STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

Ukuran: px
Mulai penontonan dengan halaman:

Download "STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS"

Transkripsi

1 STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS

2 Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi di atas memenuhi ketentuan atau aksioma tertentu

3 Pengantar Struktur Aljabar Struktur aljabar dengan satu himpunan dan satu operasi grup, semi grup, monoid, grupoid

4 Sruktur aljabar dengan satu himpunan dan lebih dari satu operasi gelanggang, lapangan, daerah integral, dll

5 Struktur aljabar dengan dua himpunan dan beberapa operasi ruang vektor, modul, dll

6 GRUP dan SUBGRUP

7 Operasi Biner (def 1.4.1) Bila A suatu himpunan, maka suatu Operasi biner T : A x A A adalah pemetaan yang mengawankan setiap pasang (a,b) A x A dengan satu unsur c A Notasi: T(a,b) = c a T b = c a. b = c, di mana a, b, c A.

8 Operasi biner Dengan kata lain Terdapat operasi antara unsur-unsur dalam himpunan A yang bersifat tertutup, setiap dua unsur dalam A, bila dioperasikan menghasilkan unsur ketiga yang juga unsur dalam A kembali.

9 Operasi Biner Dalam bahasa matematika: ( a,b A ) ( c A) a * b = c dimungkinkan c = a atau c = b atau a dan c b. c

10 Contoh Operasi Biner Operasi (+) dan (.) pada himp bil bulat (Z) Coba cek! Operasi * pada Z + dengan n*m = n m. Apakah biner?

11 GRUPOID Definisi Suatu himpunan tidak kosong G dengan operasi biner ( *) di dalamnya, disebut grupoid Notasi: (G, *)

12 Contoh Grupoid (Z,+) (G,*) dgn G = { x, y, z } dan * x y z x x y y y y x y z z y x

13 Grupoid Abel Grupoid dengan sifat komutatif Jika (G, *) maka x, y G berlaku x * y = y * x

14 Semi Grup Definisi Suatu grupoid (G, * ) disebut semi-grup, apabila terhadap operasi biner dalam G berlaku sifat asosiatif sebagai berikut: x, y, z G berlaku (x * y) * z = x * (y * z)

15 Contoh Semi Grup (Q,.) berlaku (n. m). p = n.( m. p ), n,m,p Q.

16 LATIHAN Bila R =R {-1} himpunan bil riil tanpa -1 dan operasi dalam R ditentukan sbb: x*y = x + y + xy, dengan x, y R. Apakah operasi * merupakan operasi biner?

17 LATIHAN Manakah di antara struktur aljabar berikut mrpk grupoid, grupoid yang komutatif dan yang berupa semi-grup: a). Operasi biner * dalam Z dgn a* b = a - b b). Operasi biner * dalam Q dgn a * b = ab + 1 c). Operasi biner * dalam Z + dgn a * b = 2 a b

18 LATIHAN Bila S himpunan berhingga, A(S) = { f : S S / f pemetaan bijektif } maka A(S) merupakan semi-grup terhadap operasi komposisi, jelaskan!

19 Sifat-sifat istimewa dalam grupoid Idempoten Mempunyai unsur identitas Mempunyai unsur invers Sifat-sifat tersebut kadang terdapat pada grupoid

20 Sifat idempoten Suatu unsur a G disebut idempoten jika a* a = a Contoh: 1. Unsur 0 dalam semi-grup ( Z,+ ) 2. Unsur 1 dan 0 dalam Semi-grup ( Z,. ) Latihan : Tentukan unsur idempotent pada Z 4 dan Z 6

21 Unsur Identitas Suatu unsur e G disebut unsur identitas kiri jika berlaku sifat: x G maka berlaku e * x = x. unsur e disebut identitas kanan jika x G maka x * e = x. Identitas kiri = identitas kanan e tunggal

22 Contoh unsur Identitas Unsur 0 dalam ( Z, + ) Unsur 1 dalam (Z,. ) unsur 1 dalam Z 6 dengan operasi perkalian modulo 6

23 Unsur Invers Pada grupoid ( G, * ) dgn unsur identitas e, unsur a G dikatakan mempunyai invers jika terdapat unsur a -1 G yang memenuhi a -1 *a = e = a * a -1

24 Contoh unsur invers Setiap n dalam (Z,+) mempunyai invers yaitu (-n). G = { a, b, c } dengan operasi biner seperti pada tabel sebagai berikut: * a b c a b a c b a b c unsur identitas : b a -1 =a dan b -1 =b, c -1 =? c a c a

25 Perhatikan tabel berikut G = { a, b, c } dengan operasi biner seperti pada tabel sebagai berikut: tentukan unsur identitas dan unsur inversnya? * a b c a b a c b a b c c a c b

26 GRUP Semi grup yang memuat unsur identitas dan setiap unsurnya mempunyai invers merupakan struktur aljabar yang disebut grup.

27 Grup (def 2.1.4) Suatu himpunan tidak kosong G merupakan suatu grup jika di dalam G terdapat operasi biner, misalkan. yang memenuhi sifat - sifat a,b,c G berlaku : a). Assosiatif : a. ( b. c ) = ( a. b ). c b). e G a. e = e. a = a c). a G a -1 G a. a -1 = a -1. a = e

28 Grup (def ) Suatu himpunan tidak kosong G merupakan suatu grup jika di dalam G terdapat operasi * dan unsur-unsur dalam G memenuhi sifat a) tertutup: a,b G maka a *b = c dengan c G b) Assosiatif : a,b,c G berlaku a*(b*c ) = (a*b) *c c). e G a * e = e * a = a, a G d). a G a -1 G a * a -1 = a -1 * a = e

29 Contoh Grup A(S) = { f : S S / f pemetaan bijektif, S } dengan operasi komposisi (Z, +) (Z 6, +) Bagaimana dengan (Z,.) dan (Z 6,.), apakah keduanya Grup?

30 LATIHAN Apabila G = { 1, -1, i, -i } di mana i 2 = -1 dengan operasi dalam G adalah perkalian bilangan kompleks, Selidiki apakah ( G,. ) merupakan suatu grup.

31 LATIHAN Apakah struktur aljabar brkt mrpk suatu grup, bila jawab ya, buktikan dan bila jawab bukan, syarat grup mana yang tidak dipenuhi a). Himpunannya Z dengan operasi yang ditentukan a * b = ab b). Pada 2Z = { 2n / n Z } dengan operasi sebagai berikut: a * b = a + b

32 LATIHAN Selidiki manakah struktur aljabar berikut membentuk grup: a). Z = { 2n + 1 / n Z } dengan operasi + b). Z dengan operasi yang ditentukan a * b = a + b + 1

33 LATIHAN Buktikan dengan menggunakan tabel bahwa Z 4 merupakan grup terhadap penjumlahan modulo 4.

34 LATIHAN Himpunan H = { 1, 2, 3 } dengan operasi perkalian modulo 4, apakah merupakan grup? Bila bukan, syarat mana yang tidak dipenuhi. Bagaimana dengan himpunan K={1, 2, 3, 4} terhadap operasi perkalian modulo 5, jelaskan dengan bukti.

35 Grup Komutatif Apabila dalam grup G juga dipenuhi sifat a b = b a untuk setiap a,b G, maka grup G disebut sebagai grup komutatif Contoh : (Z, +)

36 Grup Komutatif Bagaimana dengan (Z,.)? Bukan merupakan grup karena tidak setiap unsur Z mempunyai invers

37 Grup Komutatif Jika M 2 (R) adalah semua matriks bertipe 2 x 2 dengan elemen-elemennya diambil dari himpunan bilangan riil, apakah merupakan suatu grup komutatif terhadap operasi perkalian matriks?

38 Jika M 2 (R) adalah semua matriks bertipe 2 x 2 dengan elemen-elemennya diambil dari himpunan bilangan riil, bukanlah suatu grup terhadap operasi pergandaan matriks. Jawab: Pandang M 0 2 (R ), jelas bahwa tidak mempunyai invers di dalam M 2 (R) Jadi M 2 (R) bukan grup terhadap pergandaan matriks. 38

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

Syarat Cukup dan Perlu Elemen Gelanggang Merupakan Pembagi Nol Kiri maupun Kanan )(RMnn

Syarat Cukup dan Perlu Elemen Gelanggang Merupakan Pembagi Nol Kiri maupun Kanan )(RMnn Syarat Cukup dan Perlu Elemen Gelanggang Merupakan Pembagi Nol Kiri maupun Kanan )(RMnn Oleh K a r y a t i R. Rosnawati Abstrak Himpunan matriks ordo atas gelanggang nr komutatif, yang selanjutnya dinotasikan

Lebih terperinci

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1 Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian

Lebih terperinci

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.)

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) Pertemuan 1 HIMPUNAN 1.3.1. Definisi a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) b. Misalkan nєν Himpunan S dikatakan mempunyai n anggota jika ada suatu fungsi

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER SILABUS NAMA SEKOLAH : SMK Negeri 1 Surabaya MATA PELAJARAN : MATEMATIKA (Kelompok Teknologi Informasi) KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

Lebih terperinci

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. . INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling

Lebih terperinci

Teori dan Operasi Pada Himpunan

Teori dan Operasi Pada Himpunan Teori dan Operasi Pada Himpunan Oleh: Suprih Widodo Pendahuluan Pada dasarnya setiap hari manusia berhubungan dengan himpunan, klasifikasi himpunan dalam hidup manusia sangat beragam dan banyak sekali,

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

BAB 3 : INVERS MATRIKS

BAB 3 : INVERS MATRIKS BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan

Lebih terperinci

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 ALJABAR Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 Aljabar adalah salah satu cabang penting dalam matematika. Kata aljabar

Lebih terperinci

LOGIKA DAN PEMBUKTIAN

LOGIKA DAN PEMBUKTIAN BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran

Lebih terperinci

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. 1 FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke B kita

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

PERILAKU NOL DAN TAK-HINGGA SERTA BENTUK TAK-TENTU

PERILAKU NOL DAN TAK-HINGGA SERTA BENTUK TAK-TENTU PERILAKU NOL DAN TAK-HINGGA SERTA BENTUK TAK-TENTU Sumardyono, M.Pd. A. PENDAHULUAN Aritmetika dimulai dari perhitungan bilangan asli yang masih sederhana. Kemudian berkembang dengan menggunakan bilangan

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH

PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH SKRIPSI Oleh : Novi Irawati J2A 005 038 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

TOPOLOGI METRIK PARSIAL

TOPOLOGI METRIK PARSIAL Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 71 78 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND TOPOLOGI METRIK PARSIAL DESY WAHYUNI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

BAB 5 POSET dan LATTICE

BAB 5 POSET dan LATTICE BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a

Lebih terperinci

Hendra Gunawan. 5 Februari 2014

Hendra Gunawan. 5 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 5 Februari 2014 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial il 7.3 Integral Trigonometrik

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Misalkan s suatu garis dalam bidang (Euclides), α menyatakan

Lebih terperinci

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar Bab I Fungsi Dua Peubah atau Lebih Pengantar Seperti halna dengan fungsi satu peubah kita dapat mendefinisikan fungsi dua peubah atau lebih sebagai pemetaan dan sebagai pasangan berurut.fungsi dengan peubah

Lebih terperinci

MODUL LOGIKA MATEMATIKA

MODUL LOGIKA MATEMATIKA PERENCANAAN PEMBELAJARAN MATEMATIKA MODUL LOGIKA MATEMATIKA AUTHOR: Navel Mangelep UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA KATA PENGANTAR Salah satu penunjang

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Dari tabel diatas dapat dibuat persamaan boolean sebagai berikut : Dengan menggunakan peta karnaugh, Cy dapat diserhanakan menjadi : Cy = AB + AC + BC

Dari tabel diatas dapat dibuat persamaan boolean sebagai berikut : Dengan menggunakan peta karnaugh, Cy dapat diserhanakan menjadi : Cy = AB + AC + BC 4. ALU 4.1. ALU (Arithmetic and Logic Unit) Unit Aritmetika dan Logika merupakan bagian pengolah bilangan dari sebuah komputer. Di dalam operasi aritmetika ini sendiri terdiri dari berbagai macam operasi

Lebih terperinci

KATA PENGANTAR. Semoga bermanfaat. Disusun : Memed Wachianto ( Guru Matematika SMK Negeri 10 Semarang ) Geogebra - 1

KATA PENGANTAR. Semoga bermanfaat. Disusun : Memed Wachianto ( Guru Matematika SMK Negeri 10 Semarang ) Geogebra - 1 KATA PENGANTAR Saat ini adalah era ICT (Information and Communication Technology). Seiring dengan itu saat ini SPSS dan MINITAB, yaitu software untuk statistika yang merupakan cabang dari matematika. Geogebra

Lebih terperinci

Analisis SI dan SKL Mata Pelajaran Matematika SMP/MTs untuk Optimalisasi Tujuan Mata Pelajaran Matematika

Analisis SI dan SKL Mata Pelajaran Matematika SMP/MTs untuk Optimalisasi Tujuan Mata Pelajaran Matematika Analisis SI dan SKL Mata Pelajaran Matematika SMP/MTs untuk Optimalisasi Tujuan Mata Pelajaran Matematika Penulis Dra. Sri Wardhani Penilai Dra. Th Widyantini, M.Si. Editor Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memerebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 0 PENYISIHAN II PERORANGAN LCCM TINGKAT SMP x. I. x x II. x x x 6 x III. x x 6

Lebih terperinci

B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER

B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER A B C D E F G H I J K L M N O P Q R S T U V W X Y Z POHON BINER Tinaliah, S.Kom DEFINISI Pohon (dalam struktur data) struktur berisi sekumpulan elemen dimana salah satu elemen adalah akar (root) dan elemen-elemen

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1 EDISI REVISI 04 MATEMATIKA SMA/MA SMK/MAK Kelas X Semester Hak Cipta 04 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan

Lebih terperinci

PEMBUATAN TANDA TANGAN DIGITAL MENGGUNAKAN DIGITAL SIGNATURE ALGORITHM

PEMBUATAN TANDA TANGAN DIGITAL MENGGUNAKAN DIGITAL SIGNATURE ALGORITHM PEMBUATAN TANDA TANGAN DIGITAL MENGGUNAKAN DIGITAL SIGNATURE ALGORITHM Faizah Nurhasanah 1, Raden Sulaiman 1 1 Jurusan Matematika, MIPA, Universitas Negeri Surabaya 60231 1 Jurusan Matematika, MIPA, Universitas

Lebih terperinci

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11 B. Relasi Sebelum mendefinisikan produk Cartesius, terlebih dahulu Anda perlu mengenal pengertian pasangan terurut. Dalam sistem koordinat Cartesius dengan sumbu x dan sumbu y, kita mengetahui bahwa titik

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

SYARAT PERLU DAN SYARAT CUKUP KEBERADAAN DAN KETUNGGALAN KESEIMBANGAN NASH CAMPURAN SEMPURNA PADA BIMATRIX GAMES

SYARAT PERLU DAN SYARAT CUKUP KEBERADAAN DAN KETUNGGALAN KESEIMBANGAN NASH CAMPURAN SEMPURNA PADA BIMATRIX GAMES Jurnal Matematika UNND Vol. 2 No. 2 Hal. 54 62 ISSN : 233 291 c Jurusan Matematika FMIP UNND SYRT PERLU DN SYRT CUKUP KEBERDN DN KETUNGGLN KESEIMBNGN NSH CMPURN SEMPURN PD BIMTRIX GMES NGGI MUTI SNI Program

Lebih terperinci

Analisis Input-Output dengan Microsoft Office Excel

Analisis Input-Output dengan Microsoft Office Excel Analisis Input-Output dengan Microsoft Office Excel Junaidi, Junaidi (Staf Pengajar Fakultas Ekonomi dan Bisnis Universitas Jambi) Tulisan ini membahas simulasi/latihan analisis Input-Output (I-O) dengan

Lebih terperinci

Graph. Politeknik Elektronika Negeri Surabaya

Graph. Politeknik Elektronika Negeri Surabaya Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar

Lebih terperinci

BAB I PENDAHULUAN. dari ketiadaan. Dialah Tuhan yang ilmunya meliputi segala sesuatu. Sungguh

BAB I PENDAHULUAN. dari ketiadaan. Dialah Tuhan yang ilmunya meliputi segala sesuatu. Sungguh BAB I PENDAHULUAN 1.1 Latar Belakang Al Qur an adalah kalam Allah yang Maha Kuasa, pencipta segala sesuatu dari ketiadaan. Dialah Tuhan yang ilmunya meliputi segala sesuatu. Sungguh banyak hadits-hadits

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Untuk SMA/MA Kelas X Mata Pelajaran : Matematika (Wajib) Penerbit dan Percetakan Jl. Tengah No. 37, Bumi Asri Mekarrahayu Bandung-40218 Telp. (022) 5403533 e-mail:srikandiempat@yahoo.co.id

Lebih terperinci

TEORI BAHASA DAN OTOMATA

TEORI BAHASA DAN OTOMATA TEORI BAHASA DAN OTOMATA Bentuk Normal Greibach/Greibach Normal Form (GNF) adalah suatu tata bahasa bebas konteks (CFG) yang aturan produksinya berada dalam bentuk : A a a : simbol terminal(tunggal), a

Lebih terperinci

Seperti yang ada dalam storyboard, multimedia pembelajaran saya terdiri dari empat menu utama yaitu:

Seperti yang ada dalam storyboard, multimedia pembelajaran saya terdiri dari empat menu utama yaitu: Belajar Matriks Mudah dan Menyenangkan (Chapter 2) Assalammualaikum.. Salam Matematika!! Pada chapter sebelumnya, saya telah sedikit memberikan penjelasan mengenai Multimedia Pembelajaran Interaktif dan

Lebih terperinci

BAB 2 FUNGSI MEAN RESIDUAL LIFE

BAB 2 FUNGSI MEAN RESIDUAL LIFE BB 2 FUNGSI MEN RESIDUL LIFE 2. Sifat-Sifat Peluang 2.. Identitas dasar Pertama akan ditunjukkan sebuah hubungan dasar di antara fungsi survival dan momen dari distribusi. Untuk sebuah random variabel

Lebih terperinci

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS

KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS STUDY ON SUFFICIENT CONDITION FOR THE CHROMATIC POLYNOMIAL OF CONNECTED GRAPH HAS COMPLEX ROOTS Yuni Dewi Purnama

Lebih terperinci

PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN 2004-2009

PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN 2004-2009 PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN 2004-2009 MATEMATIKA Untuk SMP / MTS Copyright soal-unas.blogspot.com Artikel ini boleh dicopy, dikutip, di cetak dalam

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam Hasil Kali Dalam dan Norm Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 12 Pada bab ini kita akan

Lebih terperinci

Melukis Grafik Fungsi yang Rumit dengan Mudah

Melukis Grafik Fungsi yang Rumit dengan Mudah Kaunia, Vol. IX, No. 2, Oktober 2013 Melukis Grafik Fungsi yang Rumit dengan Mudah Faiz Ahyaningsih Dosen FMIPA Matematika UNIMED Abstract This paper aim how to sketch the complicated curve y = f(x) easily.

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

PERTIDAKSAMAAN LINEAR SATU VARIABEL. Sumber: Dok. Penerbit

PERTIDAKSAMAAN LINEAR SATU VARIABEL. Sumber: Dok. Penerbit 4 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL Sumber: Dok. Penerbit Pernahkah kalian berbelanja alat-alat tulis? Kamu berencana membeli 10 buah bolpoin, sedangkan adikmu membeli 6 buah bolpoin dengan

Lebih terperinci

Bab 3. Permutasi dan Kombinasi

Bab 3. Permutasi dan Kombinasi Bab 3. Permutasi dan Kombinasi Dalam kehidupan sehari-hari kita sering menghadapi masalah pengaturan suatu obyek yang terdiri dari beberapa unsur, baik yang disusun dengan mempertimbangkan urutan sesuai

Lebih terperinci

BAB I PENDAHULUAN. hlm. 15. 1 Pantur Silaban, Kalkulus Lanjutan, (Jakarta: Erlangga, 1984), hlm. 1.

BAB I PENDAHULUAN. hlm. 15. 1 Pantur Silaban, Kalkulus Lanjutan, (Jakarta: Erlangga, 1984), hlm. 1. BAB I PENDAHULUAN A. Latar Belakang Bilangan bulat merupakan salah satu pokok bahasan di dalam pelajaran Matematika jenjang SMP/M.Ts. kelas VII. Bilangan bulat terdiri dari bilangan bulat positif, bilangan

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010 Rumus-rumus Matematika 1 Sesuai SKL UN 2010 KUMPULN RUMUS MTMTIK UNTUK SMP SSUI NGN STNR KOMPTNSI LULUSN UJIN NSIONL THUN PLJRN 2009/2010 SKL Nomor 1 : Menggunakan konsep operasi hitung dan sifat-sifat

Lebih terperinci

UN SMA IPA 2010 Matematika

UN SMA IPA 2010 Matematika UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui

Lebih terperinci

PENERAPAN MODEL PEMBELAJARAN MATEMATIKA CAS DI PERGURUAN TINGGI. Bambang Priyo Darminto. Abstrak

PENERAPAN MODEL PEMBELAJARAN MATEMATIKA CAS DI PERGURUAN TINGGI. Bambang Priyo Darminto. Abstrak PENERAPAN MODEL PEMBELAJARAN MATEMATIKA CAS DI PERGURUAN TINGGI Bambang Priyo Darminto Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Abstrak Pengetahuan matematika dan komputer

Lebih terperinci

Hierarki organisasi data tersebut terdiri dari enam tingkatan, yaitu : bit, byte/karakter, field/elemen data, rekord, file dan data base.

Hierarki organisasi data tersebut terdiri dari enam tingkatan, yaitu : bit, byte/karakter, field/elemen data, rekord, file dan data base. Pertemuan 11 Sistem Data Base Hierarki Data Data merupakan representasi dari fakta, yg dapat diperoleh darimana saja yang dapat dimengerti oleh komputer. Manajemen data dapat dilakukan dgn atau tanpa komputer

Lebih terperinci

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

BAB II CITRA DIGITAL

BAB II CITRA DIGITAL BAB II CITRA DIGITAL DEFINISI CITRA Citra adalah suatu representasi(gambaran),kemiripan,atau imitasi dari suatu objek. DEFINISI CITRA ANALOG Citra analog adalahcitra yang bersifat kontinu,seperti gambar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 SINYAL DASAR ATAU FUNGSI SINGULARITAS Sinyal dasar atau fungsi singularitas adalah sinyal yang dapat digunakan untuk menyusun atau mempresentasikan sinyal-sinyal yang lain. Sinyal-sinyal

Lebih terperinci

BAB 3 PERANCANGAN. Input Data, Pre-processing, Feature Extraction, Training, dan Verification. Pada tahap

BAB 3 PERANCANGAN. Input Data, Pre-processing, Feature Extraction, Training, dan Verification. Pada tahap BAB 3 PERANCANGAN 3.1 Desain Verifikasi Tanda Tangan Desain verifikasi tanda tangan secara umum terdiri dari lima tahap utama, yaitu Input Data, Pre-processing, Feature Extraction, Training, dan Verification.

Lebih terperinci

TEOREMA TITIK TETAP DI RUANG BANACH CONE

TEOREMA TITIK TETAP DI RUANG BANACH CONE TEOREMA TITIK TETAP DI RUANG BANACH CONE Skripsi Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Matematika BAYU ADHI PRATAMA 08610031 PROGRAM STUDI MATEMATIKA FAKULTAS SAINS

Lebih terperinci

TERAPAN POHON BINER 1

TERAPAN POHON BINER 1 TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi

Lebih terperinci

memberikan output berupa solusi kumpulan pengetahuan yang ada.

memberikan output berupa solusi kumpulan pengetahuan yang ada. MASALAH DAN METODE PEMECAHAN MASALAH (Minggu 2) Pendahuluan Sistem yang menggunakan kecerdasan buatan akan memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada.

Lebih terperinci

BAB I PENGANTAR MATEMATIKA EKONOMI

BAB I PENGANTAR MATEMATIKA EKONOMI BAB I PENGANTAR MATEMATIKA EKONOMI 1.1 Matematika Ekonomi Aktivitas ekonomi merupakan bagian dari kehidupan manusia ribuan tahun yang lalu. Kata economics berasal dari kata Yunani klasik yang artinya household

Lebih terperinci

Konsep Deret & Jenis-jenis Galat

Konsep Deret & Jenis-jenis Galat Metode Numerik (IT 402) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 2 Konsep Deret & Jenis-jenis Galat ALZ DANNY WOWOR 1. Pengatar Dalam Kalkulus, deret sering digunakan untuk

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

CONTOH SILABUS BERDIVERSIFIKASI DAN PENILAIAN BERBASIS KELAS

CONTOH SILABUS BERDIVERSIFIKASI DAN PENILAIAN BERBASIS KELAS CONTOH SILABUS BERDIVERSIFIKASI DAN BERBASIS KELAS Mata Pelajaran MATEMATIKA LAYANAN KHUSUS SEKOLAH dan MADRASAH IBTIDAIYAH DEPARTEMEN PENDIDIKAN NASIONAL Jakarta, 2003 Katalog dalam Terbitan Indonesia.

Lebih terperinci

Agar Xn berperilaku acak yang dapat dipertanggungjawabkan :

Agar Xn berperilaku acak yang dapat dipertanggungjawabkan : ara memperoleh data Zaman dahulu, dgn cara : 1. Melempar dadu 2. Mengoco artu Zaman modern (>1940), dgn cara membentu bilangan aca secara numeri/ aritmati(menggunaan omputer), disebut Pseudo Random Number

Lebih terperinci

PENYUSUNAN LEMBAR KEGIATAN SISWA (LKS) SEBAGAI BAHAN AJAR

PENYUSUNAN LEMBAR KEGIATAN SISWA (LKS) SEBAGAI BAHAN AJAR ARTIKEL PENYUSUNAN LEMBAR KEGIATAN SISWA (LKS) SEBAGAI BAHAN AJAR Oleh Dra. Theresia Widyantini, M.Si PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA 2013 1 Abstrak

Lebih terperinci

PANDUAN SINGKAT APLIKASI SIAP

PANDUAN SINGKAT APLIKASI SIAP PANDUAN SINGKAT APLIKASI SIAP 1. sama dengan Home sama dengan menu pada Pegawai adalah tampilan utama dimana menampilkan : - Satuan Kerja : berisi satuan kerja dan daftar nama pegawai sesuai penempatannya.

Lebih terperinci

a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6

a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6 1. Kejadian a. Ruang Sampel dan Titik Sampel Ruang Sampel adalah himpunan dari semua hasil yang mungkin dari suatu kegiatan Contoh : Kegiatan melempar sebuah dadu hasil atau angka yang mungkin muncul adalah

Lebih terperinci

MATEMATIKA DISKRIT II ( 2 SKS)

MATEMATIKA DISKRIT II ( 2 SKS) MATEMATIKA DISKRIT II ( 2 SKS) Rabu, 18.50 20.20 Ruang Hard Disk PERTEMUAN XI, XII RELASI Dosen Lie Jasa 1 Matematika Diskrit Graf (lanjutan) 2 Lintasan dan Sirkuit Euler Lintasan Euler ialah lintasan

Lebih terperinci

9. K omunikasi Bukti Bukti Secara Visual

9. K omunikasi Bukti Bukti Secara Visual 9. Komunikasi Bukti Bukti Secara 9. Komunikasi Bukti Bukti Secara Visual Pembaca akan menilai kualitas dari penelitian anda berdasarkan pentingnya klaim anda dan kekuatan dari argumen anda Sebelumnya,

Lebih terperinci

BAB III LIMIT DAN FUNGSI KONTINU

BAB III LIMIT DAN FUNGSI KONTINU BAB III LIMIT DAN FUNGSI KONTINU Konsep it mempnyai peranan yang sangat penting di dalam kalkls dan berbagai bidang matematika. Oleh karena it, konsep ini sangat perl ntk dipahami. Meskipn pada awalnya

Lebih terperinci

Bab 15. Interaksi antar dua spesies (Model Kerjasama)

Bab 15. Interaksi antar dua spesies (Model Kerjasama) Bab 15. Interaksi antar dua spesies (Model Kerjasama) Dalam hal ini diberikan dua spesies yang hidup bersama dalam suatu habitat tertutup. Kita ketahui bahwa terdapat beberapa jenis hubungan interaksi

Lebih terperinci

MODUL LABORATORY. (Gambar 1.1) (Gambar 1.2)

MODUL LABORATORY. (Gambar 1.1) (Gambar 1.2) MODUL LABORATORY Modul ini digunakan untuk mencatat, mencari, mengevaluasi dan mengkonfirmasi penerimaan catridge, pengiriman, mengetahui pergerakan dan kondisi stok. 1. Bagaimana Mengakses Modul Manajemen

Lebih terperinci

PUSAT TEKNOLOGI INFORMASI DAN KOMUNIKASI PENDIDIKAN KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

PUSAT TEKNOLOGI INFORMASI DAN KOMUNIKASI PENDIDIKAN KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT TEKNOLOGI INFORMASI DAN KOMUNIKASI PENDIDIKAN KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN 2011 PETUNJUK PENGISIAN RPP Berikut ini panduan langkah-langkah pengisian template RPP. Jika pengguna sebagai guru

Lebih terperinci

AKTIVA TETAP (FIXED ASSETS )

AKTIVA TETAP (FIXED ASSETS ) AKTIVA TETAP AKTIVA TETAP (FIXED ASSETS ) MEMPUNYAI MASA GUNA LEBIH DARI 1 PERIODE AKUNTANSI AKTIVA TETAP BERWUJUD (TANGIBLE FIXED ASSET) Mempunyai bentuk fisik, dpt dikenali melalui panca indra MEMPUNYAI

Lebih terperinci

SISTEM PENGAMANAN PESAN SMS MENGGUNAKAN INTERNASIONAL DATA ENCRYPTION ALGORITHM

SISTEM PENGAMANAN PESAN SMS MENGGUNAKAN INTERNASIONAL DATA ENCRYPTION ALGORITHM SISTEM PENGAMANAN PESAN SMS MENGGUNAKAN INTERNASIONAL DATA ENCRYPTION ALGORITHM (0911073) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja No.338 Simpang Limun Medan

Lebih terperinci

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR Bab III Automata Hingga Non-Deterministik 15 BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR TUJUAN PRAKTIKUM 1) Mengetahui apa yang dimaksud dengan Automata Hingga Non-deterministik

Lebih terperinci

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari . Pernyataan yang senilai dengan kalimat Jika Fatah dan Ichwan datang maka semua siswa senang adalah. A. Jika Fatah dan Ichwan tidak datang maka semua siswa tidak senang B. Jika Fatah atau Ichwan tidak

Lebih terperinci

BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU

BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU Buku Panduan Belajar atematika Diskrit STIK TRIGUNA DHARA BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU 9.1 Fungsi Boolean Pada aljabar Boolean dua-nilai B = {,1}. Peubah (variabel) x disebut peubah

Lebih terperinci

AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL

AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL (Oleh: Sulastri Daruni, Bayu Surarso, Bambang Irawanto) Abstrak Misalnya F adalah lapangan perluasan dari lapangan K dan f(x) adalah polinomial

Lebih terperinci

MODEL VEKTOR DAN MATRIKS DARI DOKUMEN SERTA SUDUT ANTARA DUA VEKTOR DAN DUA SUBRUANG UNTUK MENDUGA DINI PLAGIARISME DOKUMEN

MODEL VEKTOR DAN MATRIKS DARI DOKUMEN SERTA SUDUT ANTARA DUA VEKTOR DAN DUA SUBRUANG UNTUK MENDUGA DINI PLAGIARISME DOKUMEN MODEL VEKOR DAN MARIKS DARI DOKUMEN SERA SUDU ANARA DUA VEKOR DAN DUA SUBRUANG UNUK MENDUGA DINI PLAGIARISME DOKUMEN Prasetyaning Diah R. Lestari, R. Agustian, R. Gafriadi, A.Febriyanti, dan A.D. Garnadi

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci