TRANSPORTASI, PENUGASAN, PEMINDAHAN

Save this PDF as:
Ukuran: px
Mulai penontonan dengan halaman:

Download "TRANSPORTASI, PENUGASAN, PEMINDAHAN"

Transkripsi

1 LECTURE NOTES TRANSPORTASI, PENUGASAN, PEMINDAHAN Rojali, S.Si., M.Si

2 LEARNING OUTCOMES 1. Mahasiswa diharapkan dapat menafsirkan masalah nyata untuk analisis kuantitatif (LO2). 2. Mahasiswa diharapkan dapat menganalisis metode yang sesuai untuk masalah bisnis (LO3). OUTLINE MATERI : 1. Pengertian Metode Transportasi 2. Metode Noerth-West Corner 3. Metode Least Cost 4. Metode Vogel 5. Metode Modi

3 ISI METODE TRANSPORTASI Pada umumnya masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan tertentu, pada biaya transport minimum. Karena hanya ada satu macam barang, suatu tempat tujuan dapat memenuhi permintaanya dari satu atau lebih sumber. Asumsi dasar model ini adalah bahwa biaya transport pada suatu rute tertentu proporsional dengan banyaknya unit yang dikirimkan. Unit yang dikirimkan sangat tergantung pada jenis produk yang diangkut. Yang penting, satuan penawaran dan permintaan akan barang yang diangkut harus konsisten. Contoh Sebuah perusahaan Negara berkepentingan mengangkut pupuk dari tiga pabrik ke tiga pasar. Kapasitas penawaran ketiga pabrik, permintaan pada ketiga pasar dan biaya transport perunit adalah sebagai berikut: Masalah diatas diilustrasikan sebagai suatu model jaringan pada gambar sebagai berikut

4 Masalah diatas juga dapat dirumuskan sebagai suatu masalah LP sebagai berikut: Minimumkan: Z = 8X X X X X X X X X3 3 Batasan X1 1 + X1 2 + X1 3 = 120 (penawaran pabrik 1) X2 1 + X2 2 + X2 3 = 80 (penawaran pabrik 2) X3 1 + X3 2 + X3 3 = 80 (penawaran pabrik 3) X1 1 + X2 1 + X3 1 = 150 (permintaan pabrik 1) X1 2 + X2 2 + X3 2 = 70 (permintaan pabrik 2) X1 3 + X2 3 + X3 3 = 60 (permintaan pabrik 3) Tabel Transportasi Tabel 1.1 (Tabel Transportasi)

5 SOLUSI AWAL TRANSPORTASI 1. METODE NORTH WEST CORNER Langkah-langkahnya adalah sebagai berikut: a. Mulai pada pojok kiri atas (barat laut table) dan alokasikan sebanyak mungkin tanpa menyimpang dari batasab penawaran dan permintaan. b. Hilangkan baris atau kolom yang tidak dapat dialokasikan lagi, kemudian alokasikan sebanyak mungkin ke kotak didekat baris atau kolom yang tidak dihilangkan, jika kolom atau baris sudah dihabiskan, pindahkan secara diagonal kekotak berikutnya c. Lanjutkan dengan cara yang sama sampai semua penawaran telah dihabiskan dan keperluan permintaan telah dipenuhi. Solusi awal dengan menggunakan metode north west corner pada masalah diatas ditunjukkan oleh table 1.2. Table 1.2 (Table Solusi Awal Metode North-West Corner)

6 Dari table 1.2 diatas dapat diketahui bahwa biaya transport total adalah sebagai berikut: Z = (8 x 120) + (15 x 30) + (10 x 50) + (9 x 20) + (10 x 60) = 2690 Ingat, ini hanya solusi awal, sehingga tidal perlu optimum 2. METODE LEAST-COST Langkah-langkahnya adalah sebagai berikut: a. Pilih variable Xij (kotak) dengan biaya transport (cij) terkecil dan alokasikan sebanyak mungkin. Ini akan menghabiskan baris i atau kolom j b. Dari kotak-kotak sisanya yang layak (yaitu yang tidak terisi atau dihilangkan) pilih cij terkecil dan alokasikan sebanyak mungkin. c. Lanjutkan proses ini sampai semua penawaran dan permintaan terpenuhi Solusi awal dengan menggunakan metode north west corner pada masalah diatas ditunjukkan oleh table 1.3.

7 Table 1.3 (Tabel Solusi Awal Metode Least-Cost) Dari table 1.3 diatas dapat diketahui bahwa biaya transport total adalah sebagai berikut: Z = (3 x 80) + (5 x 70) + (6 x 50) + (12 x 10) + (15 x 70) = METODE APROKSIMASI VOGEL (VAM) Proses VAM dapat diringkas sebagai berikut: a. Hitung opportunity cost untuk setiap baris dan kolom. Opportunity cost untuk setiap baris ke-i dihitung dengan mengurangkan nilai c ij terkecil pada baris tersebut dengan nilai c ij satu tingkat lebih besar pada baris yang sama. Opportunity cost kolom diperoleh dengan cara yang sama. Biaya-biaya ini adalah pinalti karena tidak memilih kotak dengan biaya minimum. b. Pilih baris atau kolom dengan opportunity cost terbesar (jika terdapat nilai kembar, pilih secara sembarang). Alokasikan sebanyak mungkin kekotak dengan nilai cij minimum pada baris atau kolom yang dipilih.

8 c. Hilangkan semua baris dan kolom dimana penawaran dan permintaan telah d. Jika semua penawaran dan permintaan belum dipenuhi, kembali kelangkah pertama dan hitung kembali opportunity cost yang baru. Solusi awal dengan menggunakan metode VAM pada masalah diatas ditunjukkan oleh tabel 1.4 Table 1.4 (Table Solusi Awal Metode VAM) Biaya transport model VAM adalah sebagai berikut: Z = (3 x 80) + (8 x 70) + (6 x 50) + (10 x 70) + (12 x 10) = 1920 Biaya total untuk solusi awal dengan metode VAM merupakan biaya awal terkecil yang diperoleh dari ketiga metode solusi awal. Kenyataannya, solusi ini juga optimum, suatu keadaan yang akan ditunjukan pada pembahasan mencari solusi optimum. MENENTUKAN SOLUSI OPTIMUM 1. METODE STEPPING STONE

9 Beberapa hal penting yang perlu diperhatikan dalam penyusunan jalur stepping stone untuk mencari variable masuk. a. Arah yang diambil boleh searah atau berlawanan arah jarum jam b. Hanya ada satu jalur tertutup untuk setiap kotak kosong c. Jalur harus mengikuti kotak terisi, kecuali pada kotak kosong yang sedang dievaluasi. d. Baik kotak terisi maupun kotak kosong dapat dilewati dalam penyusunan jalur tertutup e. Suatu jalur dapat melintasi dirinya f. Sebuah penambahan dan pengurangan yang sama besar harus kelihatan pada setiap baris dan kolom pada jalur itu Proses jalur tertutup dalam prosedur stepping stone ditunjukan pada table berikut Table 1.5 (Tabel Solusi Optimum Metode Stepping Stone Jalur Tertutup X1 2 ) Penambahan atau pengurangan biaya dari jalur tertutup X1 2 : C12 = = +2 Penambahan atau pengurangan biaya dari jalur tertutup X1 3 :

10 C13 = = +2 Penambahan atau pengurangan biaya dari jalur tertutup X2 3 : C23 = = +1 Penambahan atau pengurangan biaya dari jalur tertutup X3 1 : C31 = = -11 Analisis diatas menunjukan bahwa C31 memiliki perubahan biaya negative, sehingga X31 menjadi variable masuk. Jika terdapat dua atau lebih Xij dengan nilai Cij negative, maka pilih satu yang memiliki perubahan penurunan biaya terbesar (negative terbesar), dan jika terdapat nilai kembar, pilih sembarang Tabel 1.6 (Tabel Solusi Optimum Metode Stepping Stonde Jalur Tertutup X1 3 ) Tabel 1.7 (Tabel Solusi Optimum Metode Stepping Stonde Jalur Tertutup X2 3 )

11 Tabel 1.8 (Tabel Solusi Optimum Metode Stepping Stonde Jalur Tertutup X3 1 ) Jumlah yang dialokasikan kedalam variable masuk dibatasi oleh permintaan dan penawaran, serta dibatasi pada jumlah minimum pada suatu kotak yang dikurangi pada jalur tertutup. Dari contoh diatas dapat diketahui bahwa variable X3 1 merupakanvariable masuk, maka: X31 minimum = (X21, X32) = min (30, 20) = 20, sehingga table transportasi menjadi: Table 1.9 (Tabel Solusi Optimum Metode Stepping Stone Alokasi Variable Masuk X3 1 )

12 Solusi optimum dicapai disaat tidak ada calon variable masuk bernilai negative, dengan kata lain Cij bernilai positif. Solusi optimum dicapai melalui tiga iterasi: Tabel 1.10 (Tabel Solusi Optimum Metode Stepping Stone Iterasi Kedua) Table 1.11 (Tabel Solusi Optimum Metode Stepping Stone Iterasi Ketiga; Optimum)

13 Table 1.11 diatas memberikan nilai Cij positif untuk semua kotak kosong, sehingga tidak dapat diperbaiki lagi. Solusi optimum pada table 1.11 memberikan biaya transport terkecil, yaitu: Z = (8 x 70) + (6 x 50) + (10 x 70) + (12 x 10) + (3 x 80) = METODE MODIFIED DISTRIBUTION (MODI) Contoh: solusi awal menggunakan north west corner.

14 Metode MODI memberikan Ui dan Vj yang dirancang untuk setiap baris dan kolom. Dari table diatas dapat diketahui bahwa: X1 1 : U 1 + V 1 = C1 1 = 8, misalkan U1 = 0, maka: 0 + V 1 = 8, V 1 = 8 X2 1 : U 2 + V 1 = C2 1 = 15 U = 15, U 2 = 7 X2 2 : U 2 + V 2 = C2 2 = V 2 = 10, V 2 = 3 X3 2 : U 3 + V 2 = C3 2 = 9 U = 9, U 3 = 6 X3 3 : U 3 + V 3 = C3 3 = V 3 = 10, V 3 = 4 Nilai perubahan untuk setiap variable non dasar C ij, ditentukan melalui: C ij = c ij U i V j, sehingga: C1 2 = = +2 C2 3 = = 1 C1 3 = = +2 C3 1 = = -11 Nilai C3 1 negatif terbesar (-11) menunjukan bahwa solusi yang ada tidak optimal dan X3 1 sebagai variable masuk. Jumlah yang dialokasikan ke X3 1 ditentukan sesuai dengan prosedur

15 stepping stone, selanjutnya U i, V j, dan C ij pada table baru dihitung kembali untuk uji optimalitas dan menentukan variable masuk. MODEL PENUGASAN Masalah penugasan menyangkut penempatan para pekerja pada bidang yang tersedia agar biaya yang ditanggung dapat diminimumkan. Jika pekerja dianggap sumber dan pekerjaan identik dengan tujuan, maka model ini mirip dengan model transportasi. Bedanya, pada model penugasan jumlah pasokan pada setiap sumber dan jumlah permintaan pada setiap tujuan adalah satu. Ini berarti setiap pekerja hanya menangani satu pekerjaan dan sebaliknya, yaitu setiap pekerjaan hanya ditangani satu pekerja. Model penugasan bertujuan untuk mengalokasikan sejumlah sumberdaya untuk sejumlah pekerjaan pada biaya total minimum. Penugasan dibuat atas dasar bahwa setiap sumberdaya harus ditugaskan hanya untuk satu pekerjaan. Untuk suatu masalah penugasan n x n. Jumlah penugasan yang mungkin dilakukan sama dengan n! (n factorial) karena berpasangan satu-satu. Bentuk matrix segi empat merupakan cara termudah untuk menjelaskan masalah ini. a. Masalah minimisasi (Jumlah karyawan sama dengan jumlah pekerjaan) Bagian produksi perusahaan mempunyai 3 jenis pekerjaan yang berbeda untuk diselesikan oleh 3 karyawan. Berarti ada 1 karyawan merangkap 2 pekerjaan, jika ada 4 karyawan 3 pekerjaan maka ada satu karyawan dieliminir. Ketiga karyawan tersebut mempunyai tingkat ketrampilan, pengalaman kerja, latar belakang pendidikan dan latihan yang berbeda pula, karena sifat pekerjaan dan kemampuan karyawan berbeda, maka biaya penyelesaian pekerjaan berbeda. Hubungan kemampuan dan biaya dalam menyelesaiakan suatu pekerjaan adalah sebagaimana dalam table berikut ini Tabel : matriks biaya (dalam ribuan rupiah)

16 Langkah penyelesaian meminisasi biaya tenaga kerja 1. Menentukan matrik total opportunity cost a. Memilih elemen terkecil pada baris A1 untuk mengurangi seluruh elemen (bilangan) lainnya pada baris tersebut. Elemen terkecil baris A1 adalah 20, yang berarti bahwa karyawan A1 adalah paling efisien dengen melakukan pekerjaan D1. Olej karena itu opportunity cost perpaduan A1 dengan D1 adalah nol (20-20 = 0). b. Menghitung opportunity cost perpaduan A1 dengan D2 yang hasilnya adalah sebesar Rp ,- (27-20=7). c. Menghitung opportunity cost perpaduan A1 dengan D2 yang hasilnya adalah sebesar Rp (30-20=10). d. Memilih elemen terkecil pada baris A2 untuk mengurangi seluruh elemen (bilangan) lainnya pada baris tersebut. Elemen terkecil baris A2 adalah 10, yang berarti bahwa karyawan A2 adalah paling efisien dengan melakukan pekerjaan D1. Oleh karena itu opportunity cost perpaduan A1 dengan D1 adalah nol (10-10=0). e. Menghitung opportunity cost perpaduan A2 dengan D2 yang hasilnya adalah sebesar Rp (18-10=8). f. Menghitung opportunity cost perpaduan A2 dengan D3 yang hasilnya adalah sebesar Rp (16-10=6). g. Memilih elemen terkecil pada baris A3 untuk mengurangi seluruh elemen (bilangan) lainnya pada baris tersebut. Elemen terkecil baris A3 adalah 12, yang berarti bahwa karyawan A3 adalah paling efisien dengan melakukan pekerjaan D3. Oleh karena itu opportunity cost perpaduan A3 dengan D3 adalah nol (12-12=0).

17 h. Menghitung opportunity cost perpaduan A3 dengan D1 yang hasilnya adalah sebesar Rp (14 12 = 2). i. Menghitung opportunity cost perpaduan A3 dengan D2 yang hasilnya adalah sebesar Rp (16 12 =4). j. Memilih elemen terkecil pada setiap kolom unutk mengurangi seluruh elemen (bilangan) lainnya pada setiap kolom. Elemen terkecil pada kolom D1 dan D3 adalah nol. Jadi tidak perlu lagi dilakukan pengurangan. Oleh karena itu kita perhatikan kolom D2 saja. Elemen terkecil kolom D2 adalah 4, yang berarti bahwa biaya D2 adalah paling efisien jika dilakukan oleh karyawan A3. Oleh karena itu opportunity cost perpaduan A3 dengan D2 adalah nol (4-4 =0)\ k. Menghitung opportunity cost perpaduan A1 dengan D2 yang hasilnya adalah sebesar Rp (7-4=3). l. Menghitung opportunity cost perpaduan A2 dengan D2 yang hasilnya adalah sebesar Rp (8-4=4). Tabel. Reduced cost matrix Tabel. Total opportunity cost matrix 2. Test for Oportunity

18 a. Menarik garis peliput horizontal dan vertical dari baris dan kolong yang mengandung bilangan nol. b. Garis peliput jumlhanya harus ada tiga sesuai jumlah kolom atau baris agar dapat dinyatakan penugasan optimal telah tercapai. Kalau tidak maka matrix harus direvisi. Tabel. Test for opportunity 3. Merevisi total opportunity cost matrix a. Memilih bilangan terkecil yang tidak terliput garis-garis (opportunity cost terendah, yaitu A1D2 3) untuk mengurangi seluruh bilangan yang tidak terliput. b. Menambah dengan jumlah yang sama (nilai bilangan terkecil) hanya pada bilanganbilangan dalam dua garis peliput yang saling bersilang (dalam hal ini adalah bilangan 2 ditambah 3 sama dengan 5). Jadilah total opportunity cost matrix yang telah direvisi. Tabel. Revised total opportunity cost matrix Kemudian kita ulangi lagi langkah kedua untuk melakukan test optimalisasi. Aplikasi tes langkah kedua pada revised total opportunity cost matrix. Menunjukkan bahwa jumlah

19 garis minimum yang diperlukan untuk meliput seluruh bilangan nol adalah 3. Karena jumlah baris atau kolom matrix ini adalah juga 3, penugasan optimal dapat dibuat. Tabel. Test for opportunity 4. Membuat penugasan optimal Matrix penugasan optimal seperti ditunjukkan pada tabel 4 telah tercapai, maka kita dapat membuat penugasan optimal kepada masing-masing karyawan. Tabel. Penentuan penugasan pertama a. Penugasan pertama, karena sel A3D3 merupakan satu-satunya sel yang mempunyai bilangan nol dalam kolom D3, kita melakukan penugasan pertama kepada karyawan A3 untuk pekerjaan D3. Tabel. Penentuan penugasan kedua

20 b. Kita hilangkan baris A3 dan kolom D3 dalam penugasan selanjutnya. c. Penugasan kedua, dari sel-sel tersisa dalam matrix, kita mengetahui bahwa sel A1D2 merupakan satu-satunya sel yang mempunyai bilangan nol dalam kolom D2. Oleh karena itu kita melakukan penugasan kedua kepada karyawan A1 untuk pekerjaan D2. d. Kita hilangkan baris A1 dan kolom D2 dalam penugasan selanjutnya e. Penugasan ketiga A2 untuk pekerjaan D1; 5. Kesimpulan Skedul penugasan optimal dan biaya minimum adalah sebagai berikut: b. Masalah Maksimisasi Pemecahan masalah maksimisasi dalam penugasan optimal tenaga kerja juga dilakukan dengan metoda Hungarian. Perbedaannya dengan masalah minimisasi adalah bahwa bilangan-bilangan dalam matrix tidak menunjukkan tingkat biaya, tetapi menunjukkan tingkat laba (atau indeks produktifitas). Efektifitas pelaksanaan kerja oleh karyawankaryawan individual diukur dengan jumlah konstribusi laba. Sebagai contoh, kita ambil

21 masalah penugasan suatu perusahaan yang akan menugaskan 4 (empat karyawan yang berbeda kemampuannya untuk 4 (empat) pekerjaan yang berbeda pula. Data terperinci tentang konstribusi laba masing-masing karyawan dapat dilihat pada tabel 1. Matrix ini menunjukkan bahwa A1 mempunyai ketrampilan yang dibutuhkan untuk menangani 4 (empat) pekerjaan yang berbeda, tetapi dengan konstribusi laba yang berbeda. Tabel 1. Matrix konstribusi laba (dalam ribuan rupiah) Prosedur pemecanan masalah maksimisasi dimulai dengan merubah matrix konstribusi laba menjadi matrix opportunity loss. Dalam masalah ini, A1 memberikan konstribusi laba tertinggi ( = Rp ) bila dia ditugaskan pada pekerjaan D2. Oleh karena itu, bila A1 dialokasikan ke pekerjaan D1 (dengan kontribusi laba sebesar Rp ) ada opportunity loss sebesar Rp dan seterusnya. Seluruh bilangan dalam setiap baris dikurangi dengan bilangan bernilai maksimum dalam baris yang sama. Langkah ini menghasilkan matrix oportuniti loss yang ditunjukkan pada tabel 2. Bilangan-bilangan dalam matrix ini sebenarnya bernilai negative, tetapi untuk memudahkan perhitungan tanda negative dihilangkan. Seperti sebelumnya, setiap baris akan berisi paling sedikit satu bilangan nol. Tabel 2. Matrix opportunity loss

22 Tabel 3. Matrix total oportuniy loss Langkah berikutnya adalah meminimumkan opportunity loss untuk memaksimumkan konstribusi laba total. Langkah ini dilakukan melalui pengurangan seluruh bilangan dalam setiap kolom dengan bilangan terkecil dari kolom tersebut. Dalam contoh kita, langkah pengurangan kolom hanya dilakukan pada kolom D3, karena kolom-kolom lainnya telah ada paling sedikit satu bilangan nol (lihat tabel 3). Kemudian, kita lakukan tes optimalisasi untuk matriks total opportunity loss dengan cara yang sama seperti pada masalah minimisasi. Tes menunjukkan bahwa seluruh bilangan nol dapat diliput hanya dengan tiga garis, sedangkan jumlah baris atau kolom adalah empat. Ini berarti matriks harus direvisi dengan cara seperti telah dibahas dimuka. Tabel 4 menunjukkan matriks baru yang memungkinkan penugasan optimal dapat dibuat Tabel 4. Revived total opportunity loss matrix dan tes for optimality

23 Skedul penugasan optimal dan kontribusi laba total untuk dua alternative penyelesaian adalah:

24 SIMPULAN Masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan tertentu, pada biaya transpor minimum. Asumsi dasar model ini adalah bahwa biaya transportasi pada suatu rute tertentu poporsional dengan banyaknya unit yang dikirimkan.

25 DAFTAR PUSTAKA 1. Mulyono, Sri. (2004). Riset Operasi, Lembaga Penerbit Universitas Indonesia, Bab 5 2. Anderson,D.R., Sweeney, D.J., & Williams, T.A., Martin, K. (2008). Quantitative methods for business, Edisi 11, Thomson South-Western, Naporp Boulevard, Chapter 10.

TRANSPORTASI, PENUGASAN, PEMINDAHAN

TRANSPORTASI, PENUGASAN, PEMINDAHAN TRANSPORTASI, PENUGASAN, PEMINDAHAN LECTURE NOTES TRANSPORTASI, PENUGASAN, PEMINDAHAN Rojali, S.Si., M.Si rojali@binus.edu LEARNING OUTCOMES 1. Mahasiswa diharapkan dapat menafsirkan masalah nyata untuk

Lebih terperinci

METODE TRANSPORTASI Permintaan Masalah diatas diilustrasikan sebagai suatu model jaringan pada gambar sebagai berikut:

METODE TRANSPORTASI Permintaan Masalah diatas diilustrasikan sebagai suatu model jaringan pada gambar sebagai berikut: METODE TRANSPORTASI Pada umumnya masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan tertentu,

Lebih terperinci

BAB VII METODE TRANSPORTASI

BAB VII METODE TRANSPORTASI BAB VII METODE TRANSPORTASI Pada umumnya masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan

Lebih terperinci

UMMU KALSUM UNIVERSITAS GUNADARMA

UMMU KALSUM UNIVERSITAS GUNADARMA UMMU KALSUM UNIVERSITAS GUNADARMA 2016 MODEL TRANSPORTASI METODE TRANSPORTASI Transportasi Lokasi sumber Lokasi tujuan Transportasi distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran

Lebih terperinci

Modul 10. PENELITIAN OPERASIONAL MODEL TRANSPORTASI. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI

Modul 10. PENELITIAN OPERASIONAL MODEL TRANSPORTASI. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI Modul 0 PENELITIAN OPERASIONAL Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA http://wwwmercubuanaacid JAKARTA 007 PENDAHULUAN Suatu

Lebih terperinci

TRANSPORTASI APROKSIMASI VOGEL

TRANSPORTASI APROKSIMASI VOGEL TRANSPORTASI APROKSIMASI VOGEL 6 Obyektif 1. Mengerti mengenai definisi Transportasi Vogel Approximation Methods (VAM) 2. Memahami penggunaan metode transportasi dan menyelesaikan masalah menggunakan metode

Lebih terperinci

TRANSPORTASI NORTH WEST CORNER (NWC)

TRANSPORTASI NORTH WEST CORNER (NWC) TRANSPORTASI NORTH WEST CORNER (NWC) 4 Obyektif 1. Mengerti mengenai definisi Transportasi North West Coner (NWC) 2. Memahami penggunaan metode transportasi dan menyelesaikan masalah menggunakan metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. Tinjauan Teori dan Konsep 2.. Pengertian Manajemen Produksi/Operasi Sebelum membahas lebih jauh mengenai metode transportasi, perlu diuraikan terlebih dahulu mengenai pengertian

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming)

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming) BAB 2 LANDASAN TEORI 2.1 Pengertian Program Linier (Linear Programming) Menurut Sri Mulyono (1999), Program Linier (LP) merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai

Lebih terperinci

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network :

Lebih terperinci

TRANSPORTASI LEAST COST

TRANSPORTASI LEAST COST TRANSPORTASI LEAST COST 5 Obyektif 1. Mengerti mengenai definisi Transportasi Least Cost 2. Memahami penggunaan metode transportasi dan menyelesaikan masalah menggunakan metode transportasi Least Cost

Lebih terperinci

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu

Lebih terperinci

Danang Triagus Setiyawan ST,MT

Danang Triagus Setiyawan ST,MT Danang Triagus Setiyawan ST,MT Model Transportasi (MT) sebagai salah satu bentuk khusus dari permasalahan Program Linear. MT mengkaji tentang distribusi sesuatu dari beberapa sumber ke beberapa tujuan

Lebih terperinci

Tentukan alokasi hasil produksi dari pabrik pabrik tersebut ke gudang gudang penjualan dengan biaya pengangkutan terendah.

Tentukan alokasi hasil produksi dari pabrik pabrik tersebut ke gudang gudang penjualan dengan biaya pengangkutan terendah. PENJELASAN METODE STEPPING STONE Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi yang optimal menggunakan cara trial and error atau coba coba. Walaupun mengubah alokasi dengan

Lebih terperinci

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network

Lebih terperinci

MODEL TRANSPORTASI OLEH YULIATI, SE, MM

MODEL TRANSPORTASI OLEH YULIATI, SE, MM MODEL TRANSPORTASI OLEH YULIATI, SE, MM PERSOALAN TRANSPORTASI Metode transportasi adalah suatu metode dalam Riset Operasi yang digunakan utk mengatur distribusi dari sumber-sumber yg menyediakan produk

Lebih terperinci

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan

Lebih terperinci

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu

Lebih terperinci

Model Transportasi /ZA 1

Model Transportasi /ZA 1 Model Transportasi 1 Model Transportasi: Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan distribusi suatu barang tertentu dari sejumlah sumber (sources)

Lebih terperinci

TEKNIK RISET OPERASIONAL. Metode Penugasan 2 SKS D3 MI

TEKNIK RISET OPERASIONAL. Metode Penugasan 2 SKS D3 MI TEKNIK RISET OPERASIONAL Metode Penugasan 2 SKS D3 MI MODEL PENUGASAN Model Penugasan adalah suatu model khusus dari model program linier yang serupa dengan model transportasi. Perbedaannya adalah, dalam

Lebih terperinci

ANALISA PERBANDINGAN METODE VAM DAN MODI DALAM PENGIRIMAN BARANG PADA PT. MITRA MAYA INDONESIA

ANALISA PERBANDINGAN METODE VAM DAN MODI DALAM PENGIRIMAN BARANG PADA PT. MITRA MAYA INDONESIA ANALISA PERBANDINGAN METODE VAM DAN MODI DALAM PENGIRIMAN BARANG PADA PT. MITRA MAYA INDONESIA Trisnani Mahasiswa Teknik Informatika STMIK Budi Darma JL. Sisingamangaraja NO. 338 Simpang Limun Medan ABSTRAK

Lebih terperinci

Metode Transportasi. Rudi Susanto

Metode Transportasi. Rudi Susanto Metode Transportasi Rudi Susanto Pendahuluan METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Terdapat bermacam-macam network model. Network : Suatu sistem saluran-saluran yang menghubungkan titiktitik

Lebih terperinci

BAB 4 METODE TRANSPORTASI

BAB 4 METODE TRANSPORTASI BAB 4 METODE TRANSPORTASI Metode Transportasi adalah suatu metode yang digunakan untuk mengatur distribusi dari sumber sumber yang menyediakan produk produk yang sama di tempat- tempat yang membutuhkan

Lebih terperinci

Riset Operasional TABEL TRANSPORTASI. Keterangan: S m = Sumber barang T n = Tujuan barang X mn = Jumlah barang yang didistribusikan

Riset Operasional TABEL TRANSPORTASI. Keterangan: S m = Sumber barang T n = Tujuan barang X mn = Jumlah barang yang didistribusikan Masalah transportasi, pada umumnya, berkaitan dengan mendistribusikan sembarang komoditi dari sembarang kelompok pusat pemasok (yang disebut SUMBER) ke sembarang pusat penerima (yang disebut TUJUAN) dalam

Lebih terperinci

TRANSPORTASI & PENUGASAN

TRANSPORTASI & PENUGASAN TRANSPORTASI & PENUGASAN 66 - Taufiqurrahman Metode Transportasi Suatu metode yang digunakan untuk mengatur distribusi dari sumbersumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan

Lebih terperinci

BAB III MODEL TRANSPORTASI. memperkecil total biaya distribusi (Hillier dan Lieberman, 2001, hlm. 354).

BAB III MODEL TRANSPORTASI. memperkecil total biaya distribusi (Hillier dan Lieberman, 2001, hlm. 354). BAB III MODEL TRANSPORTASI. Pendahuluan Permasalahan transportasi berkaitan dengan pendistribusian beberapa komoditas dari beberapa pusat penyediaan, yang disebut dengan sumber menuju ke beberapa pusat

Lebih terperinci

Operations Management

Operations Management Operations Management OPERATIONS RESEARCH William J. Stevenson 8 th edition MASALAH PENUGASAN (ASSIGMENT PROBLEM) Merupakan masalah yang berhubungan dengan penugasan optimal dari bermacammacam sumber yang

Lebih terperinci

TRANSPORTATION PROBLEM

TRANSPORTATION PROBLEM Media Informatika Vol. No. (27) TRANSPORTATION PROBLEM Dahlia Br Ginting Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. Juanda 9 Bandung 2 E-mail : Carlo27@telkom.net Abstrak Di sini akan

Lebih terperinci

TRANSPORTATION PROBLEM. D0104 Riset Operasi I Kuliah XXIII - XXV

TRANSPORTATION PROBLEM. D0104 Riset Operasi I Kuliah XXIII - XXV TRANSPORTATION PROBLEM D4 Riset Operasi I Kuliah XXIII - XXV Pendahuluan Transportation Problem merupakan aplikasi dari programa linier untuk menentukan bagaimana mendistribusikan bahan, produk dari suatu

Lebih terperinci

MASALAH TRANSPORTASI

MASALAH TRANSPORTASI MASALAH TRANSPORTASI Transportasi pada umumnya berhubungan dengan distribusi suatu produk, menuju ke beberapa tujuan, dengan permintaan tertentu, dan biaya transportasi minimum. Transportasi mempunyai

Lebih terperinci

PENDISTRIBUSIAN PRODUK YANG OPTIMAL DENGAN METODE TRANSPORTASI

PENDISTRIBUSIAN PRODUK YANG OPTIMAL DENGAN METODE TRANSPORTASI Jurnal Teknik dan Ilmu Komputer PENDISTRIBUSIAN PRODUK YANG OPTIMAL DENGAN METODE TRANSPORTASI (Optimum Product Distribution Using Transportation Method) Jevi Rosta*, Hendy Tannady** Fakultas Teknik Jurusan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Desain Penelitian Penelitian ini bersifat literatur dan melakukan studi kepustakaan untuk mengkaji dan menelaah berbagai buku, jurnal, karyai lmiah, laporan dan berbagai

Lebih terperinci

MODEL TRANSPORTASI. Sesi XI : Model Transportasi

MODEL TRANSPORTASI. Sesi XI : Model Transportasi Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XI : MODEL TRANSPORTASI e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Model Transportasi Merupakan

Lebih terperinci

TEKNIK RISET OPERASI UNDA

TEKNIK RISET OPERASI UNDA BAB V METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama ke tempattempat yang membutuhkan secara

Lebih terperinci

Pokok Bahasan VI Metode Transportasi METODE TRANSPORTASI. Metode Kuantitatif. 70

Pokok Bahasan VI Metode Transportasi METODE TRANSPORTASI. Metode Kuantitatif. 70 METODE TRANSPORTASI Metode Kuantitatif. 70 POKOK BAHASAN VI METODE TRANSPORTASI Sub Pokok Bahasan : 1. Metode North West Corner Rule 2. Metode Stepping Stone. 3. Metode Modi 4. Metode VAM Instruksional

Lebih terperinci

#8 Operation Research : Assignment

#8 Operation Research : Assignment #8 Operation Research : Assignment Model Penugasan (assignment) pada awalnya dikenal sebagai Hungarian Method. Istilah penugasan mengandung pengertian bahwa satu orang akan mengerjakan satu tugas tertentu;

Lebih terperinci

MODEL TRANSPORTASI - II MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI - II MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI - II MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Menentukan Entering Variable & Leaving Variable Tahap selanjutnya

Lebih terperinci

TEKNIK RISET OPERASI UNDA

TEKNIK RISET OPERASI UNDA BAB IV. MASALAH PENUGASAN (ASSIGNMENT PROBLEM) Salah satu metode yang digunakan untuk Penugasan adalah Metode Hungarian. Pada Metode Hungarian, jumlah sumber-sumber yang ditugaskan harus sama persis dengan

Lebih terperinci

MENGOPTIMALKAN BIAYA DISTRIBUSI PAKAN TERNAK DENGAN MENGGUNAKAN METODE TRANSPORTASI (Studi Kasus di PT. X Krian)

MENGOPTIMALKAN BIAYA DISTRIBUSI PAKAN TERNAK DENGAN MENGGUNAKAN METODE TRANSPORTASI (Studi Kasus di PT. X Krian) Teknika : Engineering and Sains Journal Volume 1, Nomor 2, Desember 2017, 95-100 ISSN 2579-5422 online ISSN 2580-4146 print MENGOPTIMALKAN BIAYA DISTRIBUSI PAKAN TERNAK DENGAN MENGGUNAKAN METODE TRANSPORTASI

Lebih terperinci

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Magister Agribisnis Universitas Jambi

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Magister Agribisnis Universitas Jambi Prof. Dr. Ir. ZULKIFLI LMSYH, M.Sc. Program Magister gribisnis Universitas Jambi Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan distribusi suatu barang

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model

BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model BAB 2 LANDASAN TEORI 2.1 Sistem dan Model 2.1.1 Pengertian sistem Pengertian sistem dapat diketahui dari definisi yang diambil dari beberapa pendapat pengarang antara lain : Menurut Romney (2003, p2) sistem

Lebih terperinci

ASSIGNMENT MODEL. Pertemuan Ke-10. Riani Lubis. Universitas Komputer Indonesia

ASSIGNMENT MODEL. Pertemuan Ke-10. Riani Lubis. Universitas Komputer Indonesia ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 Masalah Penugasan (1) Salah satu metode yang digunakan untuk Penugasan

Lebih terperinci

PEMROGRAMAN LINIER: MODEL TRANSPORTASI. Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si

PEMROGRAMAN LINIER: MODEL TRANSPORTASI. Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si PEMROGRAMAN LINIER: MODEL TRANSPORTASI Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 2015 i KATA PENGANTAR Kebutuhan akan

Lebih terperinci

Model Transportasi 1

Model Transportasi 1 Model Transportasi 1 Model ini berawal dari tahun 1941 ketika F.L. Hitchkok mengetengahkan studi yang berjudul The Distribution of a Product from Several Sources to Numerous Localities Tahun 1947, T.C.Koopmans

Lebih terperinci

ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Masalah Penugasan (1) Salah satu metode yang digunakan untuk

Lebih terperinci

BAB VII. METODE TRANSPORTASI

BAB VII. METODE TRANSPORTASI VII. METODE TNPOTI Dilihat dari namanya, metode transportasi digunakan untuk mengoptimalkan biaya pengangkutan (transportasi) komoditas tunggal dari berbagai daerah sumber menuju berbagai daerah tujuan.

Lebih terperinci

Operations Management

Operations Management 6s-1 Linear Programming Operations Management MANAJEMEN William J. Stevenson 8 th edition 6s-2 Linear Programming METODE TRANSPORTASI suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu masalah yang sering dihadapi oleh perusahaan dengan jaringan kerja yang besar adalah mendistribusikan produk-produk hasil produksi kepada konsumen. Dalam

Lebih terperinci

TEKNIK RISET OPERASIONAL. Model Transportasi. 2 SKS S1 Manajemen

TEKNIK RISET OPERASIONAL. Model Transportasi. 2 SKS S1 Manajemen TEKNIK RISET OPERASIONAL Model Transportasi 2 SKS S1 Manajemen METODE TRANSPORTASI Metode yang digunakan dalam rangka mengatur distribusi suatu barang dari sumber-sumber yang menyediakan produk yang sama,

Lebih terperinci

ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12

ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 Masalah Penugasan Salah satu metode yang digunakan untuk Penugasan adalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Masa perkembangan transportasi terwujud dalam bentuk kemajuan alat angkut yang selalu mengikuti dan mendorong kemajuan teknologi transportasi. Pada umumnya masalah

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Tahap selanjutnya dari teknik pemecahan persoalan transportasi adalah menentukan entering dan leaving variable.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Manajemen Produksi dan Operasi Manajeman (management) merupakan proses kerja dengan menggunakan orang dan sumber daya yang ada untuk mencapai tujuan (Bateman, Thomas S. : 2014)

Lebih terperinci

IMPLEMENTASI METODE NWC DAN MODI DALAM PENGOPTIMALAN BIAYA PENDISTRIBUSIAN PUPUK (STUDI KASUS : PT. PERKEBUNAN RIMBA AYU)

IMPLEMENTASI METODE NWC DAN MODI DALAM PENGOPTIMALAN BIAYA PENDISTRIBUSIAN PUPUK (STUDI KASUS : PT. PERKEBUNAN RIMBA AYU) Majalah Ilmiah INTI, Volume 12, Nomor 2, Mei 217 ISSN 2339-21X IMPLEMENTASI METODE NWC DAN MODI DALAM PENGOPTIMALAN BIAYA PENDISTRIBUSIAN PUPUK (STUDI KASUS : PT. PERKEBUNAN RIMBA AYU) Mohd. Rifqi Lutfir

Lebih terperinci

Makalah Riset Operasi tentang Metode Transportasi

Makalah Riset Operasi tentang Metode Transportasi Makalah Riset Operasi tentang Metode Transportasi KATA PENGANTAR Dengan menyebut nama Allah SWT yang Maha Pengasih lagi Maha Panyayang, Kami panjatkan puja dan puji syukur atas kehadirat-nya, yang telah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke

BAB II TINJAUAN PUSTAKA. berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke BAB II TINJAUAN PUSTAKA 2.1 Masalah Transportasi Masalah transportasi merupakan pemrograman linear jenis khusus yang berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke tujuan (misalnya,

Lebih terperinci

APLIKASI METODE TRANSPORTASI DALAM OPTIMASI BIAYA DISTRIBUSI BERAS MISKIN (RASKIN) PADA PERUM BULOG SUB DIVRE MEDAN

APLIKASI METODE TRANSPORTASI DALAM OPTIMASI BIAYA DISTRIBUSI BERAS MISKIN (RASKIN) PADA PERUM BULOG SUB DIVRE MEDAN Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 299 311. APLIKASI METODE TRANSPORTASI DALAM OPTIMASI BIAYA DISTRIBUSI BERAS MISKIN (RASKIN) PADA PERUM BULOG SUB DIVRE MEDAN Lolyta Damora

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Riset Operasi Masalah Riset Operasi (Operation Research) pertama kali muncul di Inggris selama Perang Dunia II. Inggris mula-mula tertarik menggunakan metode kuantitatif dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Model dan Metode Transportasi

BAB 2 LANDASAN TEORI. 2.1 Pengertian Model dan Metode Transportasi 34 BAB 2 LANDASAN TEORI 2.1 Pengertian Model dan Metode Transportasi Hamdy A Taha (1996) mengemukakan bahwa dalam arti sederhana, model transportasi berusaha menentukan sebuah rencana transportasi sebuah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 11 Latar Belakang Pendistribusian barang atau jasa merupakan salah satu bagian penting dari kegiatan sebuah instansi pemerintah ataupun perusahaan tertentu Masalah transportasi merupakan

Lebih terperinci

OPERATIONS RESEARCH. Industrial Engineering

OPERATIONS RESEARCH. Industrial Engineering OPERATIONS RESEARCH Industrial Engineering TRANSPORTASI METODE ANALISA TRANSPORTASI PROGRAMA LINEAR Metode transportasi programa linear merupakan metode yang cukup sederhana dalam memecahkan permasalahan

Lebih terperinci

BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN

BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN 2.1 Landasan Teori 2.1.1 Pengertian Manajemen Operasi Serangkaian kegiatan yang menciptakan nilai dalam bentuk barang dan jasa dengan mengubah input menjadi

Lebih terperinci

METODE TRANSPORTASI. Gudang A Gudang B Gudang C Kapasitas pabrik Pabrik W. Rp 20 Rp 5 Rp Rp 15 Rp 20 Rp Rp 25 Rp 10 Rp 19 50

METODE TRANSPORTASI. Gudang A Gudang B Gudang C Kapasitas pabrik Pabrik W. Rp 20 Rp 5 Rp Rp 15 Rp 20 Rp Rp 25 Rp 10 Rp 19 50 METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama ke tempat-tempat yang membutuhkan secara optimal

Lebih terperinci

METODE TRANSPORTASI. GUDANG A GUDANG B GUDANG C KAPASITAS PABRIK PABRIK W. RP 20 RP 5 RP RP 15 RP 20 RP RP 25 RP 10 RP 19 50

METODE TRANSPORTASI. GUDANG A GUDANG B GUDANG C KAPASITAS PABRIK PABRIK W. RP 20 RP 5 RP RP 15 RP 20 RP RP 25 RP 10 RP 19 50 METODE TRANSPORTASI. GUDANG A GUDANG B GUDANG C KAPASITAS PABRIK PABRIK W. RP 20 RP 5 RP RP 15 RP 20 RP RP 25 RP 10 RP 19 50 METODE TRANSPORTASI Metode Transportasi merupakan suatu metode yang digunakan

Lebih terperinci

Penentuan Solusi Optimal MUHLIS TAHIR

Penentuan Solusi Optimal MUHLIS TAHIR Penentuan Solusi Optimal MUHLIS TAHIR Metode Ada dua metode yang dapat digunakan untuk menentukan solusi optimal, yaitu : Metode Stepping Stone Metode Modified Distribution (Modi) Prinsip perhitungan kedua

Lebih terperinci

PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL

PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL PERTEMUAN 9 MENENTUKAN SOLUSI FISIBEL BASIS AWAL 1). Metode Pojok Kiri Atas / Pojok Barat Laut (North West Corner) Metode ini mula-mula diperkenalkan oleh Charnes dan Cooper kemudian diperluas oleh Danziq.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2 1 Masalah Transportasi Salah satu permasalahan khusus dalam program linier adalah masalah transportasi Untuk menyelesaikan permasalahan ini digunakan metode transportasi Dikatakan

Lebih terperinci

biaya distribusi dapat ditekan seminimal mungkin

biaya distribusi dapat ditekan seminimal mungkin MODEL TRANSPORTASI MODEL TRANSPORTASI Metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan secara optimal. Metode transportasi

Lebih terperinci

METODE TRANSPORTASI PENGERTIAN METODE STEPPING STONE METODE MODI METODE VOGELS APPROXIMATION (VAM)

METODE TRANSPORTASI PENGERTIAN METODE STEPPING STONE METODE MODI METODE VOGELS APPROXIMATION (VAM) METODE TRANSPORTASI PENGERTIAN METODE STEPPING STONE METODE MODI METODE VOGELS APPROXIMATION (VAM) PENGERTIAN Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

Metode Transportasi. Muhlis Tahir

Metode Transportasi. Muhlis Tahir Metode Transportasi Muhlis Tahir Pendahuluan Metode Transportasi digunakan untuk mengoptimalkan biaya pengangkutan (transportasi) komoditas tunggal dari berbagai daerah sumber menuju berbagai daerah tujuan.

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI

BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI 34 BAB 2 LANDASAN TEORI 2.1 Pengertian Model dan Metode Transportasi Hamdy A Taha (1996) mengemukakan bahwa dalam arti sederhana, model

Lebih terperinci

OPTIMASI DISTRIBUSI GULA MERAH PADA UD SARI BUMI RAYA MENGGUNAKAN MODEL TRANSPORTASI DAN METODE LEAST COST

OPTIMASI DISTRIBUSI GULA MERAH PADA UD SARI BUMI RAYA MENGGUNAKAN MODEL TRANSPORTASI DAN METODE LEAST COST OPTIMASI DISTRIBUSI GULA MERAH PADA UD SARI BUMI RAYA MENGGUNAKAN MODEL TRANSPORTASI DAN METODE LEAST COST Deasy Permata Sari A12.2010.04110 Program Studi Sistem Informasi S1 Fakultas Ilmu Komputer Universitas

Lebih terperinci

MASALAH TRANSPORTASI

MASALAH TRANSPORTASI MASALAH TRANSPORTASI Masukkan kapasitas masing-masing sumber, dan biaya pengangkutan ke dalam tabel transportasi Cari perbedaan dari dua biaya terkecil (dalam nilai absolut), yaitu selisih biaya terkecil

Lebih terperinci

Kajian Masalah Transshipment Tidak Seimbang Menggunakan Metode Least Cost - Stepping Stone Dan Metode Least Cost - Modi

Kajian Masalah Transshipment Tidak Seimbang Menggunakan Metode Least Cost - Stepping Stone Dan Metode Least Cost - Modi TALENTA Conference Series: Science & Technology PAPER OPEN ACCESS Kajian Masalah Transshipment Tidak Seimbang Menggunakan Metode Least Cost - Stepping Stone Dan Metode Least Cost - Modi Author DOI : Putri

Lebih terperinci

Penggunaan Metode Transportasi Dalam...( Ni Ketut Kertiasih)

Penggunaan Metode Transportasi Dalam...( Ni Ketut Kertiasih) ISSN0216-3241 27 PENGGUNAAN METODE TRANSPORTASI DALAM PROGRAM LINIER UNTUK PENDISTRIBUSIAN BARANG Oleh Ni Ketut Kertiasih Jurusan Manajemen Informatika, FTK, Undiksha Abstrak Permasalahan transportasi

Lebih terperinci

Pertemuan 3 Transportasi Tanpa Dummy

Pertemuan 3 Transportasi Tanpa Dummy Pertemuan 3 Transportasi Tanpa Dummy Objektif: 1. Mahasiswa dapat menyelesaikan masalah dengan metode North West Corner (NWC). 2. Mahasiswa dapat menyelesaikan masalah dengan metode Vogel Approximation

Lebih terperinci

Manajemen Sains. Model Transportasi. Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011

Manajemen Sains. Model Transportasi. Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011 Manajemen Sains Model Transportasi Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011 Pengertian Model transportasi adalah kelompok khusus program linear yang menyelesaikan masalah pengiriman

Lebih terperinci

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 5 MODEL TRANSPORTASI. 5.1 Pengertian Model Transportasi

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 5 MODEL TRANSPORTASI. 5.1 Pengertian Model Transportasi Modul 5 MODEL TRANSPORTASI 5.1 Pengertian Model Transportasi Model transportasi adalah kelompok khusus program linear yang menyelesaikan masalah pengiriman komoditas dari sumber (misalnya pabrik) ke tujuan

Lebih terperinci

METODE IMPROVED EXPONENTIAL APPROACH DALAM MENENTUKAN SOLUSI OPTIMUM PADA MASALAH TRANSPORTASI

METODE IMPROVED EXPONENTIAL APPROACH DALAM MENENTUKAN SOLUSI OPTIMUM PADA MASALAH TRANSPORTASI METODE IMPROVED EXPONENTIAL APPROACH DALAM MENENTUKAN SOLUSI OPTIMUM PADA MASALAH TRANSPORTASI Dimas Alfan Hidayat 1, Siti Khabibah, M.Sc 2, Suryoto, M.Si 2 Program Studi Matematika FSM Universitas Diponegoro

Lebih terperinci

CONTOH MODEL TRANSPORTASI DAN PENYELESAIAN DENGAN NORTH WEST CORNER DAN MODI

CONTOH MODEL TRANSPORTASI DAN PENYELESAIAN DENGAN NORTH WEST CORNER DAN MODI ONTOH MODEL TRNSPORTSI DN PENYELESIN DENGN NORTH WEST ORNER DN MODI Sebuah perusahaan saat ini beroperasi dengan 3 buah pabrik serta jumlah permintaan dari 3 Kota dengan kapasitas masing-masing sebagai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Riset Operasi Istilah Riset Operasi (Operation Research) pertama kali digunakan pada tahun 1940 oleh Mc Closky dan Trefthen di suatu kota kecil Bowdsey Inggris. Riset Operasi adalah

Lebih terperinci

Hermansyah, Helmi, Eka Wulan Ramadhani INTISARI

Hermansyah, Helmi, Eka Wulan Ramadhani INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 3(216), hal 249 256. PERBANDINGAN METODE STEPPING STONE DAN MODIFIED DISTRIBUTION DENGAN SOLUSI AWAL METODE LEAST COST UNTUK MEMINIMUMKAN

Lebih terperinci

TEKNIK RISET OPERASIONAL. Metode Transportasi. 2 SKS D3 Manajemen Informatika

TEKNIK RISET OPERASIONAL. Metode Transportasi. 2 SKS D3 Manajemen Informatika TEKNIK RISET OPERASIONAL Metode Transportasi 2 SKS D3 Manajemen Informatika MODEL TRANSPORTASI Metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama, ke tempattempat

Lebih terperinci

v j v 1 =c 31 u 3 =14 0=14 v 2 =c 32 u 3 =0 0= 0 v 3 =c 43 u 4 =0 (8 M)=M 8 v 4 =c 34 u 3 =M 0=M v 5 =c 55 u 5 =0 (15 M)=M 15

v j v 1 =c 31 u 3 =14 0=14 v 2 =c 32 u 3 =0 0= 0 v 3 =c 43 u 4 =0 (8 M)=M 8 v 4 =c 34 u 3 =M 0=M v 5 =c 55 u 5 =0 (15 M)=M 15 Lampiran 1. Nilai baris u i dan kolom v j untuk setiap tabel iterasi dari metode MODI Nilai Baris u i dan Kolom v j untuk Tabel 4.28 u i u 1 =c 11 v 1 = 14= 9 u 2 =c 21 v 1 = 14= 14 u 3 = u 4 =c 44 v 4

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Pemilihan Judul

BAB I PENDAHULUAN 1.1. Latar Belakang Pemilihan Judul BAB I PENDAHULUAN 1.1. Latar Belakang Pemilihan Judul Transportasi merupakan komponen penting dalam operasional perusahaan karena sangat berpengaruh terhadap biaya yang dikeluarkan oleh perusahaan dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Riset Operasi (Operation Research) Istilah riset operasi pertama kali digunakan pada tahun 1940 oleh Mc Closky dan Trefthen di suatu kota kecil di Inggris bernama Bowdsey.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Manajemen Operasi Menurut Jay Heizer dan Barry Render (2005, p4), manajemen operasi adalah serangkaian aktivitas yang menghasilkan nilai dalam bentuk barang dan jasa

Lebih terperinci

Artinya : penugasan adalah sub bagian dari program linier.

Artinya : penugasan adalah sub bagian dari program linier. Adalah alokasi dari satu sumber ke banyak tujuan, atau dari banyak sumber ke satu tujuan. Skema hubungan adalah sbb.: PROGRAM LINIER TRANSPORTASI PENUGASAN Artinya : penugasan adalah sub bagian dari program

Lebih terperinci

#6 METODE TRANSPORTASI

#6 METODE TRANSPORTASI #6 METODE TRANSPORTASI Merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan secara optimal. Metode transportasi

Lebih terperinci

PEMROGRAMAN LINIER: MODEL TRANSPORTASI. Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si

PEMROGRAMAN LINIER: MODEL TRANSPORTASI. Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si PEMROGRAMAN LINIER: MODEL TRANSPORTASI Oleh: Ni Ketut Tari Tastrawati, S.Si, M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 2015 i KATA PENGANTAR Kebutuhan akan

Lebih terperinci

MODEL TRANSPORTATION 2014

MODEL TRANSPORTATION 2014 MODEL TRANSPORTATION 2014 Jaringan Rel Kereta Api Saluran sistem pipa Manusia butuh alat bantu untuk mengatasi permasalahan-permasalahan distribusi??? Aplikasi Model Transportasi Jaringan adalah jaringan

Lebih terperinci

Analisis Penggunaan Model Transportasi dalam Memaksimumkan Penjualan Tiket pada Perusahaan Shuttle Xtrans Cabang Bandung

Analisis Penggunaan Model Transportasi dalam Memaksimumkan Penjualan Tiket pada Perusahaan Shuttle Xtrans Cabang Bandung Prosiding Manajemen ISSN: 2460-6545 Analisis Penggunaan Model Transportasi dalam Memaksimumkan Penjualan Tiket pada Perusahaan Shuttle Xtrans Cabang Bandung 1 Siska Martinalopa, 2 Muhardi, 3 Poppie Sofiah

Lebih terperinci

Azwar Anas, M. Kom 11/1/2016. Azwar Anas, M. Kom - STIE-GK Muara Bulian

Azwar Anas, M. Kom 11/1/2016. Azwar Anas, M. Kom - STIE-GK Muara Bulian Azwar Anas, M. Kom 1 Pemecahan Persoalan Minimasi Algoritma lainnya yang digunakan dalam persoalan program linier adalah metode penugasan. Seperti halnya metode transportasi, metode penugasan bisa lebih

Lebih terperinci

OPTIMASI PENDISTRIBUSIAN AIR DENGAN MENGGUNAKAN METODE LEAST COST DAN METODE MODIFIED DISTRIBUTION (Studi Kasus: PDAM Kabupaten Minahasa Utara)

OPTIMASI PENDISTRIBUSIAN AIR DENGAN MENGGUNAKAN METODE LEAST COST DAN METODE MODIFIED DISTRIBUTION (Studi Kasus: PDAM Kabupaten Minahasa Utara) OPTIMASI PENDISTRIBUSIAN AIR DENGAN MENGGUNAKAN METODE LEAST COST DAN METODE MODIFIED DISTRIBUTION (Studi Kasus: PDAM Kabupaten Minahasa Utara) Claudia Nelwan 1), John S. Kekenusa 1), Yohanes Langi 1)

Lebih terperinci

Metode Kuantitatif Manajemen, Kelompok 5, MB IPB E49, 2014 OPERATION RESEARCH - TRANSPORTATION MODELS. Presented by Group 5 E49

Metode Kuantitatif Manajemen, Kelompok 5, MB IPB E49, 2014 OPERATION RESEARCH - TRANSPORTATION MODELS. Presented by Group 5 E49 OPERATION RESEARCH - TRANSPORTATION MODELS Presented by Group 5 E49 0 SOAL-JAWAB PEMODELAN TRANSPORTASI DENGAN STUDI KASUS DISTRIBUSI KOMODITI GANDUM, BARLEY DAN OAT DI NEGARA EROPA MENGGUNAKAN METODE

Lebih terperinci

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) ISSN (Print)

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) ISSN (Print) ANALISIS PERBANDINGAN PENGIRIMAN BARANG MENGGUNAKAN METODE VOGEL S APPROXIMATION METHOD (VAM) DAN MODIFIED DISTRIBUTION (MODI) (STUDI KASUS: PT. COCA COLA AMATIL INDONESIA SURABAYA) Oni Dewi Lestari, Tika

Lebih terperinci

APLIKASI TRANSPORTASI PENGIRIMAN BARANG MENGGUNAKAN METODE LEAST COST DAN MODIFIED DISTRIBUTION PADA CV. NIHTA CARGO EXPRESS

APLIKASI TRANSPORTASI PENGIRIMAN BARANG MENGGUNAKAN METODE LEAST COST DAN MODIFIED DISTRIBUTION PADA CV. NIHTA CARGO EXPRESS APLIKASI TRANSPORTASI PENGIRIMAN BARANG MENGGUNAKAN METODE LEAST COST DAN MODIFIED DISTRIBUTION PADA CV. NIHTA CARGO EXPRESS Niki Iswanti 1, Nelly Astuti Hasibuan 2, Mesran 3 1 Mahasiswa Program Studi

Lebih terperinci

OPTIMISASI. Pertemuan 9 METODE PENUGASAN [ASSIGNMENT METHOD] KHAMALUDIN, S.T, M.T

OPTIMISASI. Pertemuan 9 METODE PENUGASAN [ASSIGNMENT METHOD] KHAMALUDIN, S.T, M.T OPTIMISASI Pertemuan 9 METODE PENUGASAN [ASSIGNMENT METHOD] KHAMALUDIN, S.T, M.T Pengertian : Masalah penugasan termasuk persoalan transportasi, sehingga dapat dipecahkan dengan metode-metode transportasi.

Lebih terperinci