BAB II TINJAUAN PUSTAKA. berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke
|
|
- Yohanes Halim
- 2 tahun lalu
- Tontonan:
Transkripsi
1 BAB II TINJAUAN PUSTAKA 2.1 Masalah Transportasi Masalah transportasi merupakan pemrograman linear jenis khusus yang berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke tujuan (misalnya, gudang). Tujuannya adalah untuk menentukan rencana pendistribusian untuk meninimumkan total biaya pendistribusian agar batas suplai dan permintaan terpenuhi. (Taha, 2007). Andaikan Z adalah biaya distribusi total dan x ij (i=1, 2,..., m; j=1, 2,..., n) adalah jumlah unit yang harus didistribusikan dari sumber i ke tujuan j, maka model umum masalah transportasi adalah Meminimumkan, di mana i=1, 2,, m dan j=1, 2,, n (2.1) Dengan kendala:, di mana 1,2,,, di mana 1,2,, (2.2) (2.3) 0 (untuk semua i dan j) (2.4) Di mana: s i = banyaknya suplai barang dari sumber i d j = banyaknya permintaan barang di tujuan j 4
2 5 c ij biaya pendistribusian barang dari sumber i ke tujuan j a ij koeisien kendala x ij banyaknya barang yang didistribusikan dari sumber i ke tujuan j Sebuah masalah pemrograman linear umum dapat direduksi menjadi mesalah transportasi jika a ij (koefisien variabel dari kendala) bernilai 0 atau 1. (Murthy, 2007). Tabel 2.1. Tabel Biaya dan Kebutuhan untuk Masalah Transportasi Tujuan n Suplai 1 c 11 c c 1n s 1 2 c 21 c c 2n s 2 Sumber m c m1 c m2.... c mn s m Permintaan d 1 d d n (Hillier and Lieberman, 1990) Syarat bahwa suplai total harus sama dengan total permintaan sekedar mensyaratkan bahwa system ini seimbang. Jika mempunyai arti penting secara fisik dan syarat ini tidak terpenuhi, maka hal ini biasanya berarti bahwa si atau dj sebenarnya mencerminkan suatu batas ketimbang suatu syarat yang tepat. Jika hal ini demikian, maka dapat dimasukkan suatu sumber atau tujuan yang semu (dinamakan sumber dummy atau tujuan dummy) untuk mengatasi slack agar
3 6 ketidaksamaan dikonversi menjadi kesamaan dan memenuhi syarat layak. (Hillier and Lieberman, 1990). Langkah-langkah untuk mendapatkan penyelesaian masalah transportasi adalah sebagai berikut: Langkah 1. Menyeimbangkan masalah yang diberikan. Menyeimbangkan berarti mengecek jumlah persediaan harus sama dengan jumlah permintaan, yaitu. Jika sudah sama, maka menuju Langkah 2. Jika tidak, masalah diseimbangkan dengan menambahkan baris dummy atau kolom dummy. Koefisien biaya dari dummy adalah nol. Jika lebih besar dari, maka ditambahkan kolom dummy yang permintaannya sama dengan dan biaya pada kotak tersebut adalah nol. Pada kasus jika lebih besar dari, maka ditambahkan baris dummy yang persediaannya sama dengan dan biaya pada kotak tersebut adalah nol. Jika sudah seimbang menuju Langkah 2. Langkah 2. Sebuah solusi layak dasar dapat diperoleh dengan tiga metode, yaitu: Metode Barat Laut (North West Corner Method) Metode Biaya terkecil (Least Cost Cell Method) Vogel s Approximation Method, yang dikenal sebagai VAM Setelah mendapatkan solusi layak dasar, dilakukan uji optimalitas untuk mengetahui apakah solusi tersebut optimal atau belum. Terdapat dua metode untuk uji optimalitas, yaitu: Stepping Stone Method
4 7 Modified Distribution Method yang dikenal sebagai Metode MODI (Murthy, 2007). Catatan: 1. Variabel basis merupakan variabel yang nilainya bukan nol. (Siringoringo, 2005). 2. Variabel non basis adalah variabel yang nilainya diatur menjadi nol. (Siringoringo, 2005). 3. Solusi layak adalah suatu solusi di mana semua kendala terpenuhi. (Hillier and Lieberman, 1990). 4. Solusi layak dasar merupakan suatu penyelesaian di mana semua variabel basis adalah tidak negatif ( 0). (Hillier and Lieberman, 1990). Langkah-langkah mencari solusi optimal masalah transportasi dengan Metode MODI sebagai berikut: Langkah I: Memilih elemen baris (u i ) dan elemen kolom (v j ) dari setiap baris dan kolom, sehingga u i + v j = c ij. Cara pengisiannya ditentukan terlebih dahulu salah satu u i atau v j secara sembarang. Misalnya u 1 = 0, dengan demikian dapat diperoleh nilai u i dan v j pada variabel basis yang lain. Langkah II: Menghitung variabel non basis dengaan rumus z ij c ij = u i + v j c ij. Langkah III: Mengecek jika z ij c ij 0 maka penyelesaian sudah optimal. (Murthy, 2007).
5 8 2.2 Masalah Penugasan Masalah penugasan merupakan jenis khusus pemrograman linear, di mana sumber-sumber dialokasikan kepada kegiatan atas dasar satu-satu (one-to-one basis). Jadi, setiap sumber atau petugas (assignee) (misalnya, karyawan, mesin, atau satuan waktu) ditugasi secara khusus kepada suatu kegiatan atau tugas (misalnya, suatu pekerjaan, lokasi, atau kejadian). Ada suatu biaya c ij yang berkaitan dengan petugas i (i=1, 2,..., n) yang melakukan tugas j (j=1, 2,..., n), sehingga tujuannya ialah untuk menentukan bagaimana semua tugas harus dilakukan untuk meminimumkan biaya total. (Hillier and Lieberman, 1990). Andaikan Z adalah biaya total dan c ij adalah biaya penugasan petugas i (i=1, 2,..., n) ke tugas j (j=1, 2,..., n), maka model masalah penugasan adalah Meminimumkan/memaksimumkan (2.5) Dengan kendala: 1, untuk i = 1, 2,, n 1, untuk j = 1, 2,, n 1, jika petugas i melakukan tugas j 0, jika tidak (2.6) (2.7) (2.8) (Hillier and Lieberman, 1990)
6 9 Tabel 2.2. Tabel Biaya Penugasan Tugas n Banyaknya Petugas 1 c 11 c c 1n 1 2 c 21 c c 2n 1 Petugas n c n1 c n2.... c nn 1 Banyaknya Tugas (Hillier and Lieberman, 1990) Model penugasan dapat diselesaikan dengan menggunakan model transportasi umum. Namun, pada kenyataannya semua suplai dan permintaan yang jumlahnya sama dengan 1 telah menuju pada pengembangan algoritma penyelesaian yang lebih simpel yang dinamakan Metode Hungaria. (Taha, 2007). Langkah-langkah penyelesaian dengan metode Hungaria adalah sebagai berikut: 1. Identifikasi dan penyederhanaan masalah dalam bentuk tabel penugasan. 2. Mencari nilai terkecil untuk setiap baris, lalu mengurangkan semua nilai dalam baris tersebut dengan nilai terkecilnya. 3. Memastikan semua baris dan kolom sudah memiliki nilai nol. Apabila ada kolom yang belum memiliki nilai nol, maka mencari nilai terkecil dalam
7 10 kolom tersebut dan mengurangkan semua nilai dalam kolom tersebut dengan nilai terkecilnya. 4. Menutup semua nilai nol dengan garis mendatar atau tegak se-minimal mungkin, sehingga diperoleh kemungkinan-kemungkinan sebagai berikut : Bila banyaknya garis penutup nol sama dengan jumlah baris/kolom, maka tabel optimal. Bila banyaknya garis penutup nol kurang dari jumlah baris/kolom, maka tabel belum optimal, sehingga harus diperbaiki dengan cara berikut: Mencari nilai terkecil dari setiap nilai yang tidak tertutup garis dan mengurangkan nilai yang tidak tertutup garis tersebut dengan nilai terkecilnya. Sedangkan, semua nilai yang tertutup dua garis harus ditambah dengan nilai terkecil dari nilai yang tidak tertutup garis. Untuk nilai yang tertutup satu garis nilainya tetap. Selanjutnya mengulangi Langkah Jika tabel sudah optimal, selanjutnya mencari baris/kolom yang hanya memuat satu nilai nol. Nilai tersebut dipilih, kemudian baris dan kolomnya dicoret. Sisa nilai nol yang belum dicoret selanjutnya dapat diproses seperti langkah 5 di atas. 6. Setelah menemukan satu nilai nol di setiap baris/kolom,maka penugasan telah selesai. Kolom dan baris nilai nol tersebut merupakan pasangan petugas dan tugas. (Murthy, 2007)
8 11 Catatan: 1. Untuk menyelesaikan sebuah masalah penugasan yang tujuannya untuk memaksimumkan fungsi tujuan, matriks keuntungan dikalikan dengan -1 dan kemudian diselesaikan dengan Metode Hungaria untuk masalah minimalisasi. 2. Jika jumlah baris dan kolom pada matriks tidak sama, maka masalah penugasan tersebut tidak seimbang. Metode Hungaria mungkin tidak menghasilkan solusi yang tepat jika masalah tidak seimbang. Jadi, masalah penugasan harus seimbang (dengan menambahkan satu atau lebih variabel dummy) sebelum diselesaikan dengan Metode Hungaria. (Winston, 2003) 2.3 Zero Point Method untuk Menyelesaikan Masalah Transportasi Untuk menemukan solusi awal dari masalah transportasi dapat menggunakan Zero Point Method yang diperkenalkan oleh Pandian dan Natarajan tahun Langkah-langkah Zero Point Method sebagai berikut: Langkah 1. Membuat tabel transportasi dari masalah transportasi yang telah diberikan dan menyeimbangkannya apabila belum seimbang. Langkah 2. Mengurangi tiap elemen dalam baris dengan elemen terkecil pada baris tersebut dan dari tabel pengurangan baris tersebut, tiap elemen dalam kolom dikurangi dengan elemen terkecil pada kolom tersebut.
9 12 Langkah 3. Mengecek apakah setiap kolom permintaan kurang dari atau sama dengan jumlah baris-baris suplai yang menyuplai kolom permintaan tersebut, di mana baris yang menyuplai adalah baris pada kolom tersebut yang biaya tereduksinya nol. Mengecek apakah setiap baris suplai kurang dari atau sama dengan jumlah kolom-kolom permintaan yang meminta suplai, di mana kolom yang meminta suplai adalah kolom pada baris tersebut yang biaya tereduksinya nol. Apabila syarat tersebut terpenuhi, langsung menuju langkah 6. Langkah 4. Menutup semua elemen nol dengan garis mendatar dan tegak seminimal mungkin sehingga beberapa elemen dari kolom-kolom atau/dan baris-baris yang tidak memenuhi syarat pada langkah 3 tidak tertutup. Langkah 5. Membentuk tabel transportasi perbaikan dengan cara: i. Menemukan nilai biaya tereduksi yang terkecil pada tabel yang tidak tertutup garis. ii. Mengurangkan nilai tersebut ke semua elemen/nilai yang tidak tertutup garis dan menambahkan nilai tersebut ke semua elemen/nilai yang tertutup oleh dua garis. Selanjutnya kembali ke langkah 3. Langkah 6. Memilih kotak pada tabel transportasi hasil langkah-langkah di atas yang memiliki biaya tereduksi terbesar dan dinamakan (α, β). Jika terdapat lebih dari satu kotak, maka dipilih salah satu.
10 13 Langkah 7. Memilih kotak pada baris α atau/dan kolom β pada tabel transportasi yang memiliki biaya tereduksi nol dan mengisikan semaksimum mungkin pada kotak tersebut sehingga memenuhi suplai dan permintaan. Langkah 8. Membentuk kembali tabel transportasi yang telah diperbaiki setelah menghapus baris suplai yang telah memenuhi nilai maksimum dan kolom permintaan yang telah terpenuhi. Langkah 9. Mengulangi langkah 6 sampai langkah 8 sampai baris suplai dan kolom permintaan tepenuhi. Langkah 10. Tabel hasil pengisian tersebut merupakan penyelesaian masalah transportasi. (Pandian and Natarajan, 2010) Penyelesaian dari hasil Zero Point Method diuji dengan menggunakan MODI karena menurut penulis, uji optimalisasi dengan MODI lebih mudah, baik secara manual maupun pemrograman. Misalkan berikut ini merupakan masalah transportasi dengan kendala persamaan. Meminimumkan Dengan kendala:, 1, 2,,, (2.9)
11 14, 1, 2,,, (2.10) 0, untuk semua dan bilangan bulat (2.11) Di mana: m adalah banyaknya sumber, n adalah banyaknya tujuan, x ij adalah jumlah barang yang didistribusikan dari sumber i ke tujuan j, c ij adalah biaya pndistribusian setiap barang dari sumber i ke tujuan j, a i adalah banyaknya suplai dari sumber i, b j adalah banyaknya permintaan pada tujuan j. (Natarajan, 2011) Teorema 2.1. Solusi optimal dari masalah (P1) di mana: P1 Meminimumkan Dengan kendala (2.9) sampai dengan (2.11) terpenuhi, di mana u i dan v j bernilai riil, merupakan solusi optimal masalah (P) di mana: P Meminimumkan Dengan kendala (2.9) sampai dengan (2.11) terpenuhi. (Natarajan, 2011)
12 15 Teorema 2.2. Jika {x ij, i = 1, 2,, m dan j = 1, 2,, n} merupakan solusi layak dari masalah (P) dan c ij u i v j 0, untuk semua i dan j, di mana u i dan v j bernilai riil, sedemikian hingga nilai minimum dari dengan kendala (2.9) sampai (2.11) terpenuhi, adalah nol, sehingga {x ij, i = 1, 2,, m dan j = 1, 2,, n} merupakan solusi optimal dari (P). (Natarajan, 2011) Teorema 2.3. Sebuah solusi yang diperoleh dari Zero Point Method untuk masalah transportasi dengan kendala persamaan (P) merupakan solusi optimal dari masalah transportasi (P). (Natarajan, 2011)
BAB IV PEMBAHASAN. Dalam bab ini akan dibahas tentang pengimplementasian Zero Point Method
BAB IV PEMBAHASAN Dalam bab ini akan dibahas tentang pengimplementasian Zero Point Method untuk menyelesaikan masalah transportasi dan kemudian dilakukan uji optimalitas dengan menggunakan MODI. Contoh
Danang Triagus Setiyawan ST,MT
Danang Triagus Setiyawan ST,MT Model Transportasi (MT) sebagai salah satu bentuk khusus dari permasalahan Program Linear. MT mengkaji tentang distribusi sesuatu dari beberapa sumber ke beberapa tujuan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Riset Operasi Masalah Riset Operasi (Operation Research) pertama kali muncul di Inggris selama Perang Dunia II. Inggris mula-mula tertarik menggunakan metode kuantitatif dalam
BAB VII METODE TRANSPORTASI
BAB VII METODE TRANSPORTASI Pada umumnya masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan
BAB 4 METODE TRANSPORTASI
BAB 4 METODE TRANSPORTASI Metode Transportasi adalah suatu metode yang digunakan untuk mengatur distribusi dari sumber sumber yang menyediakan produk produk yang sama di tempat- tempat yang membutuhkan
Riset Operasional TABEL TRANSPORTASI. Keterangan: S m = Sumber barang T n = Tujuan barang X mn = Jumlah barang yang didistribusikan
Masalah transportasi, pada umumnya, berkaitan dengan mendistribusikan sembarang komoditi dari sembarang kelompok pusat pemasok (yang disebut SUMBER) ke sembarang pusat penerima (yang disebut TUJUAN) dalam
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu masalah yang sering dihadapi oleh perusahaan dengan jaringan kerja yang besar adalah mendistribusikan produk-produk hasil produksi kepada konsumen. Dalam
Tentukan alokasi hasil produksi dari pabrik pabrik tersebut ke gudang gudang penjualan dengan biaya pengangkutan terendah.
PENJELASAN METODE STEPPING STONE Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi yang optimal menggunakan cara trial and error atau coba coba. Walaupun mengubah alokasi dengan
BAB III MODEL TRANSPORTASI. memperkecil total biaya distribusi (Hillier dan Lieberman, 2001, hlm. 354).
BAB III MODEL TRANSPORTASI. Pendahuluan Permasalahan transportasi berkaitan dengan pendistribusian beberapa komoditas dari beberapa pusat penyediaan, yang disebut dengan sumber menuju ke beberapa pusat
DAFTAR ISI. ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... v DAFTAR TABEL... viii DAFTAR GAMBAR... ix
DAFTAR ISI ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... v DAFTAR TABEL... viii DAFTAR GAMBAR... ix BAB I PENDAHULUAN 1.1 Latar Belakang Masalah... 1 1.2 Identifikasi Masalah... 5 1.3 Maksud dan Tujuan
MASALAH TRANSPORTASI
MASALAH TRANSPORTASI Transportasi pada umumnya berhubungan dengan distribusi suatu produk, menuju ke beberapa tujuan, dengan permintaan tertentu, dan biaya transportasi minimum. Transportasi mempunyai
BAB 3 METODOLOGI PENELITIAN
BAB 3 METODOLOGI PENELITIAN 3.1 Desain Penelitian Penelitian ini bersifat literatur dan melakukan studi kepustakaan untuk mengkaji dan menelaah berbagai buku, jurnal, karyai lmiah, laporan dan berbagai
BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming)
BAB 2 LANDASAN TEORI 2.1 Pengertian Program Linier (Linear Programming) Menurut Sri Mulyono (1999), Program Linier (LP) merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai
Modul 10. PENELITIAN OPERASIONAL MODEL TRANSPORTASI. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI
Modul 0 PENELITIAN OPERASIONAL Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA http://wwwmercubuanaacid JAKARTA 007 PENDAHULUAN Suatu
TEKNIK RISET OPERASIONAL. Model Transportasi. 2 SKS S1 Manajemen
TEKNIK RISET OPERASIONAL Model Transportasi 2 SKS S1 Manajemen METODE TRANSPORTASI Metode yang digunakan dalam rangka mengatur distribusi suatu barang dari sumber-sumber yang menyediakan produk yang sama,
Metode Transportasi. Muhlis Tahir
Metode Transportasi Muhlis Tahir Pendahuluan Metode Transportasi digunakan untuk mengoptimalkan biaya pengangkutan (transportasi) komoditas tunggal dari berbagai daerah sumber menuju berbagai daerah tujuan.
biaya distribusi dapat ditekan seminimal mungkin
MODEL TRANSPORTASI MODEL TRANSPORTASI Metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan secara optimal. Metode transportasi
MODEL TRANSPORTASI. Sesi XI : Model Transportasi
Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XI : MODEL TRANSPORTASI e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Model Transportasi Merupakan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2 1 Masalah Transportasi Salah satu permasalahan khusus dalam program linier adalah masalah transportasi Untuk menyelesaikan permasalahan ini digunakan metode transportasi Dikatakan
Metode Transportasi. Rudi Susanto
Metode Transportasi Rudi Susanto Pendahuluan METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masa perkembangan transportasi terwujud dalam bentuk kemajuan alat angkut yang selalu mengikuti dan mendorong kemajuan teknologi transportasi. Pada umumnya masalah
TEKNIK RISET OPERASIONAL. Metode Transportasi. 2 SKS D3 Manajemen Informatika
TEKNIK RISET OPERASIONAL Metode Transportasi 2 SKS D3 Manajemen Informatika MODEL TRANSPORTASI Metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama, ke tempattempat
BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model
BAB 2 LANDASAN TEORI 2.1 Sistem dan Model 2.1.1 Pengertian sistem Pengertian sistem dapat diketahui dari definisi yang diambil dari beberapa pendapat pengarang antara lain : Menurut Romney (2003, p2) sistem
METODE IMPROVED EXPONENTIAL APPROACH DALAM MENENTUKAN SOLUSI OPTIMUM PADA MASALAH TRANSPORTASI
METODE IMPROVED EXPONENTIAL APPROACH DALAM MENENTUKAN SOLUSI OPTIMUM PADA MASALAH TRANSPORTASI Dimas Alfan Hidayat 1, Siti Khabibah, M.Sc 2, Suryoto, M.Si 2 Program Studi Matematika FSM Universitas Diponegoro
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Manajemen Produksi dan Operasi Manajeman (management) merupakan proses kerja dengan menggunakan orang dan sumber daya yang ada untuk mencapai tujuan (Bateman, Thomas S. : 2014)
TRANSPORTASI APROKSIMASI VOGEL
TRANSPORTASI APROKSIMASI VOGEL 6 Obyektif 1. Mengerti mengenai definisi Transportasi Vogel Approximation Methods (VAM) 2. Memahami penggunaan metode transportasi dan menyelesaikan masalah menggunakan metode
Operations Management
6s-1 Linear Programming Operations Management MANAJEMEN William J. Stevenson 8 th edition 6s-2 Linear Programming METODE TRANSPORTASI suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber
Model Transportasi /ZA 1
Model Transportasi 1 Model Transportasi: Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan distribusi suatu barang tertentu dari sejumlah sumber (sources)
BAB VII. METODE TRANSPORTASI
VII. METODE TNPOTI Dilihat dari namanya, metode transportasi digunakan untuk mengoptimalkan biaya pengangkutan (transportasi) komoditas tunggal dari berbagai daerah sumber menuju berbagai daerah tujuan.
TRANSPORTATION PROBLEM
Media Informatika Vol. No. (27) TRANSPORTATION PROBLEM Dahlia Br Ginting Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. Juanda 9 Bandung 2 E-mail : Carlo27@telkom.net Abstrak Di sini akan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2. Tinjauan Teori dan Konsep 2.. Pengertian Manajemen Produksi/Operasi Sebelum membahas lebih jauh mengenai metode transportasi, perlu diuraikan terlebih dahulu mengenai pengertian
Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi
Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan
BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau
BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah
METODE TRANSPORTASI Permintaan Masalah diatas diilustrasikan sebagai suatu model jaringan pada gambar sebagai berikut:
METODE TRANSPORTASI Pada umumnya masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan tertentu,
MODEL TRANSPORTASI OLEH YULIATI, SE, MM
MODEL TRANSPORTASI OLEH YULIATI, SE, MM PERSOALAN TRANSPORTASI Metode transportasi adalah suatu metode dalam Riset Operasi yang digunakan utk mengatur distribusi dari sumber-sumber yg menyediakan produk
Penentuan Solusi Optimal MUHLIS TAHIR
Penentuan Solusi Optimal MUHLIS TAHIR Metode Ada dua metode yang dapat digunakan untuk menentukan solusi optimal, yaitu : Metode Stepping Stone Metode Modified Distribution (Modi) Prinsip perhitungan kedua
MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network
TRANSPORTASI & PENUGASAN
TRANSPORTASI & PENUGASAN 66 - Taufiqurrahman Metode Transportasi Suatu metode yang digunakan untuk mengatur distribusi dari sumbersumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan
UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Biaya transportasi merupakan masalah yang sering dijumpai di berbagai bidang terutama yang bergerak di bidang produksi dan pemasaran. Keputusan yang tepat dalam
MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia
MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network :
Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia
Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Terdapat bermacam-macam network model. Network : Suatu sistem saluran-saluran yang menghubungkan titiktitik
PENDISTRIBUSIAN PRODUK YANG OPTIMAL DENGAN METODE TRANSPORTASI
Jurnal Teknik dan Ilmu Komputer PENDISTRIBUSIAN PRODUK YANG OPTIMAL DENGAN METODE TRANSPORTASI (Optimum Product Distribution Using Transportation Method) Jevi Rosta*, Hendy Tannady** Fakultas Teknik Jurusan
PEMROGRAMAN LINIER: MODEL TRANSPORTASI. Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si
PEMROGRAMAN LINIER: MODEL TRANSPORTASI Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 2015 i KATA PENGANTAR Kebutuhan akan
PROGRAM MAGISTER TEKNIK SIPIL UNLAM
Bahan kuliah Riset Operasional ASSIGNMENT MODELING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 2005 1 Background Assignment Modeling Metode ini dikembangkan oleh seorang berkebangsaan
Metode Kuantitatif Manajemen, Kelompok 5, MB IPB E49, 2014 OPERATION RESEARCH - TRANSPORTATION MODELS. Presented by Group 5 E49
OPERATION RESEARCH - TRANSPORTATION MODELS Presented by Group 5 E49 0 SOAL-JAWAB PEMODELAN TRANSPORTASI DENGAN STUDI KASUS DISTRIBUSI KOMODITI GANDUM, BARLEY DAN OAT DI NEGARA EROPA MENGGUNAKAN METODE
Pertemuan 3 Transportasi Tanpa Dummy
Pertemuan 3 Transportasi Tanpa Dummy Objektif: 1. Mahasiswa dapat menyelesaikan masalah dengan metode North West Corner (NWC). 2. Mahasiswa dapat menyelesaikan masalah dengan metode Vogel Approximation
Pertemuan 4 Transportasi Dengan Dummy
Pertemuan 4 Transportasi Dengan Dummy Objektif: 1. Mahasiswa dapat menyelesaikan masalah dengan metode North West Corner (NWC) dengan Dummy. 2. Mahasiswa dapat menyelesaikan masalah dengan metode Vogel
MENGOPTIMALKAN BIAYA DISTRIBUSI PAKAN TERNAK DENGAN MENGGUNAKAN METODE TRANSPORTASI (Studi Kasus di PT. X Krian)
Teknika : Engineering and Sains Journal Volume 1, Nomor 2, Desember 2017, 95-100 ISSN 2579-5422 online ISSN 2580-4146 print MENGOPTIMALKAN BIAYA DISTRIBUSI PAKAN TERNAK DENGAN MENGGUNAKAN METODE TRANSPORTASI
MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN
MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN J. K. Sari, A. Karma, M. D. H. Gamal junikartika.sari@ymail.com Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan Jurusan
Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 5 MODEL TRANSPORTASI. 5.1 Pengertian Model Transportasi
Modul 5 MODEL TRANSPORTASI 5.1 Pengertian Model Transportasi Model transportasi adalah kelompok khusus program linear yang menyelesaikan masalah pengiriman komoditas dari sumber (misalnya pabrik) ke tujuan
METODE TRANSPORTASI. GUDANG A GUDANG B GUDANG C KAPASITAS PABRIK PABRIK W. RP 20 RP 5 RP RP 15 RP 20 RP RP 25 RP 10 RP 19 50
METODE TRANSPORTASI. GUDANG A GUDANG B GUDANG C KAPASITAS PABRIK PABRIK W. RP 20 RP 5 RP RP 15 RP 20 RP RP 25 RP 10 RP 19 50 METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan
TRANSPORTASI, PENUGASAN, PEMINDAHAN
LECTURE NOTES TRANSPORTASI, PENUGASAN, PEMINDAHAN Rojali, S.Si., M.Si rojali@binus.edu LEARNING OUTCOMES 1. Mahasiswa diharapkan dapat menafsirkan masalah nyata untuk analisis kuantitatif (LO2). 2. Mahasiswa
Pokok Bahasan VI Metode Transportasi METODE TRANSPORTASI. Metode Kuantitatif. 70
METODE TRANSPORTASI Metode Kuantitatif. 70 POKOK BAHASAN VI METODE TRANSPORTASI Sub Pokok Bahasan : 1. Metode North West Corner Rule 2. Metode Stepping Stone. 3. Metode Modi 4. Metode VAM Instruksional
TRANSPORTASI, PENUGASAN, PEMINDAHAN
TRANSPORTASI, PENUGASAN, PEMINDAHAN LECTURE NOTES TRANSPORTASI, PENUGASAN, PEMINDAHAN Rojali, S.Si., M.Si rojali@binus.edu LEARNING OUTCOMES 1. Mahasiswa diharapkan dapat menafsirkan masalah nyata untuk
PERTEMUAN 10 METODE PENDEKATAN VOGEL / VOGEL S APPROXIMATION METHOD (VAM)
PERTEMUAN 10 METODE PENDEKATAN VOGEL / VOGEL S APPROXIMATION METHOD (VAM) Metode Pendekatan Vogel diperkenalkan oleh WR. Vogel tahun 1948. Prinsip dari metode ini adalah memilih harga-harga ongkos terkecil
TEKNIK RISET OPERASI UNDA
BAB V METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama ke tempattempat yang membutuhkan secara
TRANSPORTASI NORTH WEST CORNER (NWC)
TRANSPORTASI NORTH WEST CORNER (NWC) 4 Obyektif 1. Mengerti mengenai definisi Transportasi North West Coner (NWC) 2. Memahami penggunaan metode transportasi dan menyelesaikan masalah menggunakan metode
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) ISSN (Print)
ANALISIS PERBANDINGAN PENGIRIMAN BARANG MENGGUNAKAN METODE VOGEL S APPROXIMATION METHOD (VAM) DAN MODIFIED DISTRIBUTION (MODI) (STUDI KASUS: PT. COCA COLA AMATIL INDONESIA SURABAYA) Oni Dewi Lestari, Tika
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Distribusi Distribusi merupakan proses pemindahan barang-barang dari tempat produksi ke berbagai tempat atau daerah yang membutuhkan. Kotler (2005) mendefinisikan bahwa
BAB I PENDAHULUAN. 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Secara umum arti transportasi adalah adanya perpindahan barang dari satu tempat ke tempat lain dan dari beberapa tempat ke beberapa tempat lain. Tempat atau tempat-tempat
PERSOALAN TRANSPORTASI
PERSOALAN TRANSPORTASI 1 Azwar Anas, M. Kom - STIE-GK Muara Bulian 2 Permintaan sama dengan penawaran Sesuai dengan namanya, persoalan transportasi pertama kali diformulasikan sebagai suatu prosedur khusus
IMPLEMENTASI METODE NWC DAN MODI DALAM PENGOPTIMALAN BIAYA PENDISTRIBUSIAN PUPUK (STUDI KASUS : PT. PERKEBUNAN RIMBA AYU)
Majalah Ilmiah INTI, Volume 12, Nomor 2, Mei 217 ISSN 2339-21X IMPLEMENTASI METODE NWC DAN MODI DALAM PENGOPTIMALAN BIAYA PENDISTRIBUSIAN PUPUK (STUDI KASUS : PT. PERKEBUNAN RIMBA AYU) Mohd. Rifqi Lutfir
Manajemen Sains. Model Transportasi. Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011
Manajemen Sains Model Transportasi Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011 Pengertian Model transportasi adalah kelompok khusus program linear yang menyelesaikan masalah pengiriman
Optimasi Pendistribusian Barang Menggunakan Metode Stepping Stone dan Metode Modified Distribution (MODI)
INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS E-ISSN: 2548-3587 103 Optimasi Pendistribusian Barang Menggunakan Metode Stepping Stone dan Metode Modified Distribution (MODI) Herlawati 1,* 1 Sistem
MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6
MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu
BAB 2 LANDASAN TEORI. 2.1 Pengertian Model dan Metode Transportasi
34 BAB 2 LANDASAN TEORI 2.1 Pengertian Model dan Metode Transportasi Hamdy A Taha (1996) mengemukakan bahwa dalam arti sederhana, model transportasi berusaha menentukan sebuah rencana transportasi sebuah
Kajian Masalah Transshipment Tidak Seimbang Menggunakan Metode Least Cost - Stepping Stone Dan Metode Least Cost - Modi
TALENTA Conference Series: Science & Technology PAPER OPEN ACCESS Kajian Masalah Transshipment Tidak Seimbang Menggunakan Metode Least Cost - Stepping Stone Dan Metode Least Cost - Modi Author DOI : Putri
METODE TRANSPORTASI. Gudang A Gudang B Gudang C Kapasitas pabrik Pabrik W. Rp 20 Rp 5 Rp Rp 15 Rp 20 Rp Rp 25 Rp 10 Rp 19 50
METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama ke tempat-tempat yang membutuhkan secara optimal
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah transportasi berhubungan dengan pendistribusian barang-barang dari beberapa sumber ke beberapa tujuan. Biasanya memiliki sejumlah kapasitas barang dari masing-masing
TRANSPORTATION PROBLEM. D0104 Riset Operasi I Kuliah XXIII - XXV
TRANSPORTATION PROBLEM D4 Riset Operasi I Kuliah XXIII - XXV Pendahuluan Transportation Problem merupakan aplikasi dari programa linier untuk menentukan bagaimana mendistribusikan bahan, produk dari suatu
Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Magister Agribisnis Universitas Jambi
Prof. Dr. Ir. ZULKIFLI LMSYH, M.Sc. Program Magister gribisnis Universitas Jambi Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan distribusi suatu barang
UMMU KALSUM UNIVERSITAS GUNADARMA
UMMU KALSUM UNIVERSITAS GUNADARMA 2016 MODEL TRANSPORTASI METODE TRANSPORTASI Transportasi Lokasi sumber Lokasi tujuan Transportasi distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran
OPTIMASI DISTRIBUSI GULA MERAH PADA UD SARI BUMI RAYA MENGGUNAKAN MODEL TRANSPORTASI DAN METODE LEAST COST
OPTIMASI DISTRIBUSI GULA MERAH PADA UD SARI BUMI RAYA MENGGUNAKAN MODEL TRANSPORTASI DAN METODE LEAST COST Deasy Permata Sari A12.2010.04110 Program Studi Sistem Informasi S1 Fakultas Ilmu Komputer Universitas
OPERATIONS RESEARCH. Industrial Engineering
OPERATIONS RESEARCH Industrial Engineering TRANSPORTASI METODE ANALISA TRANSPORTASI PROGRAMA LINEAR Metode transportasi programa linear merupakan metode yang cukup sederhana dalam memecahkan permasalahan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 11 Latar Belakang Pendistribusian barang atau jasa merupakan salah satu bagian penting dari kegiatan sebuah instansi pemerintah ataupun perusahaan tertentu Masalah transportasi merupakan
PENGOPTIMALAN BIAYA DISTRIBUSI BARANG DENGAN MENGGUNAKAN METODE TRANSPORTASI PADA PT. YUSINDO MITRA PERSADA
PENGOPTIMALAN BIAYA DISTRIBUSI BARANG DENGAN MENGGUNAKAN METODE TRANSPORTASI PADA PT. YUSINDO MITRA PERSADA Nama : Munawarah Zulhijah Kelas : 3EA28 NPM : 15212158 Pembimbing : Supriyo Hartadi W, SE., MM.
DAFTAR ISI. Lembar Pengesahan Riwayat Hidup. Kata Pengantar Daftar Isi Daftar Gambar Daftar Tabel
vi DAFTAR ISI Halaman Lembar Pengesahan Riwayat Hidup Abstrak Kata Pengantar Daftar Isi Daftar Gambar Daftar Tabel i ii iii iv vi viii ix BAB I PENDAHULUAN 1.1. Latar Belakang 1 1.2. Rumusan Masalah 4
METODE TRANSPORTASI PENGERTIAN METODE STEPPING STONE METODE MODI METODE VOGELS APPROXIMATION (VAM)
METODE TRANSPORTASI PENGERTIAN METODE STEPPING STONE METODE MODI METODE VOGELS APPROXIMATION (VAM) PENGERTIAN Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Pengertian Riset Operasi (Operation Research) Istilah riset operasi pertama kali digunakan pada tahun 1940 oleh Mc Closky dan Trefthen di suatu kota kecil di Inggris bernama Bowdsey.
Bentuk Standar dari Linear Programming pada umumnya adalah sebagai berikut: Sumber daya 1 2. n yang ada
Permasalahan dalam linear programming pada umumnya adalah sebagai berikut: Terdapat dua atau lebih produk yang dibentuk dari campuran dua atau lebih bahan. Terdapat mesin atau fasilitas lain yang digunakan
METODE VOGEL S APPROXIMATION (VAM) METODE TRANSPORTASI
METODE VOGEL S APPROXIMATION (VAM) METODE TRANSPORTASI PENGERTIAN Metode Vogel atau Vogel s Approximation Method (VAM) merupakan metode yang lebih mudah dan lebih cepat untuk digunakan dalam mengalokasikan
BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI
BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI 34 BAB 2 LANDASAN TEORI 2.1 Pengertian Model dan Metode Transportasi Hamdy A Taha (1996) mengemukakan bahwa dalam arti sederhana, model
PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL
PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL 1). Metode Pojok Kiri Atas / Pojok Barat Laut (North West Corner) Metode ini mula-mula diperkenalkan oleh Charnes dan Cooper kemudian diperluas oleh Danziq.
BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN
BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN 2.1 Landasan Teori 2.1.1 Pengertian Manajemen Operasi Serangkaian kegiatan yang menciptakan nilai dalam bentuk barang dan jasa dengan mengubah input menjadi
KERANGKA PEMIKIRAN Kerangka Pemikiran Teoritis
III. KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Konsep Optimalisasi Distribusi Sistem distribusi adalah cara yang ditempuh atau digunakan untuk menyalurkan barang dan jasa dari produsen
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Beras merupakan bahan pangan pokok utama bagi masyarakat Indonesia. Kenyataan bahwa Indonesia masih menghadapi masalah kemiskinan dan kerawanan pangan menuntut pemerintah
Model Transportasi 1
Model Transportasi 1 Model ini berawal dari tahun 1941 ketika F.L. Hitchkok mengetengahkan studi yang berjudul The Distribution of a Product from Several Sources to Numerous Localities Tahun 1947, T.C.Koopmans
TRANSPORTASI LEAST COST
TRANSPORTASI LEAST COST 5 Obyektif 1. Mengerti mengenai definisi Transportasi Least Cost 2. Memahami penggunaan metode transportasi dan menyelesaikan masalah menggunakan metode transportasi Least Cost
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan ini manusia kadang menyia-nyiakan nikmat yang sudah diberikan sang pencipta di bumi ini sampai kadang lupa akan nikmat Allah SWT tentang bertafakur,
SILABUS MATAKULIAH. Revisi : 1 Tanggal Berlaku : 2 Pebruari 2009
SILABUS MATAKULIAH Revisi : 1 Tanggal Berlaku : 2 Pebruari 2009 A. Identitas 1. Kode / Nama Matakuliah : B11.5613 / Riset Operasi 2. Program Studi : S1 Manajemen 3. Fakultas : Ekonomi 4. Bobot sks : 3
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pemilihan lokasi fasilitas merupakan hal yang sangat penting dalam pembangunan fasilitas karena dapat mempengaruhi keberlangsungan sebuah perusahaan. Manajemen
TUGAS PROGRAM LINEAR MODEL TRANSPORTASI
TUGAS PROGRAM LNEAR MODEL TRANSPORTAS 1. Untuk permasalahan model tansportasi ini diperoleh informasi bahwa mempunyai: 3 daerah penambangan minyak (sumber), yaitu: a. (S 1 ) dengan kapasitas produksi 600.000
MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11
MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu
APLIKASI METODE TRANSPORTASI DALAM OPTIMASI BIAYA DISTRIBUSI BERAS MISKIN (RASKIN) PADA PERUM BULOG SUB DIVRE MEDAN
Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 299 311. APLIKASI METODE TRANSPORTASI DALAM OPTIMASI BIAYA DISTRIBUSI BERAS MISKIN (RASKIN) PADA PERUM BULOG SUB DIVRE MEDAN Lolyta Damora
PENENTUAN SOLUSI OPTIMAL
PNNTN OLI OPTIL da dua metode yang dapat kita gunakan untuk menentukan solusi optimal, yaitu metode stepping stone dan odified Distribution (odi). Kedua metode digunakan untuk menentukan sel masuk. Prinsip
R PROGRAM APLIKASI PENYELESAIAN MASALAH FUZZY TRANSSHIPMENT MENGGUNAKAN METODE MEHAR
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Pada dunia bisnis, manajemen rantai suplai merupakan strategi klasik yang banyak digunakan oleh industri atau perusahaan dalam mengembangkan usahanya. Salah satu tingkat
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Konsep Dasar Sistem Menurut Jogiyanto (2001), sistem adalah jaringan kerja dari prosedur - prosedur yang saling berhubungan, berkumpul bersama-sama untuk melakukan suatu kegiatan
CONTOH MODEL TRANSPORTASI DAN PENYELESAIAN DENGAN NORTH WEST CORNER DAN MODI
ONTOH MODEL TRNSPORTSI DN PENYELESIN DENGN NORTH WEST ORNER DN MODI Sebuah perusahaan saat ini beroperasi dengan 3 buah pabrik serta jumlah permintaan dari 3 Kota dengan kapasitas masing-masing sebagai
BAB I PENDAHULUAN 1.1. Latar Belakang Pemilihan Judul
BAB I PENDAHULUAN 1.1. Latar Belakang Pemilihan Judul Transportasi merupakan komponen penting dalam operasional perusahaan karena sangat berpengaruh terhadap biaya yang dikeluarkan oleh perusahaan dalam
BAB I PENDAHULUAN. Pada era modern sekarang ini dengan biaya hidup yang semakin meningkat,
BAB I PENDAHULUAN A. Latar Belakang Pada era modern sekarang ini dengan biaya hidup yang semakin meningkat, berakibat beberapa perusahaan mengalami peningkatan biaya pendistribusian produk. Pendistribusian