jenistugas Contoh: Ahmad

Lebih terperinci

HIMPUNAN. A. Pendahuluan

HIMPUNAN. A. Pendahuluan HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,

Lebih terperinci

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.

Lebih terperinci

Syntax, Semantic & Grammar. Konsep Bahasa Pemrograman Materi 3 Yudianto Sujana, M.Kom

Syntax, Semantic & Grammar. Konsep Bahasa Pemrograman Materi 3 Yudianto Sujana, M.Kom Syntax, Semantic & Grammar Konsep Bahasa Pemrograman Materi 3 Yudianto Sujana, M.Kom Definisi Bahasa pemrograman merupakan notasi formal Mempunyai 2 komponen utama Syntax dan Semantic Syntax: Kumpulan

Lebih terperinci

Teori Himpunan Elementer

Teori Himpunan Elementer Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements

Lebih terperinci

MATEMATIKA BISNIS. Pendahuluan: 1. Kontrak Perkuliahan 2. Himpunan. Sitti Rakhman, SP., MM. Modul ke: Fakultas FEB. Program Studi Manajemen

MATEMATIKA BISNIS. Pendahuluan: 1. Kontrak Perkuliahan 2. Himpunan. Sitti Rakhman, SP., MM. Modul ke: Fakultas FEB. Program Studi Manajemen Modul ke: MATEMATIKA BISNIS Pendahuluan: 1. Kontrak Perkuliahan 2. Himpunan Fakultas FEB Sitti Rakhman, SP., MM. Program Studi Manajemen www.mercubuana.ac.id KONTRAK PERKULIAHAN SAP Rincian Besarnya Bobot

Lebih terperinci

SINTAKS. Sintaks dari bahasa pemrograman di defenisikan dengan 2 kumpulan aturan, yaitu:

SINTAKS. Sintaks dari bahasa pemrograman di defenisikan dengan 2 kumpulan aturan, yaitu: SINTAKS Bahasa mesin adalah bentuk terendah komputer. Kita dapat berhubungan langsung dengan bagian-bagian yang ada di dalam komputer seperti bits, register. Bahasa mesin terdiri dari bit-bit 0 dan 1.

Lebih terperinci

Minimum DFA. CSG3D3 Teori Komputasi

Minimum DFA. CSG3D3 Teori Komputasi CSG3D3 Teori Komputasi Minimum DFA Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing, and Multimedia Bahasan

Lebih terperinci

Bab XI, State Diagram Hal: 226

Bab XI, State Diagram Hal: 226 Bab XI, State Diagram Hal: 226 BAB XI, STATE DIAGRAM State Diagram dan State Table Untuk menganalisa gerbang yang dihubungkan dengan flip-flop dikembangkan suatu diagram state dan tabel state. Ada beberapa

Lebih terperinci