Teori Bahasa dan Automata. Finite State Automata & Non Finite State Automata

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Teori Bahasa dan Automata. Finite State Automata & Non Finite State Automata"

Transkripsi

1 Teori Bahasa dan Automata Finite State Automata & Non Finite State Automata

2 Finite State Automata Model matematika suatu sistem yang menerima input dan output diskrit Mesin automata dari bahasa Regular Tidak memiliki tempat penyimpanan sehingga kemampuan mengingat terbatas (contoh: elevator/lift) Aplikatif - berguna untuk merancang sistem nyata. Aplikasi meliputi : analisis leksikal, text-editor, protokol komunikasi jaringan (kermit) dan parity checker (pengecek parity). 2

3 Finite State Automata FSA atau AH (Automata Hingga) didefinisikan sebagai pasangan 5 tupel M = (Q,, δ, S, F). Q : himpunan hingga state : himpunan hingga simbol input (alfabet) δ : fungsi transisi, menggambarkan transisi state FSA akibat pembacaan simbol input. Fungsi transisi ini biasanya diberikan dalam bentuk tabel. S Q : state AWAL F Q : himpunan state AKHIR 3

4 Finite State Automata Contoh : seorang petani dengan seekor serigala, kambing dan seikat rumput berada pada suatu sisi sungai. Tersedia hanya sebuah perahu kecil yang hanya dapat dimuati dengan petani tersebut dengan salah satu serigala, kambing atau rumput. Petani tersebut harus menyeberangkan ketiga bawaannya kesisi lain sungai. Tetapi jika petani meninggalkan serigala dan kambing pada suatu saat, maka kambing akan dimakan serigala. Begitu pula jika kambing ditinggalkan dengan rumput, maka rumput akan dimakan oleh kambing. Mungkinkah ditemukan suatu cara untuk melintasi sungai tanpa menyebabkan kambing atau rumput dimakan. 4

5 16 kemungkinan kombinasi state Sisi kiri Sisi Kanan Simbol State PSKR Ø PSKR Ø SR PK SR PK SK PR SK PR KR PS KR PS PSR K PSR K PSK R PSK R PKR S PKR S PK SR PK SR PR SK PR SK PS KR PS KR K PSR K PSR R PSK R PSK S PKR S PKR SKR P SKR P P SKR P SKR Ø PSKR Ø PSKR Sisi kiri Sisi Kanan Simbol State PSKR Ø PSKR Ø SR PK SR PK PSR K PSR K PSK R PSK R PKR S PKR S PK SR PK SR K PSR K PSR R PSK R PSK S PKR S PKR Ø PSKR Ø PSKR Dari 16 kemungkinan kombinasi state, hanya 10 state yang memenuhi syarat. 7 March Teori Bahasa dan Automata

6 PK P PKSR - Ø SR - PK PSR - K PK R - PKS P PS PS PR PR S- PKR PK PK PK PK Diagram Transisi PKR - S PKS - R PR PR PS PS K - PSR P P PK - SR PK PK Ø - PKSR 6

7 Deterministic FSA Ada dua jenis FSA : Deterministic finite automata (DFA) Non deterministik finite automata.(nfa) DFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tertentu. δ : Q Q NFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tak tentu. δ : Q 2 Q 7

8 Deterministic Finite Automata Deterministic finite automata (DFA) M = (Q,, δ, S, F), dimana : Q : himpunan state/kedudukan : himpunan simbol input : fungsi transisi, dimana Q x Q S : State awal (initial state) F : himpunan state akhir (Final State) Language L(M) : (x (S,x) di dalam F) 8

9 Deterministic Finite Automata DFA : Q = {q0, q1, q2} δ diberikan dalam tabel berikut : = {a, b} δ a b S = q0 q0 q0 q1 F = {q0, q1} q1 q0 q2 L(M) = {abababaa, aaaabab,aabababa, } a q2 q2 q2 b a q0 q1 q2 b a b 9

10 Deterministic Finite Automata Telusurilah, apakah kalimat-kalimat berikut diterima DFA di atas : abababaa, aaaabab, aaabbaba Jawab : δ (q0,abababaa) δ (q0,bababaa) δ (q1,ababaa) δ (q0,babaa) δ (q1,abaa) δ (q0,baa) δ (q1,aa) δ (q0,a) q0 Tracing berakhir di q0 (state AKHIR) kalimat abababaa diterima Kesimpulan : Sebuah kalimat diterima oleh DFA di atas jika tracingnya berakhir di salah satu state AKHIR. 10

11 Non Deterministic Finite Automata Non Deterministic finite automata (NFA) M = (Q,, δ, S, F), dimana : Q : himpunan state/kedudukan : himpunan simbol input : fungsi transisi, dimana Q x ( ) P(Q) P(Q) : set of all subsets of Q S : State awal (initial state) F : himpunan state akhir (Final State) Language L(M) : (x (S,x) di dalam F) 11

12 Non Deterministic Finite Automata Berikut ini sebuah contoh NFA (Q,, δ, S, F). dimana : Q = {q 0, q1, q2,q3, q4 } δ diberikan dalam tabel berikut : = {a, b,c} δ a b c S = q0 Q 0 {q0, q 1} {q0, q2 } {q0, q3 } F = {q4} q 1 {q1, q4 } {q1 } {q 1} q 2 {q2 } {q 2, q4 } {q 2} q3 {q3 } {q3 } {q 3, q4 } q 4 12

13 = {a, b,c} δ a b c S = q0 q 0 {q0, q 1} {q0, q2 } {q0, q3 } F = {q4 } q 1 {q1, q4 } {q1 } {q 1} q 2 {q2 } {q 2, q4 } {q 2} q3 {q3 } {q3 } {q 3, q4 } q 4 a,b,c a,b,c q0 a q1 L(M) = {aabb, } c q3 b q2 b a q4 a,b,c a,b,c c 13

14 Sebuah kalimat di terima NFA jika : Salah satu tracing-nya berakhir di state AKHIR, atau himpunan state setelah membaca string tersebut mengandung state AKHIR Telusurilah, apakah kalimat-kalimat berikut diterima NFA di atas : ab, abc, aabc, aabb Jawab: δ(q0,ab) δ(q0,b) δ(q1,b) {q0, q2} {q1 } = {q0, q1, q2} Himpunan state TIDAK mengandung state AKHIR kalimat ab tidak diterima δ(q0,abc) δ(q0,bc) δ(q1,bc) { δ(q0,c) δ(q2,c)} δ(q1, c) {{ q0, q3 } { q2 }} { q1 } = {q0, q1, q2,q3 } Himpunan state TIDAK mengandung state AKHIR kalimat abc tidak diterima 14

15 Ekuivalensi Antar Deterministic Finite Automata Dua DFA M1 dan M2 dinyatakan ekivalen apabila L(M1) = L(M2) 0 q0 0 M1 q1 0 q0 M2 15

16 Reduksi Jumlah State Pada FSA Reduksi dilakukan untuk mengurangi jumlah state tanpa mengurangi kemampuan untuk menerima suatu bahasa seperti semula (efisiensi) State pada FSA dapat direduksi apabila terdapat useless state Hasil dari FSA yang direduksi merupakan ekivalensi dari FSA semula 16

17 Reduksi Jumlah State Pada FSA Pasangan State dapat dikelompokkan berdasarkan: Distinguishable State (dapat dibedakan) Dua state p dan q dari suatu DFA dikatakan indistinguishable apabila: δ(q,w) F dan δ(p,w) F atau δ(q,w) F dan δ(p,w) F untuk semua w S* Indistinguishable State ( tidak dapat dibedakan) Dua state p dan q dari suatu DFA dikatakan distinguishable jika ada string w S* hingga: δ(q,w) F dan δ(p,w) F 17

18 Reduksi Jumlah State Pada FSA - Relasi Pasangan dua buah state memiliki salah satu kemungkinan : distinguishable atau indistinguishable tetapi tidak kedua-duanya. Dalam hal ini terdapat sebuah relasi : Jika dan maka p, r p dan q indistinguishable, q dan r indistinguishable indistinguishable dan p,q,r indistinguishable Dalam melakukan eveluasi state, didefinisikan suatu relasi : Untuk Q yg merupakan himpunan semua state D adalah himpunan state-state distinguishable, dimana D Q N adalah himpunan state-state indistinguishable, dimana N Q maka x N jika x Q dan x D 18

19 Reduksi Jumlah State Pada FSA Step Hapuslah semua state yg tidak dapat dicapai dari state awal (useless state) Buatlah semua pasangan state (p, q) yang distinguishable, dimana p F dan q F. Catat semua pasangan-pasangan state tersebut. Cari state lain yang distinguishable dengan aturan: Untuk semua (p, q) dan semua a, hitunglah δ (p, a) = p a dan δ (q, a) = q a. Jika pasangan (p a, q a ) adalah pasangan state yang distinguishable maka pasangan (p, q) juga termasuk pasangan yang distinguishable. Semua pasangan state yang tidak termasuk sebagai state yang distinguishable merupakanstate-state indistinguishable. Beberapa state yang indistinguishable dapat digabungkan menjadi satu state. Sesuaikan transisi dari state-state gabungan tersebut. 19

20 Reduksi Jumlah State Pada FSA Contoh Sebuah Mesin DFA 0 q ,1 q 0 q2 1 q Lakukan Reduksi state pada DFA diatas? q 3 1 q 5 20

21 Reduksi Jumlah State Pada FSA Step State q5 tidak dapat dicapai dari state awal dengan jalan apapun (useless state). Hapus state q5 Catat state-state distinguishable, yaitu : q4 F sedang q0, q1, q2, q3 F sehingga pasangan (q0, q4) (q1, q4) (q2, q4) dan (q3, q4) adalah distinguishable. Pasangan-pasangan state lain yang distinguishable diturunkan berdasarkan pasangan dari langkah 2, yaitu : Untuk pasangan (q0, q1) δ(q0, 0) = q1 dan δ(q1, 0) = q2 belum teridentifikasi δ(q0, 1) = q3 dan δ(q1, 1) = q4 (q3, q4) distinguishable maka (q0, q1) adalah distinguishable. Untuk pasangan (q0, q2) δ(q0, 0) = q1 dan δ(q2, 0) = q1 belum teridentifikasi δ(q0, 1) = q3 dan δ(q2, 1) = q4 (q3, q4) distinguishable maka (q0, q2) adalah distinguishable. 21

22 Reduksi Jumlah State Pada FSA Step Setelah diperiksa semua pasangan state maka terdapat state-state yang distinguishable : (q0,q1), (q0,q2), (q0,q3), (q0,q4), (q1,q4), (q2,q4), (q3,q4) Karena berdasarkan relasi-relasi yang ada, tidak dapat dibuktikan (q1, q2), (q1, q3) dan (q2, q3) distinguishable, sehingga disimpulkan pasangan-pasangan state tersebut indistinguishable. Karena q1 indistinguishable dengan q2, q2 indistinguishable dengan q3, maka dapat disimpulkan q1, q2, q3 saling indistinguishable dan dapat dijadikan satu state. Berdasarkan hasil diatas maka hasil dari DFA yang direduksi menjadi: 0 0, 1 0, 1 q 0 q1,2,3 q

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL III TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat menyederhanakan sebuah FSA. Materi : Useless state State distinguishable dan state indistinguishable

Lebih terperinci

Reduksi DFA [Deterministic Finite Automata]

Reduksi DFA [Deterministic Finite Automata] Reduksi DFA [Deterministic Finite Automata] Untuk suatu bahasa regular kemungkinan ada sejumlah DFA yang dapat menerimanya Perbedaannya umumnya adalah pada jumlah state yang dimiliki oleh otomata-otomata

Lebih terperinci

NonDeterministic Finite Automata. B.Very Christioko, S.Kom

NonDeterministic Finite Automata. B.Very Christioko, S.Kom NonDeterministic Finite Automata Perbedaan DFA dan NFA DFA (Deterministic Finite Automata) FA di dalam menerima input mempunyai tepat satu busur keluar. NFA (Non Deterministic Finite Automata) FA di dalam

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL II TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat mengeksekusi suatu mesin otomata Materi : FSA dan Implemetasi FSA Deterministic Finite Automata (DFA)

Lebih terperinci

FINITE STATE MACHINE / AUTOMATA

FINITE STATE MACHINE / AUTOMATA FINITE STATE MACHINE / AUTOMATA BAHASA FORMAL Dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet Dapat juga dipandang sebagai entitasentitas abstrak yang

Lebih terperinci

PERTEMUAN II. Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA)

PERTEMUAN II. Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA) PERTEMUAN II Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA) dadang mulyana 1 INGA.INGAT MULAI MINGGU DEPAN KULIAH TBO DIMULAI JAM 13.00 MAAF UNTUK

Lebih terperinci

PERTEMUAN 9 TEORI BAHASA DAN OTOMATA [TBO]

PERTEMUAN 9 TEORI BAHASA DAN OTOMATA [TBO] PERTEMUAN 9 TEORI BAHASA DAN OTOMATA [TBO] Reduksi DFA Untuk suatu bahasa regular kemungkinan ada sejumlah DFA yang dapat menerimanya Perbedaannya umumnya adalah pada jumlah state yang dimiliki oleh otomata-otomata

Lebih terperinci

FINITE STATE AUTOMATA

FINITE STATE AUTOMATA Otomata & Teori Bahasa FINITE STATE AUTOMATA www.themegallery.com Contents 2 3 4 Finite State Automata Implementasi FSA Deterministic Finite Automata (DFA) Non-deterministic Finite Automata (NFA) Finite

Lebih terperinci

Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine yang tidak mengeluarkan output ini dikenal

Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine yang tidak mengeluarkan output ini dikenal FINITE STATE AUTOMATA (FSA) DAN FINITE STATE MACHINE (FSM) MATERI MINGGU KE-3 Finite State Automata (FSA) Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL VIII TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami ekspresi reguler dan dapat menerapkannya dalam berbagai penyelesaian persoalan. Materi : Hubungan antara DFA, NFA, dan ekspresi regular

Lebih terperinci

Teori Komputasi 11/2/2016. Bab 5: Otomata (Automata) Hingga. Otomata (Automata) Hingga. Otomata (Automata) Hingga

Teori Komputasi 11/2/2016. Bab 5: Otomata (Automata) Hingga. Otomata (Automata) Hingga. Otomata (Automata) Hingga Teori Komputasi Fakultas Teknologi dan Desain Program Studi Teknik 1-1 Informatika Bab 5: Agenda. Deterministic Finite Automata DFA (Otomata Hingga Deterministik) Equivalen 2 DFA Finite State Machine FSA

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL VI TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa dapat malakukan operasi gabungan/konkatenasi, dan membangun FSA optimal Materi : Operasi Gabungan Operasi Konkatenasi Alur Pengembangan FSA Contoh-contoh

Lebih terperinci

Non-deterministic Finite Automata Dengan -Move

Non-deterministic Finite Automata Dengan -Move Non-deterministic Finite Automata Dengan -Move Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] PENGGABUNGAN 2 FSA Pada 2 mesin FSA dapat dilakukan penggabungan, disebut union serta konkatenasi. Misalkan terdapat dua mesin NFA, M1 dan M2 Gambar 5: M1 Gambar 6: M2 OPERASI

Lebih terperinci

TEORI BAHASA DAN OTOMATA

TEORI BAHASA DAN OTOMATA TEORI BAHASA DAN OTOMATA MATERI KULIAH : Topik Substansi 1 Kontrakpembelajaran, Pendahuluan a. Ketentuan dalam Kuliah b. Pengertian Bahasa c. Pengertian Otomata 2 Pengertian Dasar dan Operasi pada string

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] NFA DENGAN -MOVE Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah

Lebih terperinci

Lecture Notes Teori Bahasa dan Automata

Lecture Notes Teori Bahasa dan Automata Ekuivalensi State (Ed. 1) 1/5 Lecture Notes Teori Bahasa dan Automata Uji Ekuivalensi State Deterministic Finite Automata Thompson Susabda Ngoen Beberapa deterministic finite automaton (DFA) yang berbeda

Lebih terperinci

Pendahuluan [6] FINITE STATE AUTOMATA. Hubungan RE & FSA [5] Finite State Diagram [6] 4/27/2011 IF-UTAMA 1

Pendahuluan [6] FINITE STATE AUTOMATA. Hubungan RE & FSA [5] Finite State Diagram [6] 4/27/2011 IF-UTAMA 1 FINITE STATE AUTOMATA Pertemuan 9 & 10 Dosen Pembina : Danang Junaedi 1 Pendahuluan [6] Bahasa formal dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet

Lebih terperinci

Teori Bahasa dan Otomata 1

Teori Bahasa dan Otomata 1 Teori Bahasa dan Otomata 1 KATA PENGANTAR Teori Bahasa dam Otomata merupakan matakuliah wajib yang harus diambil oleh seluruh mahasiswa jurusan Teknik Indonesia di lingkungan Sekolah Tinggi Teknologi Indonesia.

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL IV TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami teknik translasi NFA ke DFA dan daat menerakannya. Materi : Pengertian ekivalensi Langkah-langkah engubahan EKIVALENSI NON-DETERMINISTIC FINITE

Lebih terperinci

Teori Bahasa Formal dan Automata

Teori Bahasa Formal dan Automata Teori Bahasa Formal dan Automata Pertemuan 2 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Finite Automata Notasi Finite Automata Deterministic Finite

Lebih terperinci

Minimum DFA. CSG3D3 Teori Komputasi

Minimum DFA. CSG3D3 Teori Komputasi CSG3D3 Teori Komputasi Minimum DFA Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing, and Multimedia Bahasan

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54401/ Teori dan Bahasa Otomata Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Februari 2014 Jml Jam kuliah dalam

Lebih terperinci

Deterministic Finite Automata

Deterministic Finite Automata CSG3D3 Teori Komputasi Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,

Lebih terperinci

Contents.

Contents. Contents FINITE TATE AUTOMATA (Otomata Hingga)... 2 Deterministic/Non Deterministic Finite Automate... 2 Ekwivalensi DFA dan NFA... 4 Contex Free Grammer(CFG)... 8 Penyederhanaan CFG... 9 Bentuk Normal

Lebih terperinci

BAHASA REGULER 1. Ekspresi Regular

BAHASA REGULER 1. Ekspresi Regular BAHASA REGULER 1. Ekspresi Regular Bahasa regular adalah penyusun ekspresi regular (ER) Ekspresi regular terdiri dari kombinasi simbol-simbol atomik menggunakan 3 operator : concate, alternate, dan closure/repetisi.

Lebih terperinci

Penerapan Finite State Automata Pada Proses Peminjaman Buku di Perpustakaan Universitas Kristen Satya Wacana Artikel Ilmiah

Penerapan Finite State Automata Pada Proses Peminjaman Buku di Perpustakaan Universitas Kristen Satya Wacana Artikel Ilmiah Penerapan Finite State Automata Pada Proses Peminjaman Buku di Perpustakaan Universitas Kristen Satya Wacana Artikel Ilmiah Peneliti : Raymond Elias Mauboy (672013158) Prof. Ir. Danny Manongga, MS.c.,

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM. dirancang dan selanjutnya dapat diketahui gambaran dan kemampuan sistem secara

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM. dirancang dan selanjutnya dapat diketahui gambaran dan kemampuan sistem secara BAB 3 ANALISIS DAN PERANCANGAN PROGRAM 3.1 Analisis Kebutuhan Sistem Analisis kebutuhan sistem merepresentasikan daftar kebutuhan sistem yang akan dirancang dan selanjutnya dapat diketahui gambaran dan

Lebih terperinci

MODUL 4: Nondeterministic Finite Automata

MODUL 4: Nondeterministic Finite Automata MODUL 4: Nondeterministic Finite Automata Slide dari 2 FA DENGAN NONDETERMINISME Disamping ini merupakan FA dari suatu bahasa regular dalam {,} * dengan ekspresi regular (+) *. p, q s, u r t Slide 2 dari

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54401/ Teori dan Bahasa Otomata 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4.

Lebih terperinci

Teori Bahasa Formal dan Automata

Teori Bahasa Formal dan Automata Teori Bahasa Formal dan Automata Pertemuan 3 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA MENDESAIN DFA Jika di definisikan = {0, 1}, bangunlah sebuah DFA yang

Lebih terperinci

TEKNIK KOMPILASI Bahasa Regular

TEKNIK KOMPILASI Bahasa Regular TEKNIK KOMPILASI Bahasa Regular Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Tata bahasa reguler Sebuah bahasa dinyatakan regular jika terdapat Finite State Automata (FSA) yang

Lebih terperinci

Non-Deterministic Finite Automata

Non-Deterministic Finite Automata CSG3D3 Teori Komputasi Non-Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,

Lebih terperinci

MODUL 3: Finite Automata

MODUL 3: Finite Automata MODUL 3: Finite Automata Slide dari 38 DEFINISI FA mesin yang dapat mengenai bahasa regular tanpa menggunakan storage/memory. Sejumlah status dapat didefinisikan pada mesin untuk mengingat beberapa hal

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL V TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami NFA dengan e-move, dapat malakukan ekivalensi ke NFA tanpa e-move dan operasi gaungan/konkatenasi. Materi : NFA dengan e-move Ekivalensi NFA

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] Ekspresi Regular (1) Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata

Lebih terperinci

TEORI BAHASA DAN OTOMATA PENGANTAR

TEORI BAHASA DAN OTOMATA PENGANTAR TEORI BAHASA DAN OTOMATA PENGANTAR PERKULIAHAN Jumlah pertemuan minimal 13 kali dan maksimal 15 kali sudah termasuk dengan ujian tengah semester (UTS) PENILAIAN ABSEN 10% (Minimal kehadiran 80% dari jumlah

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan agar sistem

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan agar sistem BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM 4.1 Kebutuhan Sistem Kebutuhan untuk menjalankan sistem aplikasi yang telah dibuat sangat berkaitan dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL I TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami pengertian dan kedudukan Teori Bahasa dan Otomata (TBO) pada ilmu komputer Definisi dan Pengertian Teori Bahasa dan Otomata Teori bahasa dan

Lebih terperinci

BAB I PENDAHULUAN 1-1

BAB I PENDAHULUAN 1-1 BAB I PENDAHULUAN 1.1 Pendahuluan Ilmu komputer memiliki dua komponen utama: pertama, model dan gagasan mendasar mengenai komputasi, kedua, teknik rekayasa untuk perancangan sistem komputasi, meliputi

Lebih terperinci

BAB 1 PENDAHULUAN. sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan

BAB 1 PENDAHULUAN. sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam hierarki kelas-kelas bahasa menurut Chomsky, kelas bahasa yang paling sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan tepat

Lebih terperinci

1. Pendahuluan. 2. Tinjauan Pustaka

1. Pendahuluan. 2. Tinjauan Pustaka 1. Pendahuluan Ilmu komputer memiliki dua komponen utama yaitu model dan gagasan mendasar mengenai komputasi, serta teknik rekayasa untuk perancangan sistem komputasi. Teori bahasa dan automata merupakan

Lebih terperinci

TEORI BAHASA DAN OTOMATA

TEORI BAHASA DAN OTOMATA TEORI BAHASA DAN OTOMATA Disusun Oleh : Hartono BAB I PENDAHULUAN Teori Bahasa Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan kompilator (compiler) dan

Lebih terperinci

Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state

Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state EKSPRESI REGULAR Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata bisa dinyatakan secara sederhana

Lebih terperinci

TEORI BAHASA & AUTOMATA

TEORI BAHASA & AUTOMATA TEORI BAHASA & AUTOMATA Dosen: Dadang mulyana Alamat email untuk tugas: dadangstmik@gmail.com 1 Cara pengiriman tugas: Dalam subjek email tuliskan: Instansi_kelas_nama_matakuliah_jenistugas Contoh: Ahmad

Lebih terperinci

MODUL 5: Nondeterministic Finite Automata dengan

MODUL 5: Nondeterministic Finite Automata dengan MODUL 5: Nondeterministic Finite Automata dengan Transisi-L (NFA-L) Slide dari 4 Dengan konsep nondeterministisme dari suatu ekspresi regular suatu NFA yang dapat menerima bahasa ybs dapat langsung dilakukan.

Lebih terperinci

Teknik Kompiler 5. oleh: antonius rachmat c, s.kom, m.cs

Teknik Kompiler 5. oleh: antonius rachmat c, s.kom, m.cs Teknik Kompiler 5 oleh: antonius rachmat c, s.kom, m.cs TATA BAHASA Tata bahasa / Grammar dalam OTOMATA adalah kumpulan dari himpunan variabel (non-terminal), simbol-simbol awal dan terminal yang dibatasi

Lebih terperinci

Teori Bahasa dan Otomata

Teori Bahasa dan Otomata Teori Bahasa dan Otomata Disajikan oleh: Bernardus Budi Hartono Web : http://pakhartono.wordpress.com/ E-mail : pakhartono at gmail dot com budihartono at acm dot org Teknik Informatika [Gasal 2009 2010]

Lebih terperinci

Tata Bahasa Kelas Tata Bahasa. Konsep Bahasa (1)

Tata Bahasa Kelas Tata Bahasa. Konsep Bahasa (1) Tata Bahasa Kelas Tata Bahasa Risnawaty 2350376 Jurusan Teknik Informatika Institut Teknologi Bandung Page 1 Konsep Bahasa (1) String(kata) adalah suatu deretan berhingga dari simbol-simbol. Panjang string

Lebih terperinci

DFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah

DFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah DFA Teori Bahasa dan Automata 1 DFA DFA: Deterministic Finite Automata Atau Automata Hingga Deterministik (AHD) Merupakan salah satu entuk dari Finite Automata Finite Automata merupakan salah satu dari

Lebih terperinci

TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I

TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I Konsep dan Notasi bahasa Thn 56-59 Noam chomsky melakukan penggolongan tingkatan dalam bahasa, yaitu menjadi 4 class

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembelajaran Matematika Proses belajar dipengaruhi oleh faktor internal dan eksternal. Kondisi internal ini sebagai karakteristik siswa yang merupakan deskripsi umum dari sifatsifat

Lebih terperinci

PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA

PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA Santa Meilisa; Ngarap Im Manik; Djunaidy Santoso Universitas Bina Nusantara, Jl. Mawar Bukit

Lebih terperinci

Komponen sebuah Kompilator

Komponen sebuah Kompilator Komponen sebuah Kompilator Program Subjek Program Objek ANALISIS SINTESIS Penganalisis Leksikal (Scanner) Penganalisis Sintaks (Parser) Penganalisis Semantik Pembentuk Kode Pengoptimal Kode TABEL 1 Scanning

Lebih terperinci

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR Bab III Automata Hingga Non-Deterministik 15 BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR TUJUAN PRAKTIKUM 1) Mengetahui apa yang dimaksud dengan Automata Hingga Non-deterministik

Lebih terperinci

MODUL 7: MINIMISASI FA

MODUL 7: MINIMISASI FA MODUL 7: MINIMISASI FA Dalam pembahasan sebelumnya untuk setiap mesin FA (baik NFA, NFA-Λ, maupun FA) pasti ada suatu bahasa regular yang dapat ia terima dan sebaliknya untuk setiap bahasa regular pasti

Lebih terperinci

Simulasi Visual Penerapan Metode Breadth First Search (BFS) Pada Penyelesaian Masalah State dan Space (Sampel kasus: Farmer s Problem)

Simulasi Visual Penerapan Metode Breadth First Search (BFS) Pada Penyelesaian Masalah State dan Space (Sampel kasus: Farmer s Problem) Simulasi Visual Penerapan Metode Breadth First Search (BFS) Pada Penyelesaian Masalah State dan Space (Sampel kasus: Farmer s Prolem) Ilka Zufria [1] ilkazufria@uinsu.ac.id Fak. Sains dan Teknologi UIN

Lebih terperinci

Teori Bahasa Formal dan Automata

Teori Bahasa Formal dan Automata Teori Bahasa Formal dan Automata Pertemuan 5 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA REVIEW Apa perbedaan antara NFA dan ϵ-nfa? Apa yang dimaksud dengan

Lebih terperinci

TEKNIK KOMPILASI Konsep & Notasi Bahasa

TEKNIK KOMPILASI Konsep & Notasi Bahasa TEKNIK KOMPILASI Konsep & Notasi Bahasa Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Konsep dan Notasi bahasa Teknik Kompilasi merupakan kelanjutan dari konsepkonsep yang telah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DBMS (Database Management System) DBMS merupakan perangkat lunak yang dirancang untuk dapat melakukan utilisasi dan mengelola koleksi data dalam jumah yang besar. DBMS juga dirancang

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Von Neumann

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Von Neumann BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Dalam satu dasawarsa terakhir ini Teknologi Informasi, khususnya bahasa pemprograman berkembang sangat pesat. Ini terbukti dengan munculnya banyak sekali bahasa

Lebih terperinci

Teori Himpunan. Matematika Dasar untuk Teori Bahasa Otomata. Operasi pada Himpunan. Himpunan Tanpa Elemen. Notasi. Powerset & Cartesian Product

Teori Himpunan. Matematika Dasar untuk Teori Bahasa Otomata. Operasi pada Himpunan. Himpunan Tanpa Elemen. Notasi. Powerset & Cartesian Product Teori Himpunan Matematika Dasar untuk Teori Bahasa Otomata Teori Bahasa & Otomata Semester Ganjil 2009/2010 Himpunan adalah sekumpulan entitas tidak memiliki struktur sifatnya hanya keanggotaan Notasi

Lebih terperinci

PENYEDERHANAAN Context Free Grammar

PENYEDERHANAAN Context Free Grammar PENYEDERHANAAN Context Free Grammar Bila pada tata bahasa regular terdapat pembatasan pada ruas kanan atau hasil produksinya, maka pada tata bahasa bebas konteks/ context free grammar, selanjutnya disebut

Lebih terperinci

PENDAHULUAN. Terdapat tiga topik utama di teori otomata yaitu:

PENDAHULUAN. Terdapat tiga topik utama di teori otomata yaitu: PENDAHULUAN Pengertian Komputer mengikuti sejumlah prosedur sistematis, atau algoritme, yang dapat diaplikasikan untuk serangkaian input (string) yang menyatakan integer dan menghasilkan jawaban setelah

Lebih terperinci

MODUL TEORI BAHASA DAN AUTOMATA

MODUL TEORI BAHASA DAN AUTOMATA MODUL TEORI BAHASA DAN AUTOMATA DISUSUN OLEH : Rizqia Cahyaning tyas 997234A 35979 SEKOLAH TINGGI TEKNIK PLN TEKNIK INFORMATIKA JAKARTA 22 SATUAN ACARA PENGAJARAN (SAP) MATA KULIAH/ SEMSTER : Otomata dan

Lebih terperinci

DIKTAT TEORI BAHASA DAN OTOMATA

DIKTAT TEORI BAHASA DAN OTOMATA DIKTAT TEORI BAHASA DAN OTOMATA DISUSUN OLEH Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, M.T. Sekolah Tinggi Manajemen Informatika dan Komputer Global Informatika MDP 207 Hal KATA PENGANTAR Pertama-tama kami

Lebih terperinci

Pendahuluan. Push Down Atomata. Perbedaan FA dan PDA [7] 4/25/2012 IF-UTAMA 1. Grammar-machine equivalence [3] Latar belakang munculnya konsep PDA

Pendahuluan. Push Down Atomata. Perbedaan FA dan PDA [7] 4/25/2012 IF-UTAMA 1. Grammar-machine equivalence [3] Latar belakang munculnya konsep PDA Push Down Automata Pendahuluan Latar belakang munculnya konsep PDA [1 & 3] Terdapat context-free languages yang tidak regular, contoh {0 n 1 n 0=

Lebih terperinci

Operasi FA dan Regular Expression

Operasi FA dan Regular Expression CSG3D3 Teori Komputasi Operasi FA dan Regular Expression Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,

Lebih terperinci

INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA

INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA Wiwin Suwarningsih Pusat Penelitian Informatika LIPI Jl. Sangkuriang No.21/154D ( komplek LIPI) Cisitu Bandung 40135, Indonesia

Lebih terperinci

IF-UTAMA 1. Definisi. Grammar. Definisi

IF-UTAMA 1. Definisi. Grammar. Definisi Definisi Grammar Bahasa adalah himpunan kata-kata atau kalimat yang telah disepakati, contoh : {makan, tidur, bermain, belajar} Bahasa Indonesia {shit, sheet, damn, kiss, smell} Bahasa Inggris {konichiwa,

Lebih terperinci

Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN

Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN Versi : Revisi : Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN Fakultas/ Jurusan/ Program Studi : Teknologi Industri/ Teknik Informatika/ Teknik Informatika Kode Matakuliah : 52302031 Nama Matakuliah

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] Tata Bahasa Bebas Konteks Bila pada tata bahasa regular terdapat pembatasan pada ruas kanan atau hasil produksinya, maka pada tata bahasa bebas konteks/ context free grammar,

Lebih terperinci

Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal

Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal Abdurrahman Dihya R./13509060 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

FTIK / PRODI TEKNIK INFORMATIKA

FTIK / PRODI TEKNIK INFORMATIKA Halaman : 1dari 12 LEMBAR PENGESAHAN DIBUAT OLEH MENYETUJUI Tim SOP dan JUKNIS Prodi IF Mira Kania Sabariah, S.T., M.T Ka Prodi TeknikInformatika Halaman : 2dari 12 DAFTAR ISI Lembar Pengesahan... 1 Daftar

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : TEORI BAHASA DAN AUTOMATA (TBA) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : TEORI BAHASA DAN AUTOMATA (TBA) KODE / SKS : KK / 3 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : TEORI BAHASA DAN AUTOMATA (TBA) KODE / SKS : KK-045325 / 3 SKS Mingu Pokok Bahasan 1. 1. Pendahuluan menjelaskan konsep dasar bahasa dan teori tentang string 1.1.

Lebih terperinci

1, 2, 3

1, 2, 3 Penerapan Algoritma Depth First Search (DFS) Dinamis Untuk Menentukan Apakah Sebuah String Diterima Oleh Bahasa Reguler yang Didefinisikan Nondeterministic Finite Automata (NFA) Muhammad Ihsan, Ilden Abi

Lebih terperinci

BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA

BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA Bab V Context Free Grammar dan Push Down Automata 26 BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA TUJUAN PRAKTIKUM 1. Memahami CFG dan PDA 2. Memahami Context Free Grammar 3. Memahami Push Down Automata

Lebih terperinci

Grammar dan Tingkat Bahasa

Grammar dan Tingkat Bahasa CSG3D3 Teori Komputasi Grammar dan Tingkat Bahasa Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing, and

Lebih terperinci

MODUL 6: TEOREMA KLEENE

MODUL 6: TEOREMA KLEENE MODUL 6: TEOREMA KLEENE Dari pembahasan sebelumnya NFA- yang dapat mengenali suatu bahasa regular dapat dengan lebih langsung diperoleh karena adanya transisi-. Setelah NFA- yang dapat mengenali bahasa

Lebih terperinci

Disusun oleh: Rina Dewi Indah Sari, S.Kom

Disusun oleh: Rina Dewi Indah Sari, S.Kom Disusun oleh: Rina Dewi Indah Sari, S.Kom Kata Pengantar Teori bahasa dan automata merupakan salah satu mata kuliah yang wajib di jurusan-jurusan informatika maupun ilmu komputer. Salah satunya pada STMIK

Lebih terperinci

PENDAHULUAN Teori Bahasa

PENDAHULUAN Teori Bahasa PERTEMUAN I PENDAHULUAN Teori Bahasa Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan kompilator (compiler) dan pemroses naskah (text processor). Bahasa

Lebih terperinci

Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013

Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013 Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013 KONTRAK KULIAH 1. Presensi 15 menit diawal perkuliahan dan dilakukan sendiri (tidak Boleh Titip Presensi), setelahnya sistem akan ditutup 2.

Lebih terperinci

Teknik Informatika PERTEMUAN 2. TEORI BAHASA & OTOMATA Imam Riadi, M.Kom Shofwatul Uyun, M.Kom. Teknik Informatika

Teknik Informatika PERTEMUAN 2. TEORI BAHASA & OTOMATA Imam Riadi, M.Kom Shofwatul Uyun, M.Kom. Teknik Informatika TEORI BAHASA FST UIN SUKA TEORI BAHASA (PENDAHULUAN) PERTEMUAN 2 Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan kompilator (compiler) dan pemroses naskah

Lebih terperinci

BAB I TEORI BAHASA DAN AUTOMATA

BAB I TEORI BAHASA DAN AUTOMATA Bab 1 Teori Bahasa dan Automata 1 BAB I TEORI BAHASA DAN AUTOMATA TUJUAN PRAKTIKUM 1. Memahami Tentang Teori Bahasa 2. Memahami Automata dan Istilah Istilah yang terdapat dalam Automata 3. Mengerti Tentang

Lebih terperinci

Teori Bahasa & Otomata

Teori Bahasa & Otomata Teori Bahasa & Otomata Pendilkom/Ilkom Universitas Pendidikan Indonesia 1 Daftar Isi Bab 1 Pendahuluan Bab 2 Matematika Dasar Bab 3 Dasar-Dasar Teori Bahasa Bab 4 Representasi Bahasa Bab 5 Klasifikasi

Lebih terperinci

Tujuan perancangan bhs program

Tujuan perancangan bhs program Tujuan perancangan bhs program Komunikasi dengan manusia Pencegahan dan deteksi kesalahan Usability Efektifitas pemrograman Compilability (mengurangi kompleksitas,mis:penggunaan bracket) Efisiensi dengan

Lebih terperinci

8 April 2015 Teori Bahasa dan Otomata

8 April 2015 Teori Bahasa dan Otomata EKSPRESI REGULAR MATERI MINGGU KE-4 EKSPRESI REGULAR Bahasa disebut reguler jika terdapat FSA yang dapat menerimanya. Bahasa reguler dinyatakan secara sederhana dengan ekspresi reguler/regular expression

Lebih terperinci

Amir Hamzah AKPRIND PRESS 2009

Amir Hamzah AKPRIND PRESS 2009 1 TEORI BAHASA DAN OTOMATA Amir Hamzah AKPRIND PRESS 2009 1 TEORI BAHASA DAN OTOMATA Amir Hamzah JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT SAINS DAN TEKNOLOGI AKPRIND YOGYAKARTA AKPRIND

Lebih terperinci

MODUL 11: PUSHDOWN AUTOMATON

MODUL 11: PUSHDOWN AUTOMATON MODUL 11: PUSHDOWN AUTOMATON Pengantar Pushdown Automaton Dalam pembahasan bahasa regular telah diperkenalkan pula suatu mesin dengan jumlah status yang terbatas atau dikenal dengan nama mesin FA. Karena

Lebih terperinci

PEMBUATAN MEDIA PEMBELAJARAN UNTUK PROSES KONVERSI PADA FINATE AUTOMATA BERBASIS MULTIMEDIA

PEMBUATAN MEDIA PEMBELAJARAN UNTUK PROSES KONVERSI PADA FINATE AUTOMATA BERBASIS MULTIMEDIA PEMBUATAN MEDIA PEMBELAJARAN UNTUK PROSES KONVERSI PADA FINATE AUTOMATA BERBASIS MULTIMEDIA 1 Wantah Satria(07018308), 2 Sri Handayaningsih (0530077701) 1,2 Program Studi Teknik Informatika Universitas

Lebih terperinci

TEORI BAHASA DAN OTOMATA [TBO]

TEORI BAHASA DAN OTOMATA [TBO] TEORI BAHASA DAN OTOMATA [TBO] Otomata (Automata) Otomata adalah mesin abstrak yang dapat mengenali (recognize), menerima (accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu. Beberapa

Lebih terperinci

PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN

PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN Febri Nova Lenti STMIK AKAKOM Yogyakarta Jl. Raya Janti 143 Yogyakarta 55198 febri@akakom.ac.id ABSTRAK

Lebih terperinci

BAB II MODEL KOMPUTASI FINITE STATE MACHINE. Pada Bab II akan dibahas teori dasar matematika yang digunakan

BAB II MODEL KOMPUTASI FINITE STATE MACHINE. Pada Bab II akan dibahas teori dasar matematika yang digunakan BAB II MODEL KOMPUTASI FINITE STATE MACHINE Pada Bab II akan dibahas teori dasar matematika yang digunakan dalam pemodelan sistem kontrol elevator ini, yaitu mengenai himpunan, relasi, fungsi, teori graf

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis Sistem Analisis sistem dapat didefinisikan sebagai penguraian dari suatu sistem informasi yang utuh kedalam bagian-bagian komponennya dengan maksud untuk mengidentifikasi

Lebih terperinci

Pengenalan Konsep Bahasa dan

Pengenalan Konsep Bahasa dan Pengenalan Konsep Bahasa dan Automata Teori Bahasa dan Automata Viska Mutiawani - Informatika FMIPA Unsyiah 1 Bentuk komputasi yang dikenal saat ini CPU memory 2 Detil bentuk komputasi berdasarkan memory

Lebih terperinci

anggota alfabet dinamakan simbol terminal atau token.

anggota alfabet dinamakan simbol terminal atau token. GRAMMAR DAN BAHASA MATERI MINGGU KE-2 TATA BAHASA Dalam pembicaraan tata bahasa, anggota alfabet dinamakan simbol terminal atau token. Kalimat adalah deretan hingga simbo-lsimbol terminal. Bahasa adalah

Lebih terperinci

Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan

Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan Overview Pertemuan : I Dosen Pembina : Danang Junaedi Deskripsi Tujuan Instruksional Kaitan Materi Penilaian Grade Referensi Jurusan Teknik Informatika Universitas Widyatama Deskripsi Mata kuliah ini mempelajari

Lebih terperinci

ABSTRAK. Universitas Kristen Maranatha

ABSTRAK. Universitas Kristen Maranatha ABSTRAK Tugas akhir ini membahas mengenai perbandingan pencarian string dalam dokumen dengan menggunakan metode algoritma brute force, Boyer Moore dan DFA (Deterministic Finite Automata). Penyelesaian

Lebih terperinci

Ekspresi Reguler. Pertemuan Ke-8. Sri Handayaningsih, S.T., M.T. Teknik Informatika

Ekspresi Reguler. Pertemuan Ke-8. Sri Handayaningsih, S.T., M.T.   Teknik Informatika Ekspresi Reguler Pertemuan Ke-8 Sri Handayaningsih, S.T., M.T. Email : ning_s12@yahoo.com Teknik Informatika TIU dan TIK 1. memahami konsep ekspresi reguler dan ekivalensinya dengan bahasa reguler. 2.

Lebih terperinci

Dasar Teori Bahasa & Grammar

Dasar Teori Bahasa & Grammar Dasar Teori Bahasa & Grammar Dasar Teori Bahasa Grammar & Bahasa Klasifikasi Noam Chomsky Teori Bahasa Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan

Lebih terperinci